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INTRODUCTION 

The purpose of this notes is to introduce the reader in basic but important aspects of CAD, CAM and 
Computer  Graphics. The pre-requisites for understanding it are the normal mathematical tools that are part of 
any undergraduate engineering curricula, and a reasonable interest in scientific programming.  
Although the material seems aimed to practitioners and programmers in CAD / CAM / CG, the underlying 
concepts directly apply to kinematics, robotics, machine tool characterization and, more recently, to medical 
applications in the boundary with engineering disciplines. This is particularly true for the section on 
geometric transformations, which is the basis for understanding and working with kinematics and dynamics.  
A shallow and pragmatic review of topology, as applied by engineers to CAD, allows the reader to understand 
many particularities and limitations of t he CAD packages. It allows to make informed decisions on the data 
format used to transmit geometric information for design and manufacturing operations.  
The material on parametric curves and surfaces is aimed to inform the reader of the basic technical challenges 
met by the early researcher on this topic (Bezier and De Casteljeau). In this a way, that procedures and 
formulae proposed by those researchers become natural consequences when attempting to solve the problem 
of interpolating sequences of points in  E3 . The reader will find in here surface types that are not in the 
common literature (and whose engineering application may not be widespread), but which oblige a complete 
understanding of the basic concepts.  
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1. BASIC CONCEPTS OF PROGRAMMING 

1.1 Algorithms  

The solution of a problem can be developed by means of a mathematical model. This model can be 
represented as a set of instructions that are realized by an algorithm. Each instruction has a precise meaning 
and is executed a finite number of times.  

1.2 Pseudo language 

The pseudo language or pseudo code is a way to describe sequentially the logical procedure that an algorithm 
must realize. It is also the previous step to the codification or implementation of the algorithm in any 
programming language. Its use allows the planning of the program, that is to say, the programmer is only 
interested in the logic and the control structures, not in the syntactic rules of a specific language. This 
facilitates the correction of possible logical errors that the algorithm may contain.  

 

(1)function Find maximum value  
(2) 
(3)  {Let M = array of real numbers } 
(4)  maximum  = value of the first position in the array M; 
(5) 
(6)  for (each position i in array M) 
(7)   { 
(8)   if (value i in array M is greater than value stored in maximum ) 
(9)   { 
(10)    update the value of maximum ; 
(11)   } 
(12)  } 
(13)  
(14)  {maximum  = maximum value in M} 

 

Figure 1. Pseudo code structure 

In Figure 1 some important characteristics of a pseudo code are observed. The first of them is that small 
letters in bold are used for the key words of programming languages. The conditions of flow control (if, for, 
while ) are used in the propositions of the pseudo language. The conditional expressions as the one expressed 
in Figure 1 line (8), may be informal propositions, instead of conditional expressions of a programming 
language. Notice that the assignment in the Figure 1 line (4) uses an informal expression to the right, and that 
the cycle for of Figure 1 line (6) closes the repetition of the set of instructions under its domain. The domain 
is a group of instructions that opens and closes the pair of characters "{" and "}"  respectively.  
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1.2.1 Assertion (Pre, Post, Inv) 

The status of a program can be described by using propositions located in any place of interest. This type of 
proposition is called an assertion. In the design and interpretation of the different parts of the pseudo code, 
the assertions are between brackets “{ }”. The assertion describes the status of the variables of the program 
when the execution passes by the point where it is located. Therefore the assertion is NOT an executable 
instruction,  but only a description of a status of the program. In conclusion an assertion doesn't have any 
effect on the execution of the program. 

By definition, when describing the state of the execution of the program (with all the possible cases) an 
assertion is never false. For example, the assertion in Figure 2 indicates that when the execution of the 
program passes by it, the variable Interrupter 1 is True and Interrupter 2 is False. 

{ (Interruptor1 = = True ) ∧  (Interruptor2 = = False) } 

Figure 2. Representation of an assertion 

1.2.2 Precondition and postcondition 

When one wants to specify the operation of a program, its initial and final status should be described so that 
its correct execution can be verified. To describe the initial status of the program, an assertion called 
precondition is used and to describe the final status of the program another assertion called postcondition  is 
used as well. Retaking the pseudo code from Figure 1, it is established that the precondition and the 
postcondition are defined as they are shown in Figure 3.  

{pre: M = array of real numbers} 

{post: Maximum = maximum value in M} 

Figure 3 . Precondition and postcondition 

It is recommended to specify the precondition at the beginning and the postcondition at the end of the code. 
They should be fulfilled every time that the program is executed 

1.3 Executable instructions  

 

1.3.1 Assignment, verification or comparison 

The use of variables allows the simulation of a process, task or problem in such a way that the information 
stored in them can be manipulated according to the user's necessity. An assignment example is observed in 
Table 1. 

Table 1. Graphic Representation of an assignment 

a = 1; Arithmetic assignation 

color = ‘rojo’;  Character string assignation 
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The computer executes each assignment sentence in two stages. In the first one, the value of the expression 
that is written to the right side of the assignment operator is calculated. In the second stage, the value is stored 
in the variable whose name is written to the left of the assignment operator. 

