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Introduction

This project consists of an image feature extractor in order to detect the line of sight
of a person. The detected features are edges and corners of an image. Therefore, the
extractor is divided in two parts: an edge and a corner extractor.

The implemented edge and corner extractor theory was taken from [2] and [12]
respectively. Based on this, an enhanced version of the edge extractor was developed.
Also, the corner extractor was replaced by a corner calculation process.

This feature extractor is part of the tracking module of the GEIST project, still in
process in the A5 division of The Fraunhofer Institute FhG-IGD.

This project was done under a research cooperation frame between The Fraunhofer
Institute for Computer Graphics (FhG-IGD), Darmstadt, Germany, and EAFIT Uni-
versity, Medelĺın, Colombia. Part of this project was developed during an internship at
Fraunhofer Institute in the Geographical Information Systems division (IGD-A5) dur-
ing the fist semester of 2003, under the supervision of Dr. Ursula Kretschmer. The rest
of the time, the project was developed in the CAD/CAM/CAE Laboratory at EAFIT
University, under the supervision of Dr. Oscar E. Ruiz.

1



Chapter 1

Context

This chapter presents an introduction to the project in which this work is circumscribed:
the GEIST project. Then, important topics to understand the context of the problem
are explained. Such topics are: Augmented Reality (AR) and tracking. Finally an
overview of the implemented algorithms and the data structures is given.

1.1 The GEIST project

The GEIST project 1 is an educational game that aims to transmit historical facts both
to youngsters and adults by means of AR. The game consists of following a sequence of
interesting places where the history of a town is told, and where through the presence
of ghosts, the user is invited to solve tasks and to inquire about the history of the
environment. Game sequences are different for all users, they depend on the user’s own
decisions, suggestions and solved tasks.
The game uses reconstruction of buildings as they were during the Thirty Years’ War
in Heidelberg. Such reconstructions are superimposed in a user’s viewing field. AR and
tracking are applied to achieve all this. Thus, at the entrance to the site, the visitors
are provided with a small mobile computer unit that they carry around during their
stay. The system consists of a see-through head mounted display (HMD), a GPS, an
orientation tracker and a video camera attached to a mobile computer. These elements
are used to superimpose the virtual views on the user’s current field of view (figure 1.1).
Thus, the perception of physical reality is enhanced by computer-generated overlays
displayed on the HMD.
The GEIST project is being developed in A5 division (Geographic information Systems
(GIS)) at The Fraunhofer Institute for Computer Graphics (FhG-IGD), Darmstadt,
Germany.

1The term geist is the German expression for the English word ghost

2
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1.1.1 Augmented Reality

AR is a technology used to enrich a user’s view of the real world with additional
information. Its aim is to enhance visual perception allowing the superposition of
virtual objects to the physical world. It works by combining live video input with
immersive display technology.
AR allows users to work with and examine real three dimensional (3D) objects while
seeing additional information about the objects or the task at hand. Alignment of 3D
viewing parameters between real and virtual worlds is done to video-camera and user
see-through HMD by means of calibration and tracking. An example of a video-based
tracking system for AR is shown in Figure 1.1.

Figure 1.1: Tracking system for AR

By enrichening visual perception, AR focuses the user’s attention on objects of
interest. Such objects depend on the application area. In medicine, Doctors could use
AR as a visualization and training aid for surgery, virtual instructions could remind
a novice surgeon of the required steps, without the need to look away from a patient
to consult a manual. In architecture, AR might aid general visualization tasks as
well, architects might be able to get “X-ray vision” of a building’s structure showing
where the pipes, electric lines, and structural supports are inside the walls. In the
assembly, maintenance, and repair of complex machinery, instructions might be easier
to understand if they are available, not as a manual with text and pictures, but rather as
3D drawings superimposed upon the actual equipment. Depending on the application
scenario, AR systems need to access relevant information and present it appropriately,
e.g. text-based annotations, a wireframe or complete reconstructions of physical scenes.
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1.1.2 Tracking

Tracking is the process of finding the position and orientation of a subject with respect
to an object of interest. Tracking may be based on visual information, sensors or a
mixture of both. In the following paragraphs these methods will be explained and the
tracking approach of the GEIST project is introduced.

Tracking based on Visual Information

It is based upon the capture of images of the surrounding environment by a camera. It
is also called optical tracking. Optical tracking may be divided into active and passive.

i. Active optical tracking. It is done in prepared environments where visible pre-
calibrated landmarks are captured by the camera.

ii. Passive optical tracking. It is done in unprepared environments. The tracking is
based solely on the analysis of images captured by the camera. This approach is
more complicated than the previous one, but it broadens the field of application
to outdoor environments.

Tracking based on Sensors

Sensors are devices that measure yaw, pitch, roll and direction of a person or object.
Gyroscopes, inclinometeres, compasses are examples of sensors.
Global Positioning System (GPS) is a satellite navigation system for determining po-
sition on the Earth’s surface by comparing radio signals from several satellites. A
DGPS-receiver samples data from up to six satellites, it then calculates the time taken
for each satellite signal to reach the DGPS-receiver, and from the difference in time of
reception, determines the location. DGPS has an accuracy of up to 50 cm in case the
signal of more than three satellites can be gathered by the DGPS-receiver.

Hybrid Tracking

Hybrid tracking grew up of the need to overcome the weaknesses of both: sensors
and optical tracking. Tracking sensors are subject to signal noise, degradation with
distance and sources of interference. Optical tracking offers accurate, passive, low cost
pose estimation. Also, it detects, measures and reduces pose tracking errors derived
from other technologies (i.e. sensors). But, optical tracking is time consuming, while
sensor trackers are fast at giving pose estimation. Thus, the fusion of optical and
sensor trackers to exploit the complementary properties of the two technologies offers
promising possibilities for tracking.
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Tracking for the GEIST project

Figure 1.2: Tracking workflow of the GEIST project

The hybrid tracking for the GEIST project is based on optical and tracking sensors
(Figure 1.2). The passive optical tracking approach is based on the real-time registration
of the live video-frames captured by the camera and the reference-views from a 3D
model database of the surroundings. Once the matching between live video-image and
reference-view has been established, the virtual information can be overlaid correctly
onto the user’s line of sight. The approach begins with an initial pose estimation based
on measures from the DGPS and the orientation tracker. These estimates are used to
query a 3D model view generator in order to obtain a reference-view similar to that of
the user’s line of sight. This view is processed to extract edges and corners which will
be fed into a Matching Algorithm along with the edges and corners extracted from the
video-frame of the camera. In case they match, accurate position and orientation are
calculated for the user’s line of sight, based on the known parameters of the reference
3D model view. Figure 1.2 illustrates the tracking workflow of the GEIST project. In
the following paragraphs each block of Figure 1.2 will be explained.

i. Video camera. It captures images of the environment in real time. It is used for
passive optical tracking of the user’s head (Label a, Figure 1.2).

ii. Orientation tracker. It determines yaw, pitch and roll of the user’s head(Label b,
Figure 1.2).
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iii. DGPS-receiver. It determines an approximate position of user (Label b, Figure
1.2).

iv. See-through HMD. Lenses to display virtual objects in the user’s line of sight
(Label d, Figure 1.2).

v. Grey scale transformation. Pre-processing step to transform a color image into a
gray scale image (Label c, Figure 1.2).

vi. View generation. Process that takes the pose estimates from sensors as input,
and generates a reference view from the 3D-model database. The generated view
is similar to that of the user’s line of sight (Label c, Figure 1.2).

vii. 3D-model database. Database that stores a 3D-model of the city of Heidelberg
(Label c, Figure 1.2).

viii. Edge-corner Extraction. Process to detect edges and corners from grey scale
images coming from the video-camera and from reference views of the 3D-model
database. The Edge-corner Extraction step is the subject of this thesis (Label c,
Figure 1.2).

ix. Matching. Process to match a pair of images coming from the previous Edge-
corner Extraction step (Label c, Figure 1.2).

x. Tracking correction. Process that enhances accuracy in measure of user’s pose by
results obtained from the Matching Algorithm. It generates a 3D-model view of a
virtual reconstruction to be displayed on the see-through HMD (Label c, Figure
1.2).

1.2 Overview of the Edge and Corner Extraction

Algorithm Implemented

Existing algorithms for identification of edges and corners work on pixel domain. How-
ever, matching algorithms of the GEIST project require edges in vector form. In order
to identify and vectorize straight edges and corners from an image the following con-
ceptual steps are undertaken:

i. Identification of Edges in Pixel Domain.
This section partitions the set of dark pixels from an image in subsets, which rep-
resent (straight or curved) Edges. At a particular step of the algorithm filtering
must be applied. Usually, two dimensional (2D) filters are applied for Edge de-
tection. In the present work, for the sake of speed and simplicity, the application
of one-dimesional (1D) filters was proposed and succesfully implemented. This is
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an original contribution of the present work. It must be said that in either case
(applying 1D or 2D filters), corners are erased from the image. Therefore the
process of direct corner identification below must re-take the original image.

ii. Edge Vectorization.
This process takes sequences of pixels which are generalized (i.e. straight or
curved) edges and splits them into the largest possible sub-chains which are ap-
proximately straight.

iii. Corner Extraction
This stage must produce the corners, which are junctions of two or more straight
edges. Two possible approaches are possible (the both of them impemented in
this work)

(a) Direct Corner Extraction.
This process acts directly on the original image (not filtered) by applying
heurisctics to identify regions which have characteristics of corners. The al-
gorithm implemented for the application of such heuristics is the S.U.S.A.N.
[12]. Direct Corner Extraction requires further processing (described later)
to match detected corners and edges. This process resulted in large com-
putational burden, therefore prompting the generation of Indirect Corner
Extraction, which follows.

(b) Indirect Corner Extraction
This step implemented the direct calculation of corners as intersections of
straight edges resulting form step 2 above. This contribution of the present
work showed to be fast and effective and it is currently used in the follow-up
of the Geist project.

iv. Corner - Edge matching
This step searches in two sets -corners and edges- to find corners that are likely
to be the endpoints of the edges. This screening was based upon an approximate
inclusion test of a point on an infinite line. In practice, however, this process
resulted expensive and numerically unstable.

