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ABSTRACT 

Surface or shape reconstruction from 3D digitizations, 
range pictures play an important role as the sizes and 
accessibility of the sampled object become intractable.  
Range pictures, however, present challenges regarding: (i) 
recovery of topological structure from geometrical 
information of a partial view: (ii) inclusion of several or self 
obstructing objects on the same picture, and (iii) conciliation 
of partial topological and geometrical information from the 
individual views into a main model. Issue (i) and (ii) require 
introduction of data structures and algorithms able to 
consistently represent incompleteness and discontinuities in 
the surface. Aspect (iii) demands the application of 
statistical methods to sort redundant e inconsistent 
information in the overlaps between the individual views. In 
this investigation, tasks (i) and (ii) have been undertaken by 
designing and populating an extended Boundary 
Representation (B-rep), using equivalence relations that 
induce partitions on the data sets. Task (iii) has been carried 
out by using data processing tools (DigitLAB) that filter, 
resample, and recover shape from planar digitizations, by 
applying formalisms of differential topology.  

keywords: shape reconstruction, pattern digitization, partial 
meshes, range images. 

1. INTRODUCTION 
Range picture sampling allows to take partial views of 

the removed object. Based on camera calibration and picture 
registers, partial point samples are available for the shape 
reconstruction algorithms. Frequently, a large number of 
pictures must be taken in order to sample the whole external 
surface of an object, with an acceptable degree of quality of 
the data.  The quality, in this context, refers to the 
completeness of coverage, the guarantee of a surface-
sampling interval adequate to the object details and the 
accuracy of the point data gathered.   

Considerable progress has been achieved in 
reconstructing solid information from the range pictures by 
using, for example, the Marching Cubes algorithm and 
integration of its output. These efforts include the picture 
integration, and the application of heuristics for guessing 
parts of the object that have not been covered by the 
pictures, or cannot be effectively separated from the 
background, or are represented by samples with large error 
factors.  For geometric modeling from range pictures,  the 
usual Boundary Representation (B-Rep), a watertight model 
with complete surface, presents some difficulties in: (i) the 
correct guessing of the hidden parts of the object, and (ii) the 
conciliation of information between overlapping pictures.  
Regarding (i), it is shown here that there are many cases in 
which it would be more convenient to have incomplete 
(although consistent) shell representations, corresponding to 
the partial pictures. This feature enables treatment of masks 
(incomplete B-reps with zero thickness).  Regarding (ii), 
mesh zippering algorithms have been proposed, but 
evidence presented in technical forums show that  
topological and geometrical problems must still be addressed 
and solved. Specifically, catastrophic results are obtained 
with low density data, that means, sampling objects whose 
features have high (spatial) frequency contents. 

This article reports results in construction of partial 
masks from range pictures, and their integration to obtain 
either watertight complete models, or larger incomplete 
shells. The fitting of partial, topologically consistent 
surfaces to point data set requires the definition of 
formalisms and data structures, similar to B-rep ones, but 
which explicitly record the absence of surface in certain 
neighborhoods.  The issue of conciliation of overlapping 
pictures is attacked here by applying tools developed in 
DigitLAB, which allow to generate virtual digitizations from 
physical ones through classification, re - sampling, filtering, 
etc. The application of these tools to several data sets has 
shown that preparation of the data significantly improves the 
results of geometric algorithms. Because the data deficiency 



inherent to the problem of shape reconstruction all 
algorithms fail when applied to raw samples. 

In this article, section 2 presents a literature review of 
topics involved. Section 3 discusses the algorithms and data 
structures used. Section 4 displays the results of application 
of the proposed methodology and concludes the paper.  

2. LITERATURE REVIEW 
The main topics for surface reconstruction from point 

sets are data capture, topology recovery (the process to 
identify and formally represent neighborhood information in 
the data set), and continuity enforcement (smoothing). The 
interested audience is invited to read [1] for deeper insight 
on general topics of reverse engineering. 