In the assertions that evaluate the content of variables in a program the relationship or comparison operators 
shown in Table 2 are used 

Table 2. Comparison symbols 

MATLAB C/C++ MEANING 

> > Greater than 

< < Lower than 

= = = = Equal to 

~ = ! = Different of 

<=  <=  Lower or equal to 

>= >= Greater or equal to 

1.3.2 Selection and decision making 

It is necessary to incorporate decision structures, so that an algorithm can follow different execution routes. A 
decision instruction evaluates a condition and in function of the result obtained, the execution branches. The 
most used structure in programming languages is if and else.  Table 3 illustrates the general form of this 
instruction and an example of its usage. Generic illustration of condit ional instructions.  Program that 
calculates the absolute value of a number by means of decision structures 

Table 3 . Illustration of Conditionals 

if (condition1) 
{ 
 group of commands 1; 
} 
else if (condition2)  
{ 
 group of commands 2; 
} 
else if (condition3)  
{ 
 group of commands 3; 
} 
else  
{ 
 group of commands 4; 
{ 

{pre: N is a real number} 
 
i f ( N > 0 ) 
{ 
 ABS = N 
} 
else if ( N < 0 ) 
{ 
 ABS = - N 
} 
else  
{ 
 ABS = 0 
} 
 
{post : ABS = N} 

Generic illustration of conditional instructions Program that calculates the absolute value of a number by means of 
decision structures  

The conditions are verified one by one. If the condition is satisfied, the command block in its interior is 
executed. If it is not satisfied, the other conditions will be  verified. An else should always be placed at the end 
to include the pathological or not foreseen cases. 
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1.4 Iterative commands or cycles  

The iterative commands allow the repeated execution of one or several commands, whenever a condition 
initially established is satisfied. The iterative instructions are also known as cycles. Every cycle should be 
characterized by containing:  

1. Preparatory instructions.  

2. Condition of authorization for execution of the cycle body.  

3. Invariant: an assertion that is true at the beginning of each iteration of the cycle. 

4. Cycle body. 

4.1 Job of the cycle and maintenance of the invariant. 

4.2 Advancing towards cycle ending.  

The execution of an iterative command is authorized by a condition that must be evaluated as true. If the 
condition is true, the body of the cycle is executed. The execution of the iterative command ends at the 
moment in which the condition becomes false.  

Table 4. Structure of an iterative command  

Diagram of the components
of a cycle

Function Find maximum value
{

{ pre: M [1.. N]= array of real numbers}

i= 1;
maximum=M[1];

while ( i <= N)
{

{inv: maximum = max j=1..i (M[j])}

if (M[i]≥ maximum)
{

change the value of maximum
}

i = i +1;
}

{Post: maximum = max j = 1. .N (M[j])}
}

Preparation

Cycle job and
maintenance of

the invariant

Advance towards
ending

NO

YES

{pre: precondition}

{post: postcondition}

{inv: invariant}

CONDITION
SATISFIED ?

Variable in final state. Result

Program that finds the maximum value of
an array of numbers

 
In order to specify the behavio r of an iterative command, an assertion or statement (it is not an executable 
instruction) is identified. This assertion is called invariant and represents the status of the execution exactly 
after the Boolean condition controlling the iterations, and holds invariant and true each time the cycle body is 
going to be executed (see Table 4). Therefore, the invariant determines (a) the preparation for the loop, (b) the 
hard-work part of the loop, and  (c) the advancement towards termination. In addition, the logical ecuation: 
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“invariant AND not (Boolean condition for the loop)” must coincide with the Post -condition.  Because its 
massive influence in all other instructions of an iterative instruction, the invariant is the single-most important 
logical predicate to be identified when writing such instructions.  

One of the most common iterative commands is for (Figure 4). Its operation results from the previous 
knowledge of the number of iterations (N) required to execute the block of commands. The iterative cycle 
stops when the execution reaches this predetermined number of iterations. Inside the area of commands the 
variable “i”, which carries the value of the number of iterations, should NOT be manipulated, because the 
cycle for automatically updates it in each cycle.  

for (i ≤ N) 

{ 
 {inv: (invariant)}
 commands 
} 

Figure 4 . Iterative structure for 

While, is another iterative command (Figure 5) whose authorization to be executed is controlled explicitly  in 
its preparation and within the commands in its domain. In these commands, when the execution has reached 
its objective, it so happens that the condition is not fulfilled anymore and therefore the cycle while ends. Then 
the following instruction to the cycle while is executed.  

while (condition) 

{ 
 {inv: (invariant)} 

 commands 
 variable  = variable ± increment 

} 

Figure 5. Iterative structure while 

The use of while allows the termination of the cycle according to the user's necessities.  

1.5 Programming criteria 

For the interpretation of a program the use of certain programming norms that allow the follow up of the 
program become necessary, as well as the detection and correction of errors.  

1.5.1 Structure 

A program or task can be realized in two ways. In the first, commands should be grouped by specific 
functions and then call them from a main code. By doing so , a short, simple and easy to understand code is 
achieved. The second alternative is to make a long and complex sequence of commands, therefore it is not 
advisable. 

A function is a short sequence of commands that solves a specific problem. For complex tasks this problem 
will be divided in conceptually consistent sub problems. Each one will be responsibi lity of a function. The 
decomposition of sub-problems in yet other sub-problems follows the same philosophy, until achieving that 
the biggest problem is solved with the collaboration of several sub routines and small functions.  
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Figure 6 shows a group of calls and dependencies inside the program or function Fi. An arrow of Fi toward Fj 
indicates that the function Fi uses the function Fj. 