1.2.1 Data Structures

The data structures used are: (i) TIFF files for input, and (ii) Edge Array and the user
defined Class BC Mesh2D for output. They will be explained further in the following
numerals.

i. TIFF file. TIFF files are used for storing and interchanging raster images. Input
information for this work are TIFF files. Basic information on this file format is
shown in Table 1.1. (Additional Information on TIFF file format is found in [1]).
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Tabla 1.1: TIFF file format
File: TIFF Revision 6
Width: 640
Height: 480
Bits per plane: 8
Number of planes: 1
Number of gray levels: 256

ii. Edges Array (E.A.). It is an array (EA), where each row holds the 2D coordinates
of the initial and final vertices of an edge. Edges are represented by a pair of ver-
tices or endpoints. The pixel coordinates of both vertices are stored in array EA.
Each row of EA holds in columns 0 and 1 the x,y (column and row) coordinates
of initial vertex and positions 2 and 3 of EA store the x, y (column and row)
coordinates of final vertex. Table 1.2 shows a representation of the array EA.

Tabla 1.2: EA representation
Size of EA: 4 ×n
EA[0][i]: column of initial vertex of the i-th edge
EA[1][i]: row of initial vertex of the i-th edge
EA[2][i]: column of final vertex of the i-th edge
EA[3][i]: row of final vertex of the i-th edge

Where n is the total number of edges obtained from the Edge Vectorization process
applied to an image.

iii. Class BC Mesh2D. It is a class that belongs to the package de.fhg.igd.progis.-
geist.imagepreparation. It stores edges in two data structures: (i) Edge array
and (ii) Vertex array. The class BC Mesh2D is used as input to the Matching
Algorithm. The class prototype is shown in Apendix A.



Chapter 2

Glossary and Definitions

2.1 Glossary

1D one dimensional
2D two dimensional
3D three dimensional
AR augmented reality
DIP digital image processing
DGPS differential global positioning system
GPS global positioning system
HMD head mounted display
SUSAN smallest univalue segment assimilating nucleus
USAN univalue segment assimilating nucleus

2.2 Definitions

2.2.1 Basics

In this section the basic terms of image processing needed for this work are defined.

i. Live video-frame
It is an image I() captured by the video-camera.

ii. Reference-view
It is an image I() coming from the 3D model database. It is called reference-view,
because the measures of orientation and position of a user can be calculated based
on this image.

iii. Pose
Position and orientation of a person, or parts of a person’s body, with respect to
an object of interest.

9
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iv. Coordinate System
A 2D coordinate system with origin at the top-left corner of the plane of the
image. The horizontal axis is labeled x and it points to the right. The vertical
axis is labeled y and it points downwards.

v. Image I()
Given I : Z × Z −→ N
Domain [0, Xc]× [0, Yr]
Where Xc : Column pixels, usually 639; Yr : Row pixels, usually 479.
Range of I( ) function is [BL, WL], where
BL : Black level (usually 0); WL : White level (usually 255).
An image is a rectangular array of pixels, each one of them representing a grey
scale color dot. The (i, j) position (with 0 ≤ i ≤ Xc and 0 ≤ j ≤ Yr) contains an
integer between BL and WL.

vi. Vertex or Pixel (i, j), v
A vertex is a position (i, j) within an image I(). A vertex will refer to both: (i)
its position (i, j) and, (ii) its content v(i, j).
(i, j) ∈ [0, Xc]× [0, Yr]
v(i, j) ∈ [BL, WL]
I(v) or I(i,j) represents the intensity of the image at pixel v or (i, j).

vii. Straight line
↔

vivj

It is the infinite weighted combination of two vertices vi, vj.
↔

vivj= (λ) vi + (1− λ) vj, λ ∈ R

viii. Straight segment vivj

A straight segment is a portion of a straight line, that starts at vi and ends at vj.
vivj = (λ) vi + (1− λ) vj, 0 ≤ λ ≤ 1

ix. Distance vertex-line d
(
v,

↔
vivj

)
A distance vertex-line is the perpendicular euclidean distance DE from the vertex
v to the line

↔
vivj.

x. Neighborhood
The relationship between pairs of pixels (i, j) and (m, n) that share one or two
end-points.

(a) 4-Neighborhood of a pixel (i, j), N4 (i, j) (See figure 2.2(a)).
N4 (i, j) = {(m, n)| (|m− i| = 1)⊗ (|n− j| = 1)}

(b) 8-Neighborhood of a pixel (i, j), N8 (i, j) (See figure 2.2(b))
N8 (i, j) = {(m, n)| (|m− i| = 1) ∨ (|n− j| = 1)}
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Figure 2.1: Examples of Neighborhood and Connectivity

(a) 4-neighborhood (b) 8-neighborhood

(c) 4-connectivity (d) 8-connectivity

xi. Distances between vertices
The amount of separation between two pixels (i, j) and (h, k)([13], p. 27).
Given two pixels (i, j) and (h, k) ∈ Z × Z

(a) Euclidean distance:

DE [(i, j) , (h, k)] =
√

(i− h)2 + (j − k)2

(b) 4-Neighborhood distance:
D4 [(i, j) , (h, k)] = |i− h|+ |j − k|

(c) 8-Neighborhood distance:
D8 [(i, j) , (h, k)] = max {|i− h|, |j − k|}

xii. Path p (v0, vf )
A path is a non-selfintersecting, unit-width sequence of vertices, starting at v0

and ending at vf , made up of orthogonal or diagonal steps. No assumptions are
made on I(vi)
p (v0, vf ) = [v0, v1, ..., vf ] s.t. (vi ∈ [0, Xc]× [0, Yr]) ∧ (D8 (vi, vi+1) ≤ 1)∧
(|N8 (vi) | ≤ 2)

xiii. Connectivity
The relationship of neighborhood between pairs of pixels vi,j and vm,n determines
the connectivity between them.

(a) 4-Connectedness relation between pixels C4(vi, vj).
Vertices vi and vj are 4-connected, C4(vi, vj) iff vi ∈ N4(vj) (informally, vi is



CHAPTER 2. GLOSSARY AND DEFINITIONS 12

an orthogonal neighbor of vj).
Notice that C4(vi, vj) ⇒ C4(vj, vi). However, C4() is not a transitive relation,
and therefore it is not an equivalence relation. Figure 2.2(c) shows a case of
4-connectivity where the small squares represent the connectedness.

(b) 8-Connectedness relation between pixels C8(vi, vj).
Vertices vi and vj are 8-connected, C8(vi, vj) iff vi ∈ N8(vj) (informally, vi is
an orthogonal or diagonal neighbor of vj).
Notice that C8(vi, vj) ⇒ C8(vj, vi). Again, C8() is not a transitive relation,
and therefore it is not an equivalence relation. Figure 2.2(d) shows a case of
8-connectivity where the small squares represent the connectedness.

2.2.2 Edge detection

In this section the terms used in the edge generation process are defined.

i. Orthogonal differences, ∆iI, ∆jI
The orthogonal differences ∆iI and ∆jI approximate the first directional deriva-
tives of I() in the X and Y directions respectively ([13], p. 80). They are applied
on functions, and return a scalar value:
∆i() : I() → R
∆j() : I() → R
calculated as:
∆iI (i, j) = I (i + 1, j)− I (i− 1, j)
∆jI (i, j) = I (i, j + 1)− I (i, j − 1)
Notation simplification:
if v = (i, j) ⇒ ∆iI (i, j) = ∆iI(v)

ii. Gradient operator ∇I(i, j)
A Gradient operator is the vector formed by the directional derivatives or Orthog-
onal Differences (∆iI, ∆jI) described above. The Gradient operator is applied on
functions, and returns a vector:
∇() : I() → R2

∇() : I() = ∇I(i, j) = (∆iI(i, j), ∆jI(i, j))
Collaterally, its direction and magnitude are defined:

(a) Gradient direction, θ(I(i, j)), is the angle (in radians) from the x axis to the
point (i, j):

θ(I(i, j)) = arg(∇I(i, j)) = arctan
(

∆jI(i,j)

∆iI(i,j)

)
(b) Gradient magnitude, |∇(i, j)|, is the norm of the Gradient operator:

|∇I(i, j)| = |(∆iI(i, j), ∆jI(i, j))| =
√

(∆iI (i, j))2 + (∆jI (i, j))2
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iii. Discretized Gradient b∇cI(vk)
This is an approximation of the continous gradient ∇I(vk) taken from a set with

cardinality 8, formed by the vectors:
{
±î,±ĵ,±î± ĵ

}
b∇cI(vk) = bθ(vk)c
The b c operator maps real values of the gradient angle to elements of a discrete
set, according to the interval which contains the actual gradient angle. The
mapping is given in Table 2.1.

Tabla 2.1: Mapping of gradient angle to discrete values of angles

Interval containing ∇I(vk) Discretized Gradient b∇cI(vk)
(337.5◦, 22.5◦] 0◦

(22.5◦, 67.5◦] 45◦

(67.5◦, 112.5◦] 90◦

(112.5◦, 157.5◦] 135◦

(157.5◦, 202.5◦] 180◦

(202.5◦, 247.5◦] 225◦

(247.5◦, 292.5◦] 270◦

(292.5◦, 337.5◦] 315◦

iv. Thresholds T1, T2
A pixel location is declared an edge location if the value of its ∇( ) exceeds a
threshold. Two thresholds T1, T2, where T1 > T2 are needed for the hystersis
step of the edge detection process.
Range of thresholds T1, T2: [0, max (∇ ( ))]

v. Generalized edge E (v0, vf )
A generalized edge between v0 and vf , E (v0, vf ), is a path p (v0, vf ) between them,
built with high gradient pixels. All pixels of the path have gradient larger than
T2, and at least one pixel in the path has gradient larger than T1. A generalized
edge E() does not have to be straight.
Given T1, T2 ∈ N , where T1 > T2,

E (v0, vf ) = [v0, v1, ...., vf ]s.t.(p (v0, vf ))∧
(∀vi ∈ p(v0, vf ),∇I(v)v=vi

> T2) ∧ (∃vj ∈ p(v0, vf ),∇I(v)v=vj
> T1)

vi. Straight Edge (or simply, edge) e (v0, vf )
An edge is an approximately straight generalized edge, in which the perpendicular
distance from each pixel to the straight segment, v0vf , joining the extremes is
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bounded by an ε value.
e (v0, vf ) = [v0, v1, ..., vf ] s.t. E(v0, vf ) ∧ ∀vi ∈ E(v0, vf ), d (vi, v0vf ) < ε
Typical values for ε: [0, 10]

vii. Standard deviation σ
A Standard deviation is a parameter that indicates the way in which a probability
function or a probability density function is centered around its mean µ([10]). In
this work σ is an input parameter of the Gaussian operator, which is explained
below (see viii).