Data Acquisition: Acquisition may be by contact or 
remotely. Contact measurement is based on the position of 
the kinematic joints holding a probe that touches the object.  
In most metrology centers (Coord. Measurement Systems - 
CMS) planar sampling trajectories have 3 degrees of 
freedom (X-Y-Z table), and therefore recondite features are 
not reachable.  When more degrees of freedom (dof) are 
present (with articulated arms), the probe is able to reach 
creases and holes, at the penalty of manual measurement.  
Still, approximate planar samples can be obtained pre-
processing ([2, 3]) if other characteristics of the digitization 
(density, homogeneity, etc) are sufficient. 

Range imaging records a depth field in grid patterns 
corresponding to pixel arrays. Each pixel has associated the 
coordinates (x,y,z) of the surface point hit by the ray passing 
through the pixel, as well as the vector describing the ray. 
The grid data so obtained contains implicit neighborhood 
information that facilitates topology reconstruction. 

Topology Recovery: In the surveyed literature Alpha 
Shapes ([4]) and Marching Cubes ([5]) are used as engines 
for recovering topology information ([6,7]). In this article an 
alternative scheme will be followed. B-Rep models ([8]) do 
not directly serve surface reconstruction since they are 
watertight closed. Therefore, an extended B-Rep structure is 
devised here to record absence of surface and existence of 
borders on some parts of the recognized surface or partial 
mask (possibly with holes). Since authors [1, 11] report the 
difficulty in completing or inferring lost or hidden regions of 
the surface, the present article assumes that such regions 
should not be inferred. Rather, algorithms should only 
recover the portion of the object actually witnessed, leaving 
to different geometric reasoning the artificial completion of 
surface portions. Hollow, partial objects with holes (for 
example a carnival mask) are cases in which no completion 
should be made.  Therefore, inferring un-sampled portions 
of the object is beyond the scope of this article. Regarding 
the carrier geometries of the shells, this investigation uses 
very simple geometries such as 3 and 4 - vertex facets. The 
last ones are of course not flat in general, but are easily 

subdivided into triangles. These primitives have been found 
sufficient to support a correct topology.  

In efforts for conciliation of meshes from range images 
Turk & Levoy [9] use a user provided – alignment to snap a 
image into another by finding a rigid transformation that, 
applied to one image minimizes the distance with the other. 
In [10], Curless & Levoy demonstrate however that [9] fails 
for cases of high curvature objects. Both approaches intend 
to build a closed shell, but while [9] erodes overlapping 
portions of the shells, [10] creates the shells from implicit 
surface in R3 ( f(p) = 0 ), defined by a statistical reliability 
associated to portions of the pictures.  

Surface Smoothing: Once a topologically correct shell is 
attained, applications may require a level of continuity 
(typically C1 or C2) on the surface built. Publications [6,7] 
start with a topologically correct C0 shell, and cover it with 
vertex, edge and face charts in order to obtain a complete 
mapping between the C0 shell and a manifold M.  This 
mapping enables the definition of a chart-depending 
parameterization that produces a C2 continuous surface by 
using generalized B-spline surfaces.  

Mentioned in the literature [1,7], and from our own 
experience, it appears that a considerable effort may be spent 
in ensuring C1 or C2 continuity in selected regions of the 
object where only C0 continuity exists.  Sharp “character” 
edges are present in objects (for example car bodies), and 
their detection already presents formidable difficulties.  
Therefore, for many applications, the smoothing of the 
surface is not yet a pressing issue. 

From the survey presented, it is clear that industrial 
usage of digitization tools requires foremost topological 
correctness. In dealing with range pictures, partial, 
topologically consistent shells must be produced as a first 
step. Patterned samples (grid or planar) present very 
attractive characteristics for topology recovery.  Once it is 
achieved,  picture information conciliation proceeds. This 
article discusses tools that allow to retrieve such correct 
shells by profiting from sample patterns and to process them 
to prepare the data for the conciliation of range picture 
images. This last stage will be achieved by application of the 
surfacing algorithms from DigitLAB  ([2,3]). The approach 
used here will be to avoid deletion of any overlapping point 
data. Rather, these portions are averaged by planar filtering, 
and all points there will be used to generate planar cross cuts 
of the object.  No minimization is used, therefore 
accelerating the algorithm.  