F1

F2 F3 F4

F6F5

F10

F7 F8

F9

 
Figure 6. Graph of function calls  

 

It is always suggested to begin to write the functions from the base of the graph of calls (F5 , F6, F9,  F10 , F8). It 
allows to write and to prove each function as they end, thus saving time and avoiding errors. 

1.5.2 Name of functions and variables  

In the case of the functions, the name should describe its purpose clearly. The name of the variables has to be 
of mnemonic type so that it describes as much as possible their content. In order to increase the information 
provided by the names, it is necessary to implement the use of comments inside the program that give bigger 
description of use and type of data.  

It is not advisable that numeric literals (constants) or others (1.05, 2, -1, ' a', etc) appear in the program. It is 
necessary to assign the literal to a variable and to use only that variable for that objective during the whole 
program. In the event of being required the change of such literal, it is easier to change the value in the initial 
assignment of the variable than to look for that literal in each instruction where it was used and replace the 
value. See Table 5. 

Table 5. Usage of Symbolic Names  

NOT RECOMENDED  OPTIMAL 

if (N = = 2)  

{ 
 i  = 2; … 
 k = k/2; 
} 

size = 2; 
 
i f (N = = size) 
{ 
 i = 2; 
 k = k/size;  
} 

 

Notice that the use of constant 2 in the substitution process on the left side of Table 5 is not convenient. One 
reason is that its process is risky because NOT all constants 2 should be changed (See Table 5 right side).  
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1.5.3 Validation of data 

It must be verified that the data input to every function are within the established range and that they have 
consistent values. There may exist erroneous data which enter the function, if this happens the problem should 
be solved. If it is not possible the program must be aborted and a report should be made informing the user 
about the existing error.  

1.5.4 Errors 

There exist two types of errors:  

Of Syntax: they are found in the compilation phase or interpretation phase of the program, they occur due to 
characteristic causes of the language syntax. They are easy to correct.  

Of Logic: they occur during the execution of a program. They are difficult to detect, they may or may not 
stop the execution of the program, thus producing erroneous results. The following are typical errors: 

1. Inconsistent handling of matrix dimensions, operating matrices whose dimension is NOT compatible. 

2. Omission of the “advancing towards ending” in a while cycle. 

3. Incorrect calls of functions or disorder in the input parameters.  

1.5.5 Association of operations  

When using expressions, which involve two or more operators, it is important to apply the priority rules, 
which govern the order and the precedence of the operations. When a combination of conditions must be 
fulfilled, it is necessary to use grouping signs in order to ensure that they are executed in the desired sense. 
(Table 6) . 

Table 6. Association of conditions 

NOT RECOMENDED  IMPROVED  

size  = 3; 
degrees = 2; 
if ~ N < size ∧ M > degrees ∨ R = = 1 
{   
 … 
} 

size = 3; 
degrees = 2;  
if  (~ ((N < size) ∧(M > degrees)) )∨ (R = = 1) 
{ 
 … 
} 

 



UNDERLYING TOPICS IN CAD / CAM / CG Dr. Oscar E. Ruiz S. 
CAD/CAM/CG Laboratory - EAFIT University - Medellin, Colombia  

Copyright A.S.M.E. (American Society of Mechanical En gineers) 

This material is property  of the American society of mechanical engineers (ASME). All copy or  reproduction is forbidden. Personal 
Copy of  Prof. C. U. Xoán Leiceaga Baltar . 

11 

 

1.5.6 Indentation 

Indentation is a tabulation that is controlled by the user, in which executions or specific tasks are visually 
grouped. A good indentation improves the design; it facilitates the debugging and modification of a program 
as well. 

The structure of a program that calculates the factorial of a non-negative number is taken as an example 
(Table 7). It is obvious that the right side code is clearer, since it can be easily established which tasks are 
executed in the iterative command while.  

Table 7. Comparison between indented and non-indented code. 

NON-INDENTED CODE INDENTED CODE 

 

{pre: N ≥ 0 } 
 
i = 0; 
fact = 1; 
 
while (i ≠ N)   
{ inv: fact = (i-1)!} 
 fact  = fact * i; 
i = i + 1; } 
{post: fact = N!  } 
 

 

{pre: N ≥ 0 } 
 
i = 0; 
fact = 1; 
 
 while (i ≠ N)  
 { 
  {inv: fact  = ( i-1)! } 
  fact = fact * i;  
  i = i + 1; 
 } 
 
{post: fact = N!  } 
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1.6 EXERCISES - BASIC CONCEPTS OF PROGRAMMING. 

A brief explanation about the operating of some MATLAB commands will be found on this chapter, creation 
of new functions and how to execute them from a main program. The commands are recognized because their 
characters are in bold letters. 

1.6.1 The Variable Working Space in MATLAB . 

 

OBJECTIVE: 

To learn some basic commands. 

PROCEDURE:  

To obtain information. Type the command help and then the name of the topic or command to be consulted. 
help 

1. Eliminate one or all the variables from the workspace. clear  

2. Clean the command window. clc 

3. List the variables of the workspace. who 

4. See the latest computed result. ans 

The commands used to work on MATLAB may be typed directly on the command window. They can also be 
previously written on a text file with extension “.m”. When typing the file name at the MATLAB prompt the 
commands are read directly from the file and executed sequentially. In order to create this type of files (also 
called scripts), the “New M-file” key is selected on the MATLAB menu (File / New / M-file), allowing the 
invocation the MATLAB text editor for their creation and debugging. For the correct operation of the scripts 
it is necessary that the directory where the file to be executed is located be included on the MATLAB work 
path directories (see the path  command).  
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1.6.2 Scalars, Vector and Matrix Operations  in MATLAB . 