Figure 2.2: 3D view of 2D Gaussian operator

viii. 2D Gaussian operator G∆x,∆y,σ (i, j)
Gaussian operator is a function that reduces the possible number of frequencies

at which image intensity function changes take place. The parameter σ is the
standard deviation of a normal distribution with µ = 0. Pixels farther than 3σ
from the µ have negligible influence, hence, the operator is truncated at 3σ ([13],
p. 84).
G∆x,∆y,σ (i, j) : Z2 → R

G∆x,∆y,σ (i, j) =


1

2πσ2 e
−

(
i2+j2

2σ2

)
, if −∆x ≤ i ≤ ∆x,

−∆y ≤ j ≤ ∆y

0, otherwise

Usually ∆x = ∆y = 3σ Typical values for σ are in [0, 10].
Figure 2.2 shows 2D G∆x=12,∆y=12,σ=4 () with µ = 0.

ix. 1D Gaussian operator G∆x,σ (i)
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G∆x,σ (i) : Z → R

G∆x,σ (i) =

{
1

2πσ2 e
−

(
i2

2σ2

)
, if −∆x ≤ i ≤ ∆x

0, otherwise

Usually ∆x = 3σ
Typical values for σ are in [0, 10]
([13], p. 84)

x. Convolution
Convolution is a linear operation that calculates a resulting value as a linear
combination of the neighborhood of the input pixel and a convolution mask ([13]
pp. 68-69).

(a) Convolution with 2D filter.
In Figure 2.3 the output pixel -final(i,j)- is calculated as a linear combination
of the neighborhood of the input pixel -inital(i,j)- and the coefficients of the
2D convolution mask M. Vertical and horizontal features are affected by a
2D filter.

Figure 2.3: Value of pixel Final Image(i, j) is the result of convolving the neighborhood
of pixel Initial Image (i, j) and the 2D Convolution Mask M.

Final(i, j) = Initial(i, j) ∗M

=
+1∑

k=−1

+1∑
l=−1

Initial(i + k, j + l)M(k, l)
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(b) Convolution with 1D filter.
In Figure 2.4 the output pixel -final(i,j)- is calculated as a linear combination
of the neighborhood of the input pixel -inital(i,j)- and the coefficients of the
1D convolution mask M. Different from case a), results of this convolution
only affect vertical features of Final Image, because 1D filter was applied
horizontally to Initial Image.

Figure 2.4: Value of pixel Final Image(i, j) is the result of convolving the neighborhood
of pixel Initial Image (i, j) and the 1D Convolution Mask M.

Final(i, j) = Initial(i, j) ∗M

=
+1∑

k=−1

Initial(i + k, j)M(k)

2.2.3 Corner Extraction

In this section terms used in the corner generation process are defined.

i. Region Re (Tl, Th)
A Region is a connected set of pixels with homogeneous image intensity. Values
Tl and Th are the low and high thresholds that determine the intensity of the
region.

Re (Tl, Th) = {v ∈ Z × Z| (Tl ≤ I (v) ≤ Th)∧
(∀w ∈ Re (Tl, Th)∃ path () = [v, ...w] ⊂ Re (Tl, Th))}

ii. Boundary of a Region δRe (Tl, Th)
The Boundary of a Region is a closed non self intersecting parametric (in the
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parameter u) curve ∈ R2.
δRe (Tl, Th) = Γ (u) = (Γx (u) , Γy (u))

iii. Corner corner
A corner is the intersection point of two or more edges that border different
regions.
corner = (x, y)s.t.(pi(e1, e2) ∧ (e1 ∧ e2 ∈ δRe (Tl, Th)))

iv. Circular Mask M (x, y, R)
Set of pixels (usually 37) that make up the interior and boundary of a circular
subwindow of an I()([12]).
M (x, y, R) =

{
(i, j) | (x− i)2 + (y − j)2 ≤ R2

}
With nucleus v0 the center of the circle: v0 = (x, y)
And vi any other point in the circle: vi = (i, j).
A typical Circular mask is shown in Figure 2.5.

Figure 2.5: Circular mask M (x, y, R) bounded by black contour, at the centre of the
circle the nucleus: v0.vi is any pixel in the mask other than the nucleus.

v. Intensity difference threshold ∆It

A threshold of the intensity function of an image. It is used in order to define
similarity in intensity among the nucleus v0 and all other pixels of Circular mask
M( )([12]).
Typical values for ∆It are in [10, 60].

vi. Delta intensity function δv0,∆It (vi)
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Difference in intensity between pixels vi and v0 ([12]).

δv0,∆It (vi) =

{
1, if |I(vi)− I(v0)| ≤ ∆It

0, otherwise

Given an intensity difference threshold ∆It, δv0,∆It (vi) measures the similarity in
pixel intensity with respect to a reference pixel v0.

vii. Univalue Segment Assimilating Nucleus (U.S.A.N.) area USAN(v0, R, ∆It)
It is the neighborhood of a reference pixel v0, whose intensity is similar to the
intensity of v0 ([12]). Figure 2.5 shows the USAN() area within the circular mask
as a region of the same color as the nucleus (v0).

USAN(v0, R, ∆It) = {vi ∈ M (v0, R) | (|I(vi)− I(v0)|) ≤ ∆It}
|USAN()| is the cardinality of USAN().

viii. Geometric threshold gt

Geometric threshold is the maximum size allowed for |USAN()|. The maximum
value of this threshold is bounded by the size of the Circular mask M(). Corner
sharpness is determined by this threshold ([12]).
Domain
[0, |M( )|]
Typical values for gt: [15, 28].

ix. Corner response R(v0)
Corner response is a number, that determines the capacity of the nucleus (v0) to
be detected as a corner. The higher the value of R(v0) the greater the possibility
for v0 to be a corner ([12]).

R(v0) =

{
gt − |USAN()| if |USAN()| < gt

0 otherwise

x. Center of mass CM(P )
Centroid or point whose coordinates are the averages of the corresponding coor-
dinates of a given set of pixels P ([6]).
x = 1

N

∑∑
(i,j)∈P x (i, j) ,

y = 1
N

∑∑
(i,j)∈P y (i, j)

N : Total number of pixels in P

xi. Colinearity colinearity(corner(), e())
It is a number that determines if a corner and an edge lie on the same infinite
line. Given, a corner(x, y) and an e((x1, y1), (x2, y2)),
and the parametric equation of the line ([5]):
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x = x1 + tx (x2 − x1)
y = y1 + ty (y2 − y1)
where,
tx = (x−x1)

(x2−x1)

ty = (y−y1)
(y2−y1)

colinearity(corner(), e()) = tx iff (tx = ty) ∨ (|tx − ty| < ε).

xii. Intersection point pi (e1, e2)
The intersection point is the pixel where two edges (e()) meet. Given two edges:
e1 ((x1, y1) , (x2, y2)) and e2 ((x3, y3) , (x4, y4)) and the parameter t:

t = (x4−x3)(y1−y3)−(y4−y3)(x1−x3)
(y4−y3)(x2−x1)−(x4−x3)(y2−y1)

The intersection point is defined as:
x = x1 + t(x2 − x1),
y = y1 + t(y2 − y1)

xiii. Tolerance
The maximum allowable value deviation from a standard or the range of variation
permitted in maintaining a specified dimension.

(a) Tolerance edge-corner ect

Maximum Euclidean distance (DE) allowed from a corner to an edge vertex.
Typical values for ect: [0− 10].

(b) Tolerance segments st

Maximum Euclidean distance (DE) allowed from any pixel of the Generalized
Edge (E ()) to a rough approximation line, when transforming edges from
raster representation (E ()) into segment representation (e()).
Typical values for st: [0− 10].
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Literature survey

Position and orientation of a person are required for tracking. In order to track the
position, systems based on GPS, smartcards ([8]) , ultrasonic sensors ([9]) have been
developed. Orientation is tracked by means of accelerometers, inclinometers, gyro-
scopes,(which sense the Earth’s magnetic field), etc.

Tracking for AR requires high precision, because virtual objects must superimpose
real world objects in the line of sight of the user. Hence, little misalignments are easily
noticeable.

Tracking based on sensors, such as the ones mentioned above, is useful in certain
applications where accuracy in alignment is not the main goal. For example in cases
where only annotations are superimposed on real world objects ([4]). But in cases where
superposition has to be very precise, this approach is insufficient. Therefore, tracking
prototypes based not only on sensors but also on images captured by a camera are
being developed in order to obtain very accurate pose estimates.

Even though images seem a promising solution for tracking. Research toward sys-
tems that are able to track natural markers/landmarks is still an open problem. Optical
tracking has been implemented in several prototypes. Jiang and Neumann ([7]) devel-
oped a prototype that is based on pre-calibrated landmarks. Uncalibrated straight lines
of man-made environment are used in order to extend the tracking to an unprepared
environment. Satoh et. al. ([11]) choose template landmarks from the images captured
by the camera. Pose tracking is based on template matching and sensors.

The Geist prototype does not use precalibrated landmarks, nor templates. The
approach is based on a Matching Algorithm that matches pairs of images: one coming
from the video-camera and the other one, coming from a reference 3D model database.
The Matching Algorithm gives a corrected estimate of the user’s pose. This approach
is good because it works well at big translations of the camera. And since it has a

20
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reference model database of the surroundings, it can be used outdoors and the user
does not have to be at a fixed position. The approach aims at true mobile computing.



Chapter 4

Methodology

Figure 4.1: Workflow of the Edge and Corner Extraction processes

The goal of this work is to identify edges and corners of a given image I( ). An
Initial Approach to the problem (upper part of Figure 4.1) follows three steps:

i. Edge vectorization. It is the process that identifies the generalized edges of an
image based on 2D filters. Further transformation of generalized edges into vector
representation (or edges) is carried out in this process.

ii. Corner Extraction. It is the process that identifies pixels corresponding to corners
in an image.

iii. Corner Alignmet. This process searches for colinear corners of an edge.