3. METHODOLOGY 
This section addresses the issues of (i) topological and 

geometrical algorithms to use range pictures in recovering 
incomplete shells from range pictures, and (ii) statistical and 
geometrical tools applied to attack the problem of 
conciliation of shells originated in overlapping range 
pictures.  



3.1  Partial Shell Construction 

Figure 1 shows a series of calibrated and registered range 
pictures in the SCULPTOR software (Fraunhofer Institute 
for Computer Graphics). Each pixel (u,v) in a picture 
contains the information of the (x,y,z) coordinates of the 
object surface that are touched by the view ray passing by 
the pixel (along with other data not discussed here).  
SCULPTOR makes the necessary calculations to present the 
data as would be produced by parallel rays impacting the 
object. From the calibration process, the black areas are 
considered either as background or non captured by the 
picture, and therefore the range picture presents no evidence 
of object existence in the corresponding pixels (u,v). 

The immediate goal when having range pictures is to 
recover neighboring information present in them. However, 
care must be exercised since neighboring pixels in the range 
image ( Figure 2 ) may correspond to points that are very far 
away on one surface or are points on different surfaces or 
different objects.  This consideration leads to two 
conclusions: (i) The topological data chosen must be flexible 
enough to express separate shells on each picture, each one 
incomplete and possibly with holes. (ii) The algorithms to 
recognize and extract those shells must account for 
propagated neighborhoods based on a transitive proximity 
relation, rather than a direct, simple Euclidean criteria. 
Based on this concept, eventually points p and q enter the 
same shell (left case), while points r and s will never share a 
shell.   

3.2  Spatial Relations for Shell Building 

The definition of the basic relations between points are 
discussed next. Let  (u0,v0), (u1,v1), and (u2,v2) be three pixel 
vertices, representing p0, p1, p2 points on the object surface. 
Let us define: 

image_unit_triangle: three pixel vertices (u0,v0), (u1,v1), 
(u2,v2) form a image_unit_triangle if :|ui – uj| ≤ 1 and |vi – vj| 
≤ 1 (they are immediate neighbors in the grid) 

object_triangle: three points p0, p1, p2 form a triangle on the 
object surface ( object_triangle ) if 
(i) image_unit_triangle((u0,v0), (u1,v1), (u2,v2) )  and 
(ii) | pi – pj | ≤ δt , ( 0 ≤  i , j ≤ 2).  

This means, the three vertices are immediate neighbors 
on the grid and represent samples closer than δt  on the 
object.  

transitive_neighbors: two points p, q on the object are 
transitive_neighbors if ∃ path(p,q)=[ p=p0, p1,... pn=q ] 
sequence of points pi such that object_triangle( pi ,  pi+1  ,__ ) 
(0 ≤ i ≤ n-1). Therefore, | pi – pi+1 | ≤ δt  , (0 ≤ i ≤ n-1). This 
means, they are part of a chain of neighboring triangles, and 
path(p,q) is a path with traversal steps no larger than δt. 
Informally, one may say that there is a trail of object 
triangles that contains q and p. 

Notice that transitive_neighbors() is an equivalence 
relation (it is symmetric, reflexive, transitive). Therefore it 
induces a partition on the point set S. The sets of the 
partition are exactly the separate shells Si registered in the 
range picture.  

S = U Si  ,(0 ≤ i ≤ Ns ) ,  SiWSj=φ ,  iKj  (1) 
No two shells may share a vertex (otherwise they would 

be one). Surface points not belonging to any triangle are not 
considered here. For the sake of mathematical formality, it 
would be appropriate to consider them as making up a 
triangle with themselves.  From the engineering point of 
view, however, they may be purged from the data set.  
Notice that the definition above allows incomplete shells 
with holes, as required. 