 

OBJECTIVE: 

Realize the main arithmetic operation among scalars, vector and matrices. To store the history of the session 
in a log file.  

PROCEDURE:  

1. Read the help about the diary  command. Open a diary or log for the work that follows, with the name 
that you wish. You will need this file at the end of this exercise.  

2. Eliminate one or all the variables from the workspace.  
3. Create a scalar whose value is 12. Store the value of the variable at esc1. 
4. Create a scalar whose value is 4. Store the value of the variable at esc2. 

5. Add the values of the variable esc1 and esc2 . Store the result in the variable sum_esc.  

6. Subtract the values of the variable esc1 and esc2. Store the result in the variable subst_esc.  
7. Multiply the values of the variable esc1 and esc2. Store the result in the variable mult_esc.  

8. Divide the value of the variable esc1 by the values of the variable esc2. Store the result in the variable 
div_esc. 

9. Raise the value of the variable esc1 to the value of variable div_esc. Store the result in the variable 
exp_esc. operator ^.  

10. Calculate the square root of the variable exp_esc. Store the result in the variable rz_esc. sqrt  
11. Create a 4x4 matrix M1 with all its elements equal to one. ones  

12. Create a 4x4 matrix M2 with all its elements being random numbers. rand 
13. Create a 3x4 matrix M3 with all its elements equal to zero. zeros  

14. Create a 4x4 identity matrix, the matrix name must be identity. eye  

15. Multiply the value of the variable esc1 by the matrix identity. Store the result in the variable mult1.  
16. Multiply the matrix mult1  by the matrix M2. Store the result in the variable mult2. To calculate M3 = 

M1*M2 verify that M1 is m  x n and M2 is n x p.   

17. Multiply the value of the variable esc2 by the matrix M1 . Store the result in the variable produc1.  
18. Multiply the elements of the matrix produc1  one by one by the elements of the matrix M2 . Store the 

result in the variable produc2. 

19. Raise the element of the matrix M2 to the square root. Store the result in the variable elev.  
20. Create the vector (1x3) vect1 = [1 2 3]. 
21. Save the first three values of an M2 column in the variable vect 2. 

22. Create a vector vect50 wich values are in a range from 1 to 50 with intervals of 2. Operator : 

23. Query the size of vect2 and store the result on the variable v_size. size  
24. Transpose the vector vect1 and store the result on the same variable. 

25. Multiply the vector vect2 by vector vect 1 and store the result on the variable prod . 
26. Close and save the log file.  
27. Put the commands of this exercise in the file or script “exercise_CP1_002.m ”. Such commands can be 

found in the log file. Execute the file “ exercise_CP1_002.m ” from the prompt MATLAB. script. 
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1.6.3 Introduction to User Commands for Session Control in MATLAB. 

 

OBJECTIVE: 

Create applications to work with users interface commands. Enter the input data with the keyboard or the 
mouse. This exercise must be executed from a script or a MATLAB file commands (*.m).  

PROCEDURE:  

1. Eliminate all the variables from the workspace 

2. Clean the command window.  

3. Create a menu window (for example to choose a day from the week) and store the result on the variable 

day . menu.  

4. Make a pause and then continue with the execution. pause  

5. Display a message on the MATLAB command line. It should request the user to press any key to 

continue with the execution program. disp, pause 

6. Display a message on MATLAB command line. It should request the user to type a number. Store the 

result on the variable number . Input  
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1.6.4 2D Plotting  in MATLAB. 

 

OBJECTIVE: 

Plot the expression “y = sin( x)”. The x values are in a range [0, 2π] with intervals of π/12. This exercise must 

be executed from a script or a MATLAB file commands (*.m).  

PROCEDURE:  

1. Eliminate all the variables from the workspace 

2. Request a MATLAB graphic window.  figure  

3. Clean the graphic window. clf 

4. Create a row vector x with values in [0, 2π] with intervals of π/12.  

5. Calculate y vector as “y = sin(x)”. sin( )  

6. Plot x vs y . plot  

7. Name the axis “X” and “Y” on the graphic. xlabel,  ylabel  

8. Title the graphic. title  

9. Turn on the graphic grid. grid 

10. Make a pause during the execution program.  

11. Change the axis limits of the graphic. Left inferior point = (-1, -2), right superior point = (3π,2). axis  

12. Make a pause during the execution.  

13. Turn off the graphic grid.  

14. Display in the graphic window the text '(1.0, 1.1)' on the window position (1.0, 1.1). text 

15. Put on the graphic window labels for the left inferior point and right superior point.  

16. Display a message on MATLAB command line. It should request the user to pick a point with the mouse, 

by using the graphic window.  ginput 

17. Display a text on the graphic window, use the mouse to pick its position.  gtext  
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1.6.5 3D Plotting  in MATLAB. 

 

OBJECTIVE: 

Calculate and plot the expression “ z = cos(x) + sin(y)” for values of x and y  in a range [0, 10] with intervals 

of 0.05. This exercise must be executed from a script  or a MATLAB file commands (*.m). 