22
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An alternative approach called -the Optimization- (lower part of Figure 4.1) generates
the same results as the Initial Approach. Besides, it improves the quality of results and
the algorithm performance. The two methods -Initial and Optimization- are alternative
ways to reach the same goal: edge and corner generation. This alternative approach
consists of the following steps:

i. Edge Vectorization. Based on 1D filters the process of Edge Identification and
edge vectorization is carried out.

ii. Indirect Corner calculation. It consists on the calculation of corners based on the
edges obtained from Edge Vectorization step.

This chapter describes the processes of Edge Vectorization and Corner Extraction for
both -the Initial and the Optimization- approaches. To end with, the steps taken for
the Experimental Setup are described.

4.1 Initial Approach

4.1.1 Edge Vectorization

It is a process composed of two steps: identification of edges in a given image and
transformation of the representation of the edges from raster image into vector form.
This two steps are called:

i. Identification of Edges in Pixel Domain.

ii. Vectorized Edge Synthesis.

Identification of Edges in Pixel Domain

It is the process of locating pixels corresponding to edges in a given image. This process
is based in the Canny edge detector ( [2]). It is composed of four steps as depicted in
Figure 4.2. Algorithm 1 shows the steps required to Identification of Edges in Pixel
Domain.

i. Gaussian Convolution (line 9, function 1)

ii. First Derivative Convolution (line 11, function 1)

iii. Non-maxima Suppression (line 12, function 1)

iv. Hysteresis thresholding (line 13, function 1)
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Function 1 Pixel Domain Edge Identification Algorithm

[Maxima()] = Edge Identification(I(), σ, T2, T1)
Input: I(): Image

σ: Standard deviation
T2: Lower threshold
T1: Higher threshold

Output: Maxima(): Array of Generalized Edges

1: Yr = 480 (Total number of rows)
2: Xc = 640 (Total number of columns)
3: height = Yr − 2(3σ)
4: width = Xc − 2(3σ)
5: Gra Magnitude(width, height) = 0
6: Gra Direction(width, height) = 0
7: Maxima(width, height) = 0
8: if (σ 6= 0) then
9: [I ()] = Gaussian Convolution(G∆x,∆y,σ () , I () , σ,Xc, Yr) (Function 2)

10: end if
11: [Gra Magnitude ( ) , Gra Direction ( )] = First Derivative Convolution(I () ,

width, height) (Function 3)
12: [Maxima()] = Non Maxima Suppression(Gra Magnitude ( ) ,

Gra Direction ( ) , width, height) (Function 4)
13: Hysteresis Thresholding(Maxima ( ) , T2, T1,

width, height) (Function 6)
14: return Maxima()
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Figure 4.2: Block diagram of Identification of Edges in Pixel Domain

i. Gaussian Convolution.

Gaussian convolution is an operation that reduces high frequencies of the inten-
sity function of an image I() by the use of a filter called the Gaussian operator.
It is applied in order to reduce noise and fine detail from the image. Parameter
σ of the gaussian operator G∆x,∆y,σ () determines the degree of smoothing to be
applied to the image.
Figure 4.3-a shows an image seen as a scalar field. The image is made up of four
intensity values (i.e. four colors). Each color represents a change in the intensity
function. Figure 4.3-b shows the image after the gaussian convolution, notice
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Figure 4.3: Gaussian Convolution

(a) Original Image in 3D (b) Original Image after Gaussian
Convolution in 3D

that large differences in the intensity function are smoothed by the convolution.
Also notice that neighborhood of pixels of constant intensity values remain un-
changed.
In lines 8 - 17, Function 2, the gaussian operator G∆x,∆y,σ () is applied to neighbor-
hood of pixel I(i,j), and the resulting value is stored in array Smoothed Image().
The input of the gaussian convolution is a TIFF file (Table 1.1) and the output
is an array of a gaussian convolved image as shown in Figure 4.2.
Notice that If σ = 0 for G∆x,∆y,σ () then no gaussian convolution is applied to the
image and the image goes directly to second step: First Derivative Convolution
(see Function 1, line 8).
Also note that after applying Gaussian Convolution the smoothed image has a
smaller size.
Size of Smoothed Image = [Original number of columns −2(3σ)]× [Original num-
ber of rows −2(3σ)]

ii. First Derivative Convolution.

This process highlights regions whose first spatial derivatives are high (i.e. noise,
big changes in intensity function of the image).
The procedure consists of two steps:

(a) Orthogonal differences calculation. The othogonal differences ∆i() and ∆j()
of the current pixel are calculated and results are written to their respective
xComponent (col, row) and yComponent (col, row) arrays as shown in lines
8 and 12, Function 3.

(b) Gradient magnitude and direction calculation. Based on the components
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Function 2 Gaussian Convolution
[Smoothed Image()] = Gaussian Convolution(G∆x,∆y,σ (), I(), σ, Xc, Yr)

Input: G∆x,∆y,σ (): Gaussian operator
I(): Image
σ: Standard deviation
Xc: Total number of columns
Yr: Total number of rows

Output: Smoothed Image(): Image softened by the Gaus-
sian convolution

Precondition: σ 6= 0

1: {I() is scanned pixel by pixel in the two following loops}
2: for row = 3σ to Yr − 3σ do
3: y = 0
4: for col = 3σ to Xc − 3σ do
5: x = 0
6: l = 0
7: {Convolution is done in the following two loops: G∆x,∆y,σ (k, l) is convolved

with I (i, j)}
8: for j = row − 3σ to j ≤ row + 3σ do
9: k = 0

10: for i = col − 3σ to i ≤ col + 3σ do
11: Smoothed Image(x+col, y+row) = Smoothed Image(x+col, y+row)+

I (i, j) G∆x,∆y,σ (k, l)
12: x = x + 1
13: y = y + 1
14: k = k + 1
15: end for
16: l = l + 1
17: end for
18: end for
19: end for
20: return Smoothed Image( )
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Figure 4.4: First Derivative Convolution

(a) Gaussian Convolved Image in 3D (b) First Derivatives Convolution ap-
plied to a Gaussian Convolved Image
in 3D

found in previous step, gradient magnitude (∇ ()) and discretized gradient
direction (bθ ()c) are calculated as results of this procedure (lines 15 and 17
of Function 3).

The output of this procedure is:

(a) Gradient magnitude array. It is an array that holds the rate of increase or
decrease of the intensity function per pixel.

(b) Discretized gradient direction array. It is an array that holds gradient direc-
tion per pixel. Edge direction corresponds to gradient direction - 90◦.

iii. Non-maxima Suppression.

Let RT be a region of pixels with a large image gradient (∇I > T ). The goal of
the Non-maxima Suppression Algorithm is to make RT a thin region (a path), by
suppressing from it all pixels whose gradient ∇I() is not a local maximum.
Gradient ∇I() is used to determine a directional derivative calculated along a
line. The output of this step is a gradient maxima array.
The procedure to suppress non-maxima follows four steps:

(a) Two-neighbor finding. Two pixels in array Gra Magnitude() in the 8-neighborhood
of the current pixel (col,row) are found by calling the function select− two−
neighbors − along − theta()(Line 4, Function 4). The found pixels must
be along gradient direction of current pixel. Neighbor1 and neighbor2 are
assigned with values of the gradient along gradient direction.
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Function 3 First Derivative Convolution
[Gra Magnitude ( ) , Gra Direction ( )] = First Derivative Convolution(I(),

width, height)
Input: I(): Image

width: Total number of columns of image
height: Total number of rows of image

Output: Gra Magnitude( ) Array of gradient magnitude
Gra Direction( ) Array of gradient direction

1: xComponent(width, height) = 0
2: yComponent(width, height) = 0
3: {Scan I () pixel by pixel:}
4: for row = 1 to height− 1 do
5: for col = 1 to width− 1 do
6: {Find horizontal component of directional derivative:}
7: for j = row − 1 to j ≤ row + 1 do
8: xComponent(col, row) = xComponent(col, row) + ∆iI (col, j)
9: end for

10: {Find vertical component of directional derivative:}
11: for i = col − 1 to i ≤ col + 1 do
12: yComponent(col, row) = yComponent(col, row) + ∆jI (i, row)
13: end for
14: {Find gradient magnitude ∇ ():}
15: Gra Magnitude(col, row) = |∇ (yComponent(col, row),

xComponent(col, row)) |
16: {Find discretized gradient direction bθ ()c:}
17: Gra Direction(col, row) = bθ (yComponent(col, row),

xComponent(col, row))c
18: end for
19: end for
20: return [Gra Magnitude( ), Gra Direction( )]
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Figure 4.5: Non-maxima Suppression

(a) First Derivatives Convolution ap-
plied to a Gaussian Convolved Image
in 3D

(b) Non-maxima Suppression in 3D

(b) First suppression. Neighbor1 and neighbor2 should be less than the gradient
of the current pixel (line 5, Function 4). Hence, the current pixel is taken into
consideration as a maximum and is written to array Maxima(col, row) (line
6, Function 4). Otherwise, the current pixel is not considered a maximum.
Suppression consists on writing a zero in array Maxima(col, row).

(c) Two-neighbor finding. Step a) is repeated here but instead of Gra Magnitude(),
Maxima() array is used. Two pixels in array Maxima() in the 8-neighborhood
of current pixel (col, row) are found by calling the function select − two −
neighbors− along− theta()(Line 12, Function 4). The found pixels must be
along gradient direction of the current pixel. Neighbor1 and neighbor2 are
assigned with values of the gradient along gradient direction.

(d) Second suppression. Neighbor1 and neighbor2 should be less or equal than
the gradient of current pixel(line 13, Function 4). Hence, current pixel is
considered a maximum. Otherwise current pixel is not considered a maxi-
mum and is suppressed by writing a zero in Maxima (col, row) as shown in
line 14, Function 4.

Results of this procedure are maxima values of the gradient stored in array
Maxima( ). These values correspond to candidate edges. Zero values in Maxima( )
correspond to non-edge pixels.

iv. Hysteresis Thresholding.