3.3  Algorithms for Shell Building 

 
FIGURE 1. Aphrodite data set as processed by 
registration software (SCULPTOR,  Fraunhofer 

IGD). 
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FIGURE 2.  Variation in the topological location of 
neighboring pixels in the range image. 



The algorithm for partitioning the set S according to the 
transitive_neighbors() relation is basically one of building 
the closure of sets (the shells) under the relation. Each shell 
is started by a seed triangle and grows as triangles adjacent 
to the shell boundary satisfy the object_triangle() relation. 
The relation image_unit_triangle() is necessary (but not 
sufficient) for object_triangle(). Therefore, the search for 
promising triangles starts on the (u,v) pixel space (where 
pixel neighborhood is easily tested) and completed in the 
object space to satisfy the metric constraints. In general, the 
shell boundary includes external and internal contours(see 
Figure 4.b) 

The simplified algorithm for shell expansion is displayed 
in Figure 3. A shell grows from a seed triangle, by using the 
edges in the boundary B as candidates to absorb new 
triangles satisfying the relation object_triangle() (line 6). If 
no growth is possible, it means the boundary is stable and 
the current shell on the surface of the object, as registered by 
the image has been completely represented (line 8). If a 
triangle next to the boundary satisfies object_triangle() , it 
must be incorporated to the current shell SH (line 11) and 
accounted for in the current boundary B (line 12). It must be 
noticed that shell growth is marked in the macro algorithm 
as “SH=SH+[T_new]”. Similar notation is applied for 
boundary growth.  

3.4  Shell and Boundary Growth 

Shell and boundary expansion are present when an edge e in 
the current boundary and a vertex v in the immediate 
neighborhood represent a new triangle that satisfies the 
relation object_triangle(). The vertex must be in condition 
of allowing yet one more face incident on it (it cannot be 
part of the interior of the mesh). Figure 4 displays the 
possible cases, showing the new unit triangle in a darker 
tone. Based on their topological effects they are: general 
expansion (4.a), corner fill (4.b), hole fill (4.d) and contour 

splitting (4.c). Two different meshes never share a vertex. 
Boundary self-intersection (4.e) can be avoided by using the 
fact that the (u,v) space is a discrete one, and therefore there 
can be no vertex of a triangle inside a unit lattice in the (u,v) 
grid.  Every vertex in the interior of the shell has closed 
incidence and therefore it cannot receive any other incident 
edge (4.f). Conversely, v might be a vertex on the current 
boundary and therefore it would have its incidence degree 
still open (4.c). The relation object_triangle() evaluates 
whether v and edge e form a plausible triangle depending on 
its geometrical quality. Shell growth by “general expansion” 
(4.a) implies that the triangle being included in the mesh 
adds two new expandable edges to the boundary. A corner 
fill implies a reduction of the expanding boundary while 
keeping topology unchanged. Otherwise, mesh boundaries 

   

   

 
FIGURE 4. Topological – geometrical cases for expansion of shell boundary. 

a General Expansion b. Corner Fill c. Contour Splitting 

d. Hole Fill e. Bounday Self-intersection f. Overlap & 
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shell SH] =shell_expansion(  triangle seed , 
         image_grid G ) 
{ 
1 SH = make_shell( seed ); 
2 B = extract_boundary( seed ) ; 
3 growing  = TRUE; 
4 while (growing) 
5 { 
6  T_new = grow_candidate( B, G, SH) 
7  if (not T_new ) 
8   growing = FALSE; 
9  else 
10  { 
11   SH=SH+[T_new] 
12   B = B + [boundary(T_new)]; 
13  } 
14 } 
15 return( SH ); 
} 

FIGURE 3. Macro-algorithm for shell expansion. 



may be are born (4.c) or collapsed (4.d).  