PROCEDURE:  

1. Eliminate all the variables from the workspace.  

2. Request a MATLAB graphic window.  

3. Clean the graphic window.  

4. Create a row vector x with values are in [0, 10] with intervals of 0.05.  

5. Create a row vector y with values are in [0, 10] with intervals of 0.05. 

6. Calculate z vector as function of “z = cos(x) + sin(y)”. cos( ) , sin(). 

7. Plot x, y,  z.  plot3  

8. Place axes labels “X” , “Y” and “Z” on the graphic window.  

9. Title the graph.  

10. Turn on the graphic grid.  
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1.6.6 Plotting of 2D Polygonal Regions in MATLAB. 

 

OBJECTIVE: 

Use the mouse to capture points from the screen. Data input with keyboard or the mouse. This exercise must 

be executed from a script or a MATLAB file commands (*.m).  

PROCEDURE:  

1. Eliminate one or all the variables from the workspace 

2. Display a message on MATLAB command line. It should request the user to type the number of points to 

be captured from the screen. Store the result on the variable N 

3. Request a MATLAB graphic window.  

4. Clean the graphic window.  

5. Change the axis limits of the graphic. Left inferior point (0,1.5), right superior point (3,3.5). 

6. Label the axis X” and “Y” on the graphic window. 

7. Create the vector coordX = [1,2,2,1].  

8. Create the vect or coordY = [2,2,3,3].  

9. Plot the vector coordY vs coordX.  

10. Make a pause during the execution program.  

11. Request a new MATLAB graphic window. 

12. Extend the vector coordX and coordY in such a way that the command to plot coordY vs coordX 

generates a closed rectangle. Plot again coordY vs coordX.  

13. Freeze the graphic. hold 

14. Change the axis limits of the graphic. Left inferior point (0,1.5), right superior point (3,3.5). 

15. Fill the closed polygon. fill 

16. Display a message on MATLAB command line to request the user to catch the N points from the screen. 

17. Use the mouse to catch N points from the screen. Store the result on the array xy  (Nx2) . 

18. Plot the second column of xy vs. the first  one.  
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1.6.7 Generation and Plotting of 3D Meshes in MATLAB. 

OBJECTIVE:  

Plot a surface with different colors, by using the colormap. This exercise must be executed from a script or a 

MATLAB command file (*.m). 

PROCEDURE:  

1. Eliminate the variables from the work space.  

2. Request a MATLAB graphic window.  

3. Clean the graphic window.  

4. Create a row vector x with values are in [-3, 3] with intervals of 0.5.  

5. Create a y vector equal to 

6. Calculate X and Y matrices that define a grid, based on x and y. meshgrid  

7. Calculate the Z matrix in function of X and Y.  peaks 

8. Plot Z. surf 

9. Define a gray color map. colormap  

11. Title the graphic. 

12. Label the axis “X”, “Y” and “Z” on the graphic.  

10. Request a new MATLAB graphic window. 

11. Plot Z. 

12. Define a different color map.  

13. Title the graphic. 

14. Name the axis “X”, “Y” and “Z” on the graphic.  
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1.6.8 Menu Management in MATLAB . 

OBJECTIVE:  

To create an application by using the graph command figure  and the interface command menu. This exercise 

must be executed from a script or a MATLAB command file (*.m). 

PROCEDURE:  

1. Eliminate all the variables from the work space. 

2. Clean the command window 

3. Create a window menu with the following options: yellow, blue, red, green and exit.  

4. Iteratively, place a text (see table) in the graphic window, according to the user selection. To do that, you 

must request and clean a MATLAB graphic window inside of the iterative cycle. text, i f, while 

Selection Text Position in graphic window 

‘yellow’  ‘yellow’ Lower right corner 

‘blue’  ‘blue’ Upper right corner  

‘red’  ‘red’  Upper left corner  

‘green’ ‘green’ Lower left corner  

‘exit’ -- -- 

5. The program must end when the user selects the option exit.  while 
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1.6.9 Invariants and Iterative Cycles (summation of array contents) in MATLAB .  

 

OBJECTIVE:  

To calculate the summation of the values of a column vector M. This exercise must be executed from a script 

or a MATLAB command file (*.m).  

PROCEDURE:  

1. Eliminate all the variables from the workspace. 

2. Prompt the user for the number of rows of vector M. Store that value in the variable N.  

3. Generate the vector M of Nx1. This vector must be filled with random values.  

4. Calculate the summation of entries in M  by using an iterative cycle while  with a control variable i. A 

variable sum serves as a partial accumulator along the cycle execution.  

5. Store the final result of sum in a new variable called Sumator.  

6. Display on the command line the value of Sumator.  
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1.6.10 Invariants and Iterative Cycles (average values of array contents) in MATLAB . 

 

OBJECTIVE:  

To calculate the average of the values of a column vector M . This exercise must be executed from a script or 

a MATLAB command file (*.m).  

PROCEDURE:  

1. Eliminate all the variables from the work space.  

2. Prompt the user for the number of rows of vector M. Store that value on the variable N. 

3. Generate the vector M of Nx1. This vector must be filled with random values.  

4. Calculate the summation of entries in M  by using an iterative cycle while  with a control variable i. A 
variable sum serves as a partial accumulator along the cycle execution.  

5. Calculate the average of the M values. This result must be store in the variable mean .  
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1.6.11 Invariants and Iterative Cycles (s orting or array contents) in MATLAB. 

 

OBJECTIVE:  

To sort the values of a row vector a in decreasing order. This exercise must be executed from a script or a 

MATLAB command file (*.m). 