Hysteresis thresholding is a process to avoid edge streaking. Two thresholds T1
and T2, with T1 > T2 are used for this process. Gradient values (∇()) above T1
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Function 4 Non-maxima Suppression

[Maxima()] = Non Maxima Suppression(Gra Magnitude( ), Gra Direction()
width, height)
Input: Gra Magnitude( ): Array of gradient magnitude

Gra Direction(): Array of gradient direction
width: Total number of columns
height: Total number of rows

Output: Maxima(): Array of maxima vaues of gradient
magnitude

1: neighbor1, neighbor2
2: for row = 1 to height− 1 do
3: for col = 1 to width− 1 do
4: [neighbor1, neighbor2] =select-two-neighbors-along-theta

(row, col, Gra Magnitude( ), Gra Direction( )) (Function 5)
5: if ((Gra Magnitude(col, row) ≥ neighbor1)

and (Gra Magnitude(col, row) ≥ neighbor2)) then
6: Maxima(col, row) = Gra Magnitude(col, row)
7: end if
8: end for
9: end for

10: for row = 1 to height− 1 do
11: for col = 1 to width− 1 do
12: [neighbor1, neighbor2] =select-two-neighbors-along-theta

(row, col,Maxima( ), Gra Direction( )) (Function 5)
13: if ! ((Maxima(col, row) > neighbor1)

and (Maxima(col, row) > neighbor2)) then
14: Maxima(col, row) = 0
15: end if
16: end for
17: end for
18: return [Maxima( )]
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Function 5 Select Two Neighbors Along Gradient Direction θ()

[neighbor1, neighbor2] = select-two-neighbors-along-theta(row, col, V alues( ),
Gra Direction( ))
Input: row: Current row

col: Current column
V alues( ): Array of gradient magnitude
Gra Direction( ): Array of gradient direction

Input-Output: neighbor1: Pixel along gradient direction
of current pixel (col, row)
neighbor2: Pixel along gradient direction
of current pixel (col, row)

1: if (Gra Direction(col, row) == 0◦) then
2: neighbor1 = V alues(col − 1, row)
3: neighbor2 = V alues(col + 1, row)
4: else if (Gra Direction(col, row) == 45◦) then
5: neighbor1 = V alues(col + 1, row − 1)
6: neighbor2 = V alues(col − 1, row + 1)
7: else if (Gra Direction(col, row) == 90◦) then
8: neighbor1 = V alues(col, row − 1)
9: neighbor2 = V alues(col, row + 1)

10: else if (Gra Direction(col, row) == 135◦) then
11: neighbor1 = V alues(col − 1, row − 1)
12: neighbor2 = V alues(col + 1, row + 1)
13: else if (Gra Direction(col, row) == 180◦) then
14: neighbor1 = V alues(col − 1, row)
15: neighbor2 = V alues(col + 1, row)
16: else if (Gra Direction(col, row) == 225◦) then
17: neighbor1 = V alues(col + 1, row − 1)
18: neighbor2 = V alues(col − 1, row + 1)
19: else if (Gra Direction(col, row) == 270◦) then
20: neighbor1 = V alues(col, row − 1)
21: neighbor2 = V alues(col, row + 1)
22: else if (Gra Direction(col, row) == 315◦) then
23: neighbor1 = V alues(col − 1, row − 1)
24: neighbor2 = V alues(col + 1, row + 1)
25: end if
26: return [neighbor1,neighbor2]
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Figure 4.6: Hysteresis Thresholding

(a) Non-maxima Suppression in 3D (b) Hysteresis Thresholding in 3D

are immediately accepted as generalized edge pixels (E()), gradient values below
T2 are immediately rejected. Pixels whith gradient values between T1 and T2
must be evaluated in order to decide wether or not they belong to a generalized
edge (E()). In order to be part of an E() a pixel must be C8() to a pixel that is
either connected -in the path of a pixel with gradient above T1- or N8() of a pixel
with ∇() value above T1.
In Function 6, maxima values of the gradient are stored in array Maxima( ).
Line 4, Function 6 shows the rejection of pixel Maxima(col, row) because its
value is below threshold T2. Rejection of a pixel is done by writing a zero to
array Maxima( ).
Line 7, Function 6 is a condition to decide wether or not the current pixel is
connected (C8()) to a pixel with gradient (∇()) above threshold T1. Connectivity
(C8()) is known, by testing for non-zero values in the neighborhood of current pixel
of array Maxima( ). If the pixel is not connected C8() then its value must be
above T1 (line 9, Function 6) in order for the pixel to be considered an E().
Otherwise it is suppressed (line 10, Function 6).
Output of this step is an array of Generalized edges stored in array maxima()
where Generalized edges are pixel values different from zero.

Vectorized Edge Synthesis

It is the transformation from a data structure representation, in the present case
“raster”, into vector representation. This process is used to reduce the amount of
data that describes an image. Figure 4.7 shows how a Generalized Edge (E()) is trans-
formed into three straight edges (e( )).
The Algorithm divides a Generalized Edge (E()) into two parts, until the parts fulfill
a given condition. Considering a Generalized Edge consisting of a sequence of edge
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Function 6 Hysteresis Thresholding

Hysteresis Thresholding(Maxima( ), T2, T1, width, height)
Input: T2: Lower threshold

T1: Higher threshold
width: Total number of columns
height: Total number of rows

Input-Output: Maxima( ): Array of maxima values of gradient

1: for row = 1 to height− 1 do
2: for col = 1 to width− 1 do
3: {Pixels whose gradient is below T2 are rejected:}
4: if Maxima(col, row) ≤ T2 then
5: Maxima(col, row) = 0
6: {Testing for non-concectivity (C8()) of current pixel:}
7: else if (Maxima(col − 1, row − 1) = 0) and

(Maxima(col, row − 1) = 0) and
(Maxima(col + 1, row − 1) = 0) and
(Maxima(col − 1, row) = 0) then

8: {Testing the neighborhood (N8()) for pixels with gradient below T1:}
9: if (Maxima(col, row) < T1) and

(Maxima(col + 1, row) < T1) and
(Maxima(col − 1, row + 1) < T1) and
(Maxima(col, row + 1) < T1) and
(Maxima(col + 1, row + 1) < T1) then

10: Maxima(col, row) = 0
11: end if
12: end if
13: end for
14: end for
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Figure 4.7: Approximation by straight lines

(a) Rough Approximation
between v1 and v2

(b) Creation of a straight
edge between v2 and v3

(c) Creation of a straight
edge between v3 and v5

(d) Creation of a straight
edge between v5 and v1
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pixels v1, v2, ..., vn, where v1 and vn are the endpoints. Pixels v1 and vn are joined by a
straight line. For each pixel of the Generalized Ege, the distance to the straight line is
calculated. If the maximum distance is larger than a given threshold the Generalized
Edge is divided into two new Generalized Edges. The Generalized Edge is divided at
the position where the maximum distance is found.

The process is composed of three steps:

i. Initial approximation. A straight line is drawn accros endponits of Generalized
Edge (E(v1, v2) in Figure 4.7-a).

ii. Distance vertex-line calculation. Euclidean distance is calculated for all pixels
comprising the generalized edge. The longest distance calculated is retained as
well as the pixel at which the longest distance is measured (lines 7-8, Function 7).

iii. Tolerance filtering. The longest distance, must be below threshold st. In case
the longest distance is below this threshold there is no need for subdivision of the
current generalized edge (line 13, Algorithm 7). Therefore endpoints v0 and vf

are retained as endpoints of a new element: an edge that its described by its two
vertices e(vo, vf ). The rest of the vertices are eliminated and the process stops.
Otherwise, the generalized edge E(vo, vf ) is subdivided in two shorter generalized
edges: E(v0, v) and E(v, vf ) (lines 16, 17 Function 7).

The procedure is repeated recursively, until the approximation is good for all segments
comprising the original Generalized Edge.
Figure 4.7 shows the process of Vectorized Edge Synthesis. In Figure 4.7-a the longest
distance (dotted line) from the rough approximation (solid line) to E(v1, v2) is d(v3, v1v2)
= 23.58. Since threshold st = 1.0, the Generalized Edge E(v1, v2) is subdivided into
two segments: v1, v3 and v3, v2. Then the longest distance is calculated for segment
v3, v2, d(v4, v3v2) = 0.96, which is below the treshold st. Therefore, segment v3, v2 is
no further subdivided (Figure 4.7-b) and it is transformed into an edge: e(v3, v2). The
longest distance calculated at segment v1, v3 happens at pixel v5, since d(v5, v1v3) =
1.55 is above st, then the segment v1, v3 is subdivided into: v1, v5 and v5, v3 (Figure
4.7-c). The longest distance found for these pair of segments is below the threshold st.
Therefore, the Algorithm stops, and two new edges are obtained: e(v1, v5) and e(v5, v3).
Generalized Edge E(v1, v2) is transformed into three straight edges: e(v1, v5), e(v5, v3)
and e(v3, v2) as shown in Figure 4.7-d.
For additional information on this Algorithm refer to [3].

4.1.2 Direct Corner Extraction From Image

It is the identification of corner pixels directly from an image. The Direct Corner
Extraction is seen in Figure 4.1 as a part of the methodology workflow. The corner
detector implemented is based on S.U.S.A.N. corner detector ([12]).
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Function 7 Vectorized Edge Synthesis

[e()] = Vectorized Edge Synthesis(E(v0,vf ))
Input: E (v0, vf ): Array of generalized edges
Output: e(): Array of edges where each row

holds the 2D coordinates of the initial
and final vertices of an edge

1: maximum distance = 0
2: for vi ∈ E ( ) do
3: {Euclidean distance from each pixel of E() to the straight line is calculated: }
4: distance = d (v, v0 vf )
5: {maximum distance is found: }
6: if distance > maximum distance then
7: maximum distance = distance
8: v = vi

9: end if
10: end for
11: {maximum distance is tested against the threshold st:}
12: if maximum distance < st then
13: return [e (v0, vf )]
14: else
15: {E() is divided into two parts:}
16: return e () = Vectorized Edge Synthesis(E(v0, v))
17: return e () = Vectorized Edge Synthesis(E(v, vf ))
18: end if
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Figure 4.8: Block diagram of Direct Corner Extraction from a given Image I()

Given a Circular Mask (M()) delimiting a circular region of the image, the Univalue
Segment Assimilating Nucleus (USAN) area is the area of the Circular Mask made up
of pixels similar in intensity to the intensity of the nucleus (v0) of the mask. In a digital
image, the USAN area will reach a minimum when the nucleus lies at a corner point.
SUSAN is not sensitive to noise and is very fast for it only uses very simple operations.
Required steps (see Figure 4.8) for this process are: (i) USAN Area Calculation, (ii)
Corner Response Calculation, (iii) False Positives Elimination and (iv) Non-maxima
Suppression. In the following paragraphs each one of these steps will be explained.