3.5  Representation of Incomplete Shells 

Partial shells, very common in engineering applications, 
require an extended Boundary Representation to explicitly 
account for the missing parts of the shell.  In normal B-reps 
FACEs may have holes, and are bounded by LOOPs, one of 
which is the outermost and the others bound internal holes. 
Each EDGE appears exactly two times in the B-Rep, 
traversed in two opposite directions, according to the two 
(neighboring) FACEs that own it. In partial B-reps from 
range pictures: (a) there are several incomplete shells, 
coming from one or several object(s), (b) FACEs are 
triangles. There are no internal LOOPs, every FACE has 
exactly tree EDGEs, it is flat, and admits no holes, and (c) 
EDGEs in the boundary of the SHELL (or mesh) are by 
definition the ones that have only one incident FACE. 

The discussion above suggests that an explicit recording 
of the contours that limit a shell is required, both to drive the 
shell growth and to register holes in it. Figure 5 shows the 
shell recovery results for the “Teddy Bear” data set, which 
corresponds to a hollow physical mask. This result shows 
the possibility to accommodate holes in the emerging shell. 
The algorithm ignores isolated points since they cannot be 
integrated to the shell, and they do not pass to the next stage 
of the treatment (conciliation of several range pictures). 

3.6  Conciliation of Overlapping Images 

The conciliation of shells or meshes originated in 
overlapping images is in general a difficult and expensive 
process.  As seen in Figure 5, triangles in the periphery of 
the shell are sharper than triangles which stand in front of 
the incident rays and present a better shape ratio and 
statistical certainty([9,10]). In order to deal with the 
overlapping zones in a statistical way, the process shown in 
Figure 6 was followed in DigitLAB: (i) Partial Shells are 
extracted from range pictures, by using the growing mesh 

algorithm discussed above. (ii) One integrated data set is 
obtained by planarly re-sampling the set of partial meshes as 
if the object had been sampled on a XYZ metrology table 
(Coordinate Measuring Machine, CMM). This data set still 
contains fuzzy, oversampled regions, originated in the shell 
overlaps. (iii) Planar cross cuts are recovered, although they 
present noise in the overlapping regions. Statistical and 
filtering processing is applied on them. (iv) The skin is 
calculated between contours in continuous levels, producing 
a global shell formed by quadrangular or triangular facets. 
The process is also tuned to produce good quality (aspect 
ratio) facets useful in Finite Elements applications. The 
topologies considered are basically Morse-Simple at this 
stage. There are not degenerate critical points.  For a deeper 
review about Morse Theory see ([12]). For DigitLAB see [2, 
3]. 

4. RESULTS AND CONCLUSIONS 
Figures 7 and 8 show two stages of the treatment in 

DigitLAB for the Aphrodite data set. Figure 7 presents two 
views of a partial shell. Figure 8, left, is the superposition of 
several partial shells extracted from the range pictures.  
There exist missing parts wherever the pictures had a dark 
spot or in places covered by no image.  Figure 8,  right, 
corresponds to the integration of all separate shells. The 
integration was carried out by applying a planar re-sampling 
on all separate shells, cross section recovery, filtering and 
re-sampling of the cross sections, and finally, inter-level 
maping or lofting. The missing parts where completed by 
point projection between levels. The heuristics for 
incomplete shape guessing require more investigation, since 
they produce unstable results depending on the situation 
handled. This article seeks to concentrate only on the 
individual shell recovery and conciliation, and therefore this 
issue will be addressed in other publications. The authors 
currently work on the application of topological 
considerations in order to guarantee the correctness of the 
shells or masks build from both planar cross cuts and range 

 

 
FIGURE 5. “Teddy Bear” data set. Shell recovered 

from one range picture. 
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images.  It is evident that this is an issue requisite to any 
other (for example, smoothness). 

Pattern samples are common in medical and industrial 
environments (magnetic resonance, tomographies, 
metrology, etc), while grid ones are present in ergonomics, 
cloth design, entertainment, computer vision, etc.  Therefore, 
the authors believe that the material presented here is 
relevant for the topological correctness of the shape 
recovered and therefore impacts all downstream 
applications.  
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FIGURE 7. “Aphrodite” data set. Two views of  

a partial shell from a range picture. 

FIGURE 8. “Aphrodite” data set.  
Conciliation of shells from range pictures. 