PROCEDURE:  

1. Write a function [b] = swap(a , i1 , i2  , i 3 , i4). This function swaps two values in a matrix. The inputs are: 

matrix a and the locations of the two values, (i1 , i2) and (i3 , i4) . The output parameter is the matrix b, 

equal to a, except for the swapped values.  

2. Write a function [b] = my_sort(a). The input parameter to this function is the vector (1xN o Nx1) a in 

arbitrary order. The out put parameter b is the sorted copy of a, with its values in decreasing order. This 

function should contain: 

2.1. A counter cont1, started at one.  

2.2. An iterative cycle while  which covers all the positions of vector a. Use the counter cont1 and the 

variable N to control the iterative cycle operation. Create inside this cycle another iterative cycle 

while. It must be controlled by another counter called cont2  and by the variable N. This last cycle 

ensures the organizing of the sub-array a(1 : cont1) by calling function swap. 
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1.6.12 Invariants and Iterative Cycles (minima and maxima of array contents) in 
MATLAB 

 

OBJECTIVE:  

To identify the maximum, minimum and the locations of those values within a vector  M (1xN o Nx1). This 

exercise must be executed from a script or a MATLAB command file (*.m).  

PROCEDURE:  

1. Eliminate all the variables from the work space.  

2. Prompt the user for the number of rows of vector M. Store, that value in the variable N.  

3. Generate the vector M of Nx1. This vector must be filled with random values.  

4. Initialize and use the variables:  

posmax: index where the maximum value is stored.  

posmin : index where the minimum value is stored.  

Max: maximum value of the vector. 

Min : minimum value of the vector.  

5. Execute the iterative cycle for controlled by i and N to calculate the maximum and minimum values 

and its positions.  

6. When the iterative cycle is completed store the final result is as it appears on Figure 7, in a matrix 

called Minmax  








=
posmaxMax
posminMin

Minmax  

Figure 7. Store the Final Results. 
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1.6.13 Functions and Sub-Routines in MATLAB . 

 

OBJECTIVE:  

To build a MATLAB program which calculates the average, addition, min y max, of the values of a matrix A. 

This exercise must be executed from a script or a MATLAB command file (*.m).  

PROCEDURE:  

1. Prompt the user for the number of rows and columns of matrix A. Store these values in the variable M 

and N respectively. 

2. Generate a matrix A of MxN. This matrix must be filled with random values.  

3. Write a function [ sum] = sumt (A)  that calculates the total addition (sum) of the elements of matrix A. 

4. Write a function [ avg] = average (A)  that calculates the average value (avg) of the elements of matrix A. 

5. Write a function [max_v , posmax] = máximum (A)  that finds the maximum value (max_v) of the matrix 

A and stores its location in vector (1x2) posmax . 

6. Write a function [min_v ,  posmin]  =minimum (A)  that finds the minimum value ( vmin_v) of the matrix  A 

and stores its location in vector (1x2) posmin.  

7. Write a main program called exercise_1_13 , where each one of the developed functions is used.  
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2. BASIC CONCEPTS ON LINEAR ALGEBRA 

2.1 Vectors and points  

A point, represents a specific position in E3. Seen from a reference frame, it is described by coordinate values 
specific to such a coordinate system. A vector is defined as the difference between the positions of two points. 
A three-dimensional vector is defined as follows: (Equation 1):  

v = (p2 – p1) = (x2 – x1 , y2 – y1 ,  z2  – z1) = (vx , vy vz) 

Equation 1. Definition of a vector as the difference between two coordinate points. 

Here the cartesian components vX , vY , vZ are the components of v on the X, Y and Z axes respectively.  

A vector can be described as a directed line segment, between two points, with a magnitude and a direction. 
For any three-dimensional vector, the magnitude is found by using Pythagoras’ theorem, Equation 2. 

2
Z

2
Y

2
x vvv ++=v  

Equation 2. Magnitude of a Vector  

The magnitude  of a vector is independent of its coordinate representation. The vector’s direction is given by 
the direction angles α, β, γ that the vector forms with each one of the positive coordinate axes (Equation 3). 

( )
v

Xcos v=α   ( )
v

Zcos v=γ   ( )
v
Ycos v=β  

Equation 3. Direction Cosines of a vector 

It is only necessary to specify two of the direction cosines of the vector, since: 

( ) ( ) ( ) 1?cosßcosacos 222 =++  

The length of a vector v, written as |v|, is called magnitude or norm . For an n-dimensional vector the length is 
calculated as follows: 

i f [ ]n321 ,......,, vvvv=v  then 
2

n
2

3
2

2
2

1 ..... vvvv ++++=v  

2.1.1 Operations with vectors  

2.1.1.1 Addition and Subtraction 

Functionality: [ + ]: Rn × Rn →  Rn  

This operation is limited only to vectors of the same dimension, Equation 4.  

Let  v = [ ]zYX ,, vvv  , w = [ ]zYX ,, www  

v ± w = [ ]ZZYYXX ,, wvwvwv ±±±  

Equation 4. Addition or subtraction of Vectors  
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2.1.1.2 Product 

2.1.1.2.1 Scalar, inner or Dot Product (•) 

Functionality: [ • ]: R3 × R3 →  R 

The scalar product of two vectors A and B is defined as a scalar quantity that is equal to the multiplication of 
the vectors magnitudes and the cosine of the angle α between their directions. This operation is written 
mathematically as in Equation 5 

( )acosBABA ⋅≡•   pa0 ≤≤  

Equation 5. Scalar product of two vectors 

 

 B  cos (α) 

α 

B 

A  
Figure 8. Scalar product (Projection of a vector over another)  

 

Where α is the angle between A and B. In Figure 8 the magnitudes of vectors A and B are shown. Observe 
that it is not necessary for A and B to have the same length. In this figure can also be seen that | B|cos( α) 
stands for the projection of B over A, therefore, the definition of (A•B) can be considered as the (signed) 
magnitude of the projection of B over A ( or vice versa, since (A•B) = (B•A) ). 