i. USAN Area Calculation.
Pixels whose intensity value is similar to the nucleus of the circular mask (M())
are found and counted in this step. The delta intensity function ∆v0,It (vi) applies
the threshold ∆It to the pixels of the mask in order to find the USAN() area, as
shown in line 3 Function 8.

ii. Corner Response Calculation.
The Corner Response (R (v0)) is a measure of the cornerness of the nucleus of
the mask. The bigger the value of the corner response the larger the possibility
for the nucleus to be considered a corner. Corner response is determined by the
threshold gt and the USAN size (line 1, Function 9). If the USAN size is below this
threshold (line 2, Function 9), it means that the nucleus is considered a candidate
corner. Otherwise it is not considered a candidate corner and its corner response
is set to zero (line 4, Algorithm 9).

iii. False Positives Elimination.
False Positives are points wrongly reported as corners. Cases like noise, lines
across the circular mask (M()) may be reported as corners. Hence the aim of the
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Function 8 USAN Area Calculation
[usan size] = USAN Area Calculation(I(), M(), v0, ∆It)

Input: I(): Image
M(): Circular mask
v0: nucleus of the mask M()
∆It: Intensity difference threshold

Output: usan size: cardinality of USAN()

1: usan size = 0
2: for every vi in M() do
3: if (δv0,∆It(vi) == 1) then
4: usan size = usan size + 1
5: end if
6: end for
7: return usan size

Procedure 9 Corner Response Calculation

[corner response] = Corner Response Calculation(usan size, gt)
Input: usan size: Cardinality of USAN()

gt: Geometrical threshold
Output: corner response: Number (R(v0))

1: if usan size < gt then
2: corner response = gt − usan size
3: else
4: corner response = 0
5: end if
6: return corner response
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False Positives Elimination is to detect and eliminate such points.
In order to detect false positives, the center of mass of the USAN() is found (line
1, Procedure 10). Then, the Euclidean distance (DE) is calculated based on the
center of mass and the nucleus (v0) (line 2, Procedure 10). If distance is below
1 then a false positive is reported (line 11, Procedure 10) by setting its corner
response to zero.
If distance is above or equal to 1 (line 3, Procedure 10) and any of the pixels in
line from v0 to center of mass does not belong to the USAN(), then the nucleus is
reported as a false positive and its corner response is set to zero (line 7, Procedure
10).
Note: Calculation of false positives approximates continuous values of the center
of mass (CM(USAN())) to discrete values of pixel: (0, 0.5) to zero, and [0.5, 1.0)
to one.

Procedure 10 False Positives Elimination
False Positives Elimination(USAN(), v0, corner response)

Input: USAN(): USAN area
v0: Nucleus of mask M()

Input-Output: corner response: Number (R(v0))

1: center of mass = CM(USAN())
2: distance = DE (center of mass, v0)
3: if distance ≥ 1 then
4: {Search pixel by pixel from nucleus to center of mass:}
5: for vi = v0 to center of mass do
6: if vi /∈ USAN() then
7: corner response = 0
8: end if
9: end for

10: else
11: corner response = 0
12: end if

iv. Non-maxima Suppression.
Non-maxima Suppression is a process to detect a corner response (R()) that is
not a maximum in a subwindow of 5 × 5 pixels. In order to know if the current
pixel (x, y) (line 5, 11) has a value of corner response that is not a maximum, the
subwindow is scanned and tested for values of R() bigger than that of the current
pixel (Function 12). If a value of R() is found complying with such condition,
then the current pixel is not considered a maximum and its corner response is set
to zero (line 7, Procedure 11).
Finally, candidate corners are those pixels whose corner response has a value
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different from zero.
Note: in case the current pixel has the same highest value as any of its neighbors
in the subwindow, it is not to be considered a maximum. Therefore its corner
response is set to zero.

Procedure 11 Non-maxima Suppression

Non-maxima Suppression(R())
Input-Output: R(): Array of corner response
Precondition: Corner response (R()) has been found for all pixels

of the image

1: Yr = 480 (Total number of rows)
2: Xc = 640 (Total number of columns)
3: for x = 2 to Xc − 2 do
4: for y = 2 to Yr − 2 do
5: maximum = find maximum(R(), x, y) (Function 12)
6: if maximum == 0 then
7: R(x, y) = 0
8: end if
9: end for

10: end for

4.1.3 Edge-corner Alignment

This process aims at putting together the detected corners and edges. The guiding
principle is the relationship of colinearity between an edge and its close corners. In case
a corner is aligned with an edge, one of the following three cases may occur:

• the corner falls inside the edge,

• the corner falls at an endpoint of the edge,

• the corner falls outside the edge.

Assumption: for the current problem, the first two cases are of no interest because they
do not yield useful information. In contrast, the last case enables the contouring of the
missing corners.
In order to find a colinear corner, the distance between the corner c() and each of the
vertices of the current edge e() must be calculated (lines 1, 2 Procedure 13). This step
helps to ensure that neighboring corners are chosen for the Edge-corner Alignment.
Corners which are not farther than threshold ect (line 3, Procedure 13) are tested for
colinearity (line 4, Procedure 13). If the corner is colinear to the edge, then the edge is
extended to meet the corner (line 5, Procedure 13).
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Function 12 Find Maximum
[maximum] = Find Maximum(R(), x, y)

Input: R(): Array of corner response
x, y: Central pixel

Output: maximum: Boolean value to determine wether or
not the central pixel is a maximum

1: maximum = 1
2: for i = x− 2 to i < x + 2 do
3: for j = y − 2 to j < y + 2 do
4: if (i 6= x) and (j 6= y) then
5: if (R (x, y) < R (i, j)) then
6: maximum = 0
7: i = x + 2
8: j = y + 2
9: end if

10: end if
11: end for
12: end for
13: return maximum

The same procedure must be repeated for all edges e() obtained in the Edge Vectoriza-
tion process (4.1.1).
For additional information on this Algorithm refer to [5].

Procedure 13 Colinear corner-edge Attachment

Colinear Corner Edge Attachment(corner(), e())
Input: corner(): Corner
Input-Output: e(): Edge

1: distance v0 = DE (corner () , e (v0, vf ))
2: distance vf = DE (corner () , e (v0, vf ))
3: if ((distance vo ≤ ect) or (distance vf ≤ ect)) then
4: if (Alignment(corner () , e ()) == OUTSIDE)(Function 14) then
5: e () = extend (e () , corner ())
6: end if
7: end if
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Function 14 Alignment

value = Alignment(corner(), e())
Input: corner(): Corner

e(): Edge
Output: value: String, it represents the position of a corner

respect to an edge

1: colinear = colinearity (e () , corner ())
2: if (colinear == 0) or (colinear == 1) then
3: value = ENDPOINT
4: else if (colinear > 0) or (colinear < 1) then
5: value = INSIDE
6: else if (colinear < 0) or (colinear > 1) then
7: value = OUTSIDE
8: end if
9: return value

4.2 Optimization

Results obtained in the Edge-corner Alignment process were insufficient. Many edges
remained without a common corner after the Edge-corner Alignmet process. Besides,
processing time was too long. Therefore, an Optimization was implemented. The
Optimization consists of: (i) The use of 1D filters instead of 2D filters for the process
of Identification of Edges in Pixel Domain and (ii) Indirect Corner Calculation based
on existent edges.

i. The use of 1D filters instead of 2D filters for the process of Identification of Edges
in Pixel Domain.
The order of magnitude for an algorithm based on 1D filter is:
O1(m ∗Xc ∗ Yr),
The order of magnitude for an algorithm based on 2D filter is:
O2(m

2 ∗Xc ∗ Yr), where
m = filter side,
Xc = image width,
Yr = image height.

⇒ O1(m ∗Xc ∗ Yr) < O2(m
2 ∗Xc ∗ Yr)

Advantages of 1D filter:

(a) More efficient.
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Disadvantages of 1D filter:

(a) Fine detail remains.

(b) Picture orientation sensitive.

The optimized process of Edge Vectorization is divided into:

(a) Identification of Edges in Pixel Domain. It is the process already explained
in section Edge Vectoriation (4.1.1). The only difference is that 1D filters
are used instead of 2D filters for steps: Gaussian Convolution and First
Derivative Convolution.

(b) Vectorized Edge Synthesis. It is the same process explained in section Edge
Vectorization (4.1.1).

ii. Indirect Corner Calculation. Based on the fact that images being processed are
made up of straight lines, corners are calculated by finding the intersection point
(pi()) between two non-parallel edges. For a given pair of edges to be related
through a common corner they must be closer than a given threshold. Two edges
being far away from each other are not sought to be related by a corner.

4.2.1 Identification of Edges in Pixel Domain

This process has already been explained in section 4.1.1. It is composed of four steps:

i. Gaussian Convolution

ii. First Derivative Convolution

iii. Non-maxima Suppression

iv. Hysteresis thresholding

The steps Gaussian Convolution and First Derivative Convolution are the only steps
that will be explained further. In order to show the use of 1D filters in the convolution
processes.

i. Gaussian Convolution with 1D filter.
Algorithm 15 uses a 1D Gaussian operator (G∆x,σ ()), therefore only one loop is
required in order to perform the convolution as shown in lines 7 - 11, Algorithm
15. Comparing the 1D filter convolution loop and 2D filter convolution loop (lines
8 - 17, Algorithm 2), it can be seen that the convolution in Algorithm 2 performs
two loops.

Note that a horizontal 1D filter was used in this step. Horizontal filters affect
vertical features of the image.
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Algorithm 15 Gaussian Convolution with 1D filter

[Smoothed Image()] = Gaussian Convolution 1D(G∆x,σ (), I(), σ, Xc, Yr)
Input: G∆x,σ (): 1D Gaussian operator

I(): Image
σ: Standard deviation
Xc: Total number of columns
Yr: Total number of rows

Output: Smoothed Image(): Image softened by the Gaus-
sian convolution

Precondition: σ 6= 0

1: {I() is scanned pixel by pixel in the two following loops}
2: for row = 3σ to Yr − 3σ do
3: for col = 3σ to Xc − 3σ do
4: x = 0
5: k = 0
6: {Convolution is done in following loop: G∆x,σ (k) is convolved with I (i, row)}
7: for i = col − 3σ to i ≤ col + 3σ do
8: Smoothed Image(x + col, row) = Smoothed Image(x + col, row)+

I (i, row) G∆x,σ (k)
9: k = k + 1

10: x = x + 1
11: end for
12: end for
13: end for
14: return Smoothed Image( )
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ii. First Derivative Convolution with 1D filter.
1D filters are employed in this step. In the present case the orthogonal diferences
∆iI (col, row) and ∆jI (col, row) are used in the convolution (lines 7, 9, Algorithm
16). These 1D directional derivatives become 2D by embedding them in a loop as
shown in lines 7-9 and lines 11-13, Algorithm 3 in the First Derivative Convolution
with 2D filter.

The horizontal directional derivative (∆iI (col, row)) and the vertical directional
derivative (∆jI (col, row)) are the basic elements for gradient calculation.

Algorithm 16 First Derivative Convolution with 1D filter

[Gra Magnitude ( ) , Gra Direction ( )] = First Derivative Convolution 1D(I(),
width, height)
Input: I(): Image

width: Total number of columns of image
height: Total number of rows of image

Output: Gra Magnitude( ) Array of gradient magnitude
Gra Direction( ) Array of gradient direction

1: xComponent(width, height) = 0
2: yComponent(width, height) = 0
3: {Scan I () pixel by pixel:}
4: for row = 1 to height− 1 do
5: for col = 1 to width− 1 do
6: {Find horinzontal component of directional derivative:}
7: xComponent(col, row) = ∆iI (col, row)
8: {Find vertical component of directional derivative:}
9: yComponent(col, row) = ∆jI (col, row)

10: {Find gradient magnitude ∇ ():}
11: Gra Magnitude(col, row) = |∇ (yComponent(col, row),

xComponent(col, row)) |
12: {Find discretized gradient direction bθ ()c:}
13: Gra Direction(col, row) = bθ (yComponent(col, row),

xComponent(col, row))c
14: end for
15: end for
16: return [Gra Magnitude ( ) , Gra Direction ( )]

4.2.2 Indirect Corner Calculation

Based on the fact that images being processed are made up of straight lines, corners
are calculated by finding the point of intersection (pi ()) between two non-parallel edges.
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Figure 4.9: Corner calculation based on existent edges

(a) Edges (b) Edges and calculated corners

In order for edges to qualify, distance between any pair of vertices of two edges must
not exceed a given threshold.
In order to perform corner calculation there must be a set of vectorized edges (e()).
Pairs of edges to be used for the corner calculation process have to comply with: (i)they
must not be parallel and, (ii) the euclidean distance (DE) between two vertices of the
pair of edges must be below a user defined threshold. Line 3, Algorithm 17 shows this
classification. Once a pair of edges fit into the classification, the point of intersection
pi () is calculated (line 4, Algorithm 17). To end with, edges are extended to meet the
calculated corner (lines 5, 6 Algorithm 17).
Detail of an image after the Edge Vectorization process is shown in Figure 4.9-a. The
missing corners are noticeable. Figure 4.9-b shows the same image after the corner
calculation process. It can be seen the well delineated corners after the process.
Assumption: The largest distance between a pair of vertices below the threshold is
used to calculate the point of intersection of two edges. This means that if two pairs of
vertices qualify, the longest distance will be chosen for the corner calculation.

Algorithm 17 Indirect Corner Calculation

Indirect Corner Calculation(T , e1(), e2())
Input: T : Threshold
Input-Output: e1(), e2(): Edges to intersect

1: dot product = e1().e2()
2: {Non-parallel edges are intersected:}
3: if ((Under Threshold(T, e1, e2) (Function 18)) and

((dot product <> −1) or (dot product <> 1))) then
4: intersection point = pi(e1, e2)
5: extend(e1(), intersection point)
6: extend(e2(), intersection point)
7: end if
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Function 18 Is Maximum Distance under Threshold
[under] = Under Threshold(T , em(v1, v2), en(v3, v4))

Input: T : Threshold
em(v1, v2), en(v3, v4): Edges to be tested

Output: under: Boolean, the distance between the edges is
under the given threshold T or not

1: under = false
2: max = 0
3: D13 = DE(v1, v3)
4: D14 = DE(v1, v4)
5: D23 = DE(v2, v3)
6: D24 = DE(v2, v4)
7: if (D13 < T ) then
8: max = D13

9: under = true
10: end if
11: if (D14 < T and max < D14) then
12: max = D14

13: under = true
14: end if
15: if (D23 < T and max < D23) then
16: max = D23

17: under = true
18: end if
19: if (D24 < T and max < D24) then
20: max = D24

21: under = true
22: end if
23: return under
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4.3 Parameters

This section is about the use of parameters in the implemented methodology. Processes
are enhanced by the use of parameters. Parametrization enables a process to work with
images of varying characteristics. The parameters are exposed according to the methods
that use them:

i. Edge Vectorization
Parameters: Thresholds T1 and T2, σ, st, mask.

ii. Direct Corner Extraction
Parameters: ∆It, gt.

iii. Indirect Corner Calculation
Parameters: Vertex-vertex distance.

Figure 4.10: Original image

Figure 4.10 is a 3D model view of a building of the University of Heidelberg. This
image is going to be used to show the results obtained depending on the varying values
of the parameters.

i. Edge Vectorization
Four cases with fixed and variable parameters will be presented in this section.

(a) Fixed parameters: T1 and T2: 400 - 300; st: 2; 2D masks
Variable parameters: σ
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Figure 4.11: Edge Vectorization with Variable values of σ

(a) σ = 0.0 (b) σ = 2.0

(c) σ = 4.0 (d) σ = 6.0
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In Figure 4.11 edges obtained are affected by σ. Details tend to disappear
for high values of σ (Figure 4.11-c,d). Though corners are suppressed in the
Edge Identification process, the suppression is even stronger for high values
of σ. For the purpose of this work edges must be devoid of fine detail, but
on the other hand the smoothing must not be so much as to misshape the
features, as in the case of Figure 4.11-d. A good value of σ for the present
case is 2.0 as in (Figure 4.11-b).

(b) Fixed parameters: σ: 2.0; st: 2; 2D masks
Variable parameters: T1,T2

Figure 4.12: Edge Vectorization with variable values of thresholds T1 and T2

(a) Thresholds: 200 - 100 (b) Threshold : 400 - 300

(c) Thresholds: 500 - 200 (d) Thresholds: 500 - 300

The use of these thresholds aims at controling line streaking. To determine
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the values of thresholds T1 and T2, it is important to start by giving a
very high value to both thresholds (i.e 500). Once the edges obtained are
as expected, the level of detail must be graduated by lowering T2, until line
streaking is very little. Good values for thresholds in present case are: 400
- 300 (Figure 4.12-b) and 500 - 300 (Figure 4.12-d).
Note that the value of these thresholds is dependent on the values of the
gradient. If 1D masks are used for the edge detection, the calculation of the
gradient results in lower values. Therefore the thresholds must be set to an
initial lower value, i.e 100.

(c) Fixed parameters: T1, T2: 400 - 300
Variable parameters: σ vs. st

The parameter st, which determines the length of the edges obtained in the
Edge Vectorization process. The parameter σ determines the degre of detail
in the edges obtained.

There must be an equilibrium in these two parameters: for low values of σ,
low values of parameter st are required, as shown in Figure 4.13-a. Otherwise
edges obtained are misshaped (Figure 4.13-b). For higher values of σ, the
parameter st may have low or high values as shown in Figure 4.13-c, d.
However, big values of the parameter st, should result in longer Vectorized
Edges which is an advantage for the Matching Algorithm.

(d) Fixed parameters: σ: 2.0; st: 2
Variable parameters: T1, T2, mask

The parameters mask determine the use of 2D or 1D filters for the edge
extraction process. 2D masks are bigger, hence the smothing is stronger. It
means less detail is obtained in the final edges, as shown in Figure 4.14-a.
Figure 4.14-b shows results of the edge detection with 1D masks.

ii. Direct Corner Extraction
Variable parameters: ∆It vs. gt

Figure 4.15 shows corners obtained from the Direct Corner Extraction process.
The value 15 for parameter gt is a good value, because the most significative
corners are detected (Figures 4.15-b, d). Low values of parameter ∆It are used
to find corners in images where there is little contrast, hence mthe amount of
detected corners increases (Figure 4.15-a, b). Table 4.1 shows the number of
corners detected for each case of Figure 4.15.

iii. Direct Corner Extraction and Edge Vectorization
Fixed parameters: T1 and T2: 400 - 300, σ: 2, st: 10
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Figure 4.13: Edge Vectorization with variable values of σ and st

(a) σ vs. st : 0.0 - 1 (b) σ vs. st : 0.0 - 10

(c) σ vs. st : 2.0 - 1 (d) σ vs. st : 2.0 - 10
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Figure 4.14: Edge Vectorization using variable filters

(a) 2D mask, T1 = 400, T2 = 300 (b) 1D mask, T1 = 150, T2 = 120

Tabla 4.1: Corner Detection Thresholds and Number of Detected Corners

∆It gt Detected Corners
20 28 3913
20 15 1943
60 28 1163
60 15 286

Variable parameters: ∆It vs. gt : 20-15, 20-28, 60-15, 60-28

Corner and edges must be matched by the Edge-corner Alignment process. There-
fore the parameters used in each process play an important role in the output
result. It can be seen in Figure 4.16-a that edges become misshaped in the pro-
cess of Corner Alignment because of the large amount of detected corners. Cases
shown in Figures 4.16-c, d give the best possible results.

iv. Indirect Corner Calculation and Edge Vectorization based on 2D masks
Fixed parameters: T1 and T2: 400 - 300, σ: 2.0, st: 10, 2D mask
Variable parameters: distance: 15, 12, 8, 4

Figure 4.17 shows the corners and edges resulting from the Edge Vectorization
and Corner Calculation processes. Parameter distance is variable. As shown in
Figure 4.17-a large values for this parameter give corners at wrong locations. But
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Figure 4.15: Corner detection with variable values of ∆It and gt

(a) ∆It vs. gt: 20-28 (b) ∆It vs. gt: 20-15

(c) ∆It vs. gt:60-28 (d) ∆It vs. gt: 60-15
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Figure 4.16: Corner-edge matching with variable values of ∆It and gt

(a) ∆It vs. gt: 20-28 (b) ∆It vs. gt: 20-15

(c) ∆It vs. gt:60-28 (d) ∆It vs. gt: 60-15
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Figure 4.17: Edge Vectorization using 2D filters and calculated corners with variable
distance

(a) distance = 15 (b) distance = 12

(c) distance = 8 (d) distance = 2
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low values for this parameter (Figure 4.17 -d) give little amount of corners in the
output image. Appropiate values for this parameter are around 8 (as shown in
Figure 4.17-c).