The dot product of two vectors is zero if the two vectors are orthogonal and obeys the distributive law of 
multiplication with respect to addition (Equation 6).  

( ) ( ) ( )CABACBA •+•=+•  

Equation 6. Distributive law of multiplication for vectors  

If A is perpendicular to B (α = 90°), then (A•B) = 0. Also, ( A•B) = 0 in the most trivial case in which A or B 
are zero. If A or B point to the same direction (α = 0°), then (A•B) = (|A| |B|) . If A and B point to opposite 
directions (α = 180°), then (A•B) = -(|A| |B|). The scalar product is negative when 90°< α <180°.  

The unitary vectors, i,  j  and k, that define positive direction of the axes X, Y and Z of a right-handed reference 
frame satisfy: 

i . i = j . j = k . k = 1   ,   i . j = i . k = j . k = 0   ,   i ×  j = k 

Equation 7. Relations between unitary axes vectors 

The vectors A and B can be expressed in component form like: 

A = (aX )i  + (aY )j + (aZ )k B = (bX )i + (bY )j + (bZ )k 

So, the scalar product of A and B given by the preceding equations can be reduced to: 

(A • B) = ax bx + ay by + az bz  
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In the special case in which (A = B), it is seen that: (A • A) = ax
2 + ay

2 + az
2 = A2  

2.1.1.2.2 Cross Product (× ) 

Functionality: [ × ]: R3 × R3 →  R3   

Given two vectors A and B, the cross product (A ×  B) is defined as a third vector C. This resulting vector is 
then defined as in Equation 8 and written as: 

BAC ×=  
The magnitude of this vector is  

C = ABsin(α) 

α

C

B

A
 

Figure 9. Cross product of two vectors 

Observe that the quantity ABsin(α), is equal to the area of the parallelogram formed by A and B, as 
shown in Figure 9. The direction of (A × B) is perpendicular to the plane holding A and B. The sense of this 
new vector is determined based on the sense of advance of a right threaded screw. It may be more convenient 
to use the right hand rule to memorize this concept, recalling that the fingers close in the same sense as is 
vector A swapped onto vector B. The thumb will then point in the direction of C. 

Some properties of the cross product that follow form its definition are the following: 

Table 8. Properties of the cross product. 

1. If A is parallel to B (α = 0° o 180°), then (A×B)  = 0; hence, (A×A) = 0 

2. If A is perpendicular to B,  then A×B=AB 

3. The cross product obeys the distributive law with respect to the sum. 
CABAC)(BA ×+×=+×  

Unlike the scalar product, for the cross product it is important the order in which the operation is done, 

(A × B) = -(B × A). The right hand rule is a way to verify this.  

In the case of three-dimensional vectors, the cross product is evaluated as in Equation 8. 
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Equation 8. Cross product of two vectors in E3  

2.2 Matrices 

A matrix is a rectangular array of m  rows and n columns. The elements that conform a matrix are commonly 
complex numbers. In the most part of this material, they will have null imaginary parts, that is, they will be 
real numbers. Also a matrix may store non-real or complex numbers. This type of matrices will not be 
considered in this book.  

If there are m  rows and n columns, we say that the size of the matrix is m×n , and we refer to it as an “m×n 
matrix”, or just as a “rectangular matrix”. A n×n matrix is called a “square matrix” and it is said to have size 
n. The entry or element in t he i th row and jth column of a matrix A of size m×n, is denoted as aij (Equation 9). 

NOTATION:  Matrices will be written with capital letters A, B, C, ...etc.  

The matrix A of size m×n  is frequently abbreviated as A = ( aij )m×n. 























=

mnmjmm

inijii

nj

nj

aaaa
aaaa

aaaa

aaaa

...

...

:...:::
...

...

21

21

222221

111211

A  

Equation 9. Representation of an Matrix m×n 

2.2.1 Properties of matrices  

( ) ( )
( ) 213123
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⋅⋅=⋅⋅
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Figure 10. Properties with matrices  

 

2.2.2 Operations with Matrices  

2.2.2.1 Addition and subtraction 

Only matrices with the same size can be added or subtracted. If A and B are both m×n  matrices, their addition 
or subtraction is a matrix resulting m×n of adding or subtracting the corresponding entries in each matrix.  

If A = (aij) m×n and B = (bij)m×n, their addition or subtraction is: 

        (A + B) = (aij + bij)m×n 
 (A + B) = (B + A)   
   (A - B) = -(B - A) 
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2.2.2.2 Neutral element  

The zero matrix m×n denoted by O, is a matrix of size m×n  with each entry equal to zero. In such a case  

(A+O) = A = (O+A) 

For every matrix A of size m×n , the zero matrix is the neutral element of the matrix addition operation for the 
set of m×n  matrices.  

2.2.2.3 Scalar product 

The scalar product of a matrix A with a real number k is defined as a new matrix. Each entry of k.A is equal to 
the product of the real number with the corresponding entry in the original matrix A Figure 11. 