4.4 Experimental Setup

In this section the input parameters will be presented for a case of study which is
developed in the next chapter.

The methodology described above will be applied to an image. The model was
implemented in Java version jdk1.3.1 09. The prototype works off-line, it does not have
connection to GPS, orientation tracker, video camera.

4.4.1 Case of study

This case of study shows results of the Edge Vectorization and Corner Extraction pro-
cesses. The case presents results of the two methods implemented: the Initial Approach
and the Optimization.

i. Initial Approach

(a) Input data: \Data\Photo18.tif

(b) Edge Vectorization parameters

• σ = 2.0

• T1 = 400

• T2 = 300

• st = 2

• mask = 2D

(c) Direct Corner Detection parameters

• ∆It = 40

• gt = 15

(d) Function: Direct Corner Detection + Edge Vectorization

(e) Classes used: StartVideotGUI.class (Graphical User Interface shown in Fig-
ure 4.18).

(f) Output data: TIFF files (\Results\corPhoto18.tif, \Results\mgPhoto18.tif)

ii. Optimization based on 1D filters

(a) Input data: \Data\Photo18.tif
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Figure 4.18: Graphical User Interface of Class StartVideotGUI.class

(b) Edge Vectorization parameters

• σ = 0

• T1 = 80

• T2 = 60

• st = 2

• mask = 1D

(c) Function: Edge Vectorization

(d) Classes used:StartVideotGUI.class (Graphical User Interface shown in Figure
4.18)

(e) Output data: TIFF files (\Results\segPhoto18.tif)

iii. Optimization based on 2D filters

(a) Input data: \Data\Photo18.tif

(b) Edge Vectorization parameters

• σ = 2.0

• T1 = 400
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• T2 = 300

• st = 2

• mask = 2D

(c) Indirect Corner Calculation parameters

• distance = 7

(d) Function: Corner Calculation + Edge Vectorization

(e) Classes used:StartVideotGUI.class (Graphical User Interface shown in Figure
4.18)

(f) Output data: TIFF files (\Results\longPhoto18.tif)
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Demostration application

Results of the implemented algorithms will be shown in this section. They are based
on the photo shown in Figure 5.1. Results of the Initial Approximation algorithms
will be presented in numeral (i) and results of the Optimization algorithms in numeral
(ii) and (iii). At the end of this chapter there is a table comparing results of the two
implemented methods.

Figure 5.1: Original Photo

i. Initial approximation
Figure 5.2 presents detected corners result of the Direct Corner Extraction process
applied to Figure 5.1. These results are shown superimposed on original image
in figure 5.3-c. Even though corner localization is good, missing corners are
noticeable. Many of the missing corners can be obtained by lowering the value of
the parameter ∆It and raising the value of parameter gt. But since these results
are going to be used for the Edge-corner Alignment process, the setting of the
parameters to the current values (i.e. gt = 15 and ∆It = 40) gives the best results
for such process.

Details of Figure 5.3-c are shown in Figures 5.3-a and 5.3-b. Arrows in the detailed
figures point to the detected corners.
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Figure 5.2: Initial Approach: Direct Corner Extraction

Figure 5.4-a shows edges result of the Edge Vectorization process. Notice that the
most important features of the building are represented by the vectorized edges.
Figure 5.4-b shows edges and aligned corners. Notice that the difference is not
very significative with respect to the edges obtined in Figure 5.4-a.

Figure 5.5 shows vectorized edges and aligned corners superimposed on the orig-
inal image. Notice the good localization of edges.

Figure 5.5-a shows a detail of figure 5.5-c. The detail shows a corner aligned to
an edge (to the right of the window) and the edges delineating the window.

Figure 5.5-b shows a detail of the tower in Figure 5.5-c. The detected corners are
pointed out by the arrows. These corners are lost in the final output (see Figure
5.5-c) because there are no vectorized edges in that region. Therefore, the process
of Edge-corner Alignment produced no results in the region.

ii. Optimization based on 1D filters
Figure 5.6 shows results of the Edge Vectorization process based on 1D filters.
Figure 5.6-a shows results of edge vectorization process with parameter σ = 0. In
this figure there is no corner calculation: plain edge vectorization was applied to
the image. Notice that most of the edges do have corners. The same can be seen
in Figure 5.6-b, this figure was processed with parameter σ = 5. In this figure
the corners begin to disappear because of the higher value of the parameter σ.

iii. Optimization based on 2D filters
Figure 5.7-a shows results of the Edge Vectorization process. Figure 5.7-b shows
vectorized edges after the Corner Calculation process. In contrast with results
shown in the numeral (i) Initial Approximation, the corner calculation improved
the edge vectorization results to a great extent. Figure 5.8-a shows the same
window seen in Figure 5.5-a.
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Figure 5.3: Initial Approach: Results of Direct Corner Extraction superimposed on
Original Image (Figure 5.1)

(a) Detail of
Figure 5.3-
c with ar-
rows point-
ing to de-
tected cor-
ners

(b) Detail of
image 5.3-c
with arrows
pointing to
detected
corners

(c) Original image with superimposed corners
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Figure 5.4: Initial Approach: Edge Vectorization and Edge-corner Alignment

(a) Vectorized Edges

(b) Vectorized Edges and Aligned Corners
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Figure 5.5: Initial Approach: Edge Vectorization and Edge-corner Alignment superim-
posed on Original Image (Figure 5.1)

(a) Detail of
5.5-c with ar-
rows pointing
to edges and
corners

(b) Detail of
image 5.5-c
with arrows
pointing to
corners

(c) Original image with superimposed edges and aligned corners
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Figure 5.6: Optimization: Vectorized Edges using 1D filters with no Corner Calculation

(a) Vectorized Edges for σ = 0

(b) Vectorized Edges for σ = 5
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Figure 5.7: Optimization: Vectorized Edges using 2D filters and Calculated Corners

(a) Vectorized Edges

(b) Vectorized Edges and Calculated Corners
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Figure 5.8: Optimization: Results of Edge Vectorization and Corner Calculation su-
perimposed on Original Image (Figure 5.1)

(a) Detail of 5.8-b with arrows pointing to
highlighted edges

(b) Original image with superimposed edges and calculated corners
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Tabla 5.1: Corners Generated for Initial Approach vs. Optimization

No. corners
Initial Approach
Corner Detection 5
Optimization
Corner Calculation 61

Tabla 5.2: Execution Times for Initial Approach vs. Optimization

Time(s)
Initial Approach
Edge Vectorization 2D + Corner Detection 23.2
Optimization
Edge Vectorization 2D + Corner Calculation 8.1

Optimization
Edge Vectorization 1D (requires no corner calculation) 4.5

In table 5.1 it is seen that corner calculation outperforms corner detection at ge-
nerating corners for the existent edges. Processing time is greatly improved by the
Optimization as shown in table 5.2.
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Conclusions

i. The algorithms developed are effective in generating Edges and Corners if the
input image consists mainly of straight edges. Fortunaltely, the objects of interest
in the application area“urban environment” are basically made of straight lines.

ii. The 3D model view and the video-frame may be images differing in contrast, illu-
mination, intensity, etc. Therefore, the parameters to obtain Edges and Corners
from such images must be given according to the characteristics of each image.
Otherwise, the Matching Algorithm will not be able to identify the matching
points in both images.

iii. In order to improve performance, 1D operators were applied to the Gaussian and
First Derivatives steps of the process Identification of Edges in Pixel Domain,
instead of 2D operators. The results achieved were satisfactory. As the processing
time with 1D is 1/3rd of the processing time with 2D operators.

iv. Better performance was obtained by Indirect Corner Calculation from detected
edges instead of Direct Corner Extraction from the image. In this case not only
the processing time dropped to 40%, but also the number of corners generated
was doubled.

v. However as the image grows the processing time does so. For large images a
Divide and Conquer approach would allow to attack smaller images. Therefore
having a good performance.

vi. The performance of the implemented algorithms is sensitive to the numerical pa-
rameters of them. In a future, an additional module should be written to make
the setting of such parameters automatic.

vii. The Edge Vectorization based on 1D filters gives very good features. Somehow,
fine detail is present in the resulting edges. This is not a recommended input for
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the Matching Algorithm, which does not work very well in the presence of fine
detail.

viii. In order to overcome the problem of the vanishing corners the Laplacian of Gaus-
sian filter was tried instead of the Gaussian filter. But results were not as good
as expected. Much better results were obtained with the use of 1D filters in the
process of Edge Identification.

ix. Corner calculation could be improved by finding a neighboring corner resulting
from the corner detection process to a calculated corner. In this way more accurate
corners would be obtained.



Apendix A

Prototype of user-defined class
BC Mesh2D

package de.fhg.igd.progis.geist.imagepreparation;

public class BC_Mesh2D{

Vector vertices;

Vector edges;

int lpVertices;

int lpEdges;

public BC_Mesh2D();

private BC_Vertex2D getVertex(int _id);

public BC_Vertex2D getVertexNear(double _x, double _y,

double _xTolerance, double _yTolerance);

public void setVertices(Vector _vertices);

public void addEdge(int _a, int _b);

public void addEdge(BC_Vertex2D _a, BC_Vertex2D _b);

public void addEdge(double _x1, double _y1, double _x2,

double _y2, int _id1, int _id2);

public int countVertices();

public int countEdges();

public BC_Edge2D findEdge(BC_Vertex2D _v1, BC_Vertex2D _v2);

public BC_LinePairVector getLinePairs();

public Enumeration getEdges();

public Enumeration getVertices();

}
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Apendix B

Results of the Matching Algorithm

Figure B.1 shows results of the Matching Algorithm. The Edges and Corners obtained
with the implemented methodology were used as input for the process of matching.
Image on the upper part is a photograph of a building of the University of Heidelberg
and image on the lower part of the figure is the 3D model view of the same building.
The arrows superimposed on the images are the detected matching points. In the figure,
matching point 22 is poined out by the long arrow.

Figure B.1: Results of the Matching Algorithm
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