If A = (aij) m×n and k is any real number, then the scalar product of  A and k is (Equation 10). 

( )
nmijka

×
=A  

Equation 10. Scalar product of a matrix with a real number  

 

if  k = 3 and  
 

 
 
 

 
= 

4 3 

2 1 
A  

 

 
 
 

 
= 

12 9 

6 3 
kA  ⇒  

 

Figure 11. Example of Multipliplying a matrix by a scalar 

 

2.2.2.4 Multiplication of matrices  

In order to evaluate the product AB of two matrices A and B, it is required that the number of columns of A be 
equal to the number of rows in B.  

If A = (aij) m×n is a matrix of size m×n  and B = (bij)n×p is a matrix of size n×p, then cij is the dot product of the 
ith row vector of A, aij with the jth column vector of B, bij. 

Therefore,  cij = ai1 b1j + ai2 b2j + .... + ain bn j = ai • bj 

The order of the product C = AB is: Am × n Bn×p = Cm×p  
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,
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210
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Figure 12. Example of multiplication of matrices  

 

2.2.2.5 Identity matrix 

To every square matrix of size n coresponds a multiplicative neutral element. This is, there exists a unique 
matrix In of size n×n such that 

(AIn) = ( InA)= A 
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For any matrix A of size n×n, it is said that In  is the identity matrix of size n, or simply the Identity matrix 
(Equation 11).  
















=

100

010
001

3I  

Equation 11. Identity Matrix 

In general, the identity will be simply noted as I, with its dimensions implicit form the context. 

2.2.2.6 Transposed matrix 

Let matrix A = (aij)m × n, then the transposed matrix of A, denoted by B = AT is defined as B = (bij)n×m 
where bij =aji for every ij . 
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





14
63
52

=B⇒⇒

 
Figure 13. Example of a matrix transposition 

 

2.2.2.6.1 Symmetric matrix 

The matrix A = (aij)n×n is called symmetric if A = AT. This is, aji = bij for every ij . 

A symmetric matrix is symmetric across its main diagonal. Therefore, the main diagonal of A and AT are the 
same. The main diagonal of a square of order n is formed by the elements a1 1, a22, a33, ... ann.. 

2.3 Homogeneous coordinates  

A cartesian point [x, y, z] in E3 can be represented by a quadruple [x.h, y.h, z.h, h] for h ∈ R. The quadruple  
[ x.h, y.h, z.h, h ] is said to be in homogeneous coordinates. The following remarks apply: 

a. From a point [ xh, yh,  zh, w ] in homogeneous coordinates the corresponding cartesian point in E3 can be 
retrieved via [xh  /h , yh /w , zh /w] for w?0. 

b.  A point ph = [xh,  yh , zh,  w] in homogeneous coordinates admits any w ∈ R,  w ?  0. In this material, it is 
chosen w = 1. 

c. If w = 1, the point ph = [x, y, z, 1] in homogeneous coordinates corresponds to p = [x, y, z] in E3 cartesian 
coordinates.  

d.  A vector vh in homogeneous coordinates can be seen as the subtraction between two homogeneous points; 
[x2, y2,  z2, 1] – [x1 , y1,  z1, 1]. Therefore, it is written as vh = [vx , vy, vx, 0], and it represents the cartesian 
vector v = [vx, vy, vx] in E3. 

The formulation of transformations in homogeneous coordinates allows a unified mathematical treatment of 
all of them (rotations, translations, projections, etc.). Such a unique representation is not possible with 
cartesian coordinates, as seen later in Chapter 3 “Geometric Transformations”.  
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2.3.1 Point  

A point (x , y , z) in homogeneous coordinate form is illustrated in Equation 12. 



















=

α
Z

Y
X

PH  

Equation 12. Homogeneous coordinate form of a point. For effects of CAD/CAM/CG applications α =1 is used. 

2.3.2 Vectors 

A vector [ vx , vy , vz]  in homogeneous coordinate form is illustrated in Equation 13.  


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H V

V
V
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Equation 13. Homogeneous coordinate form of a vector  

2.3.3 Matrices  

If M and P are non-homogeneous matrix and point respectively, and if P2 = M . P, the same operation in 
homogeneous coordinates would be 
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Therefore MH represents the homogeneous form of M (Equation 14). 



















=

1000
0
0
0

M
M H  

Equation 14. Homogeneous coordinate form of a matrix 

NOTE:  For the purpose of this book, points in homogeneous coordinate form will always have a 1 at the end. 
Vectors in homogeneous coordinate form will always have a 0 at the end.  

2.4 Eigenvalues and Eigenvectors  

Given a square matrix A = [ajk]. The eigenvalues λ and eigenvectors x satisfy the equation::  

Ax = λx   ,   x ≠ 0 
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Where λ is a specific scalar (real or complex number), and x is a specific vector. A scalar λ, like the one in the 
previous equation for a vector x ≠ 0, is called an eigenvalue of A, and the vector x is called an eigen vector of 
A corresponding to the eigenvalue λ. 

The previous equation can also be written as:  

(A-λI) x = 0 

These are n unknown, algebraic, linear equations x1,..., xn  (the components of x). For these equations to have 
solutions x ≠ 0, their matricial coefficient (A -  λI) must be singular. For example, for n = 2, the matrix would 
be: 









=








⋅








−

−
0
0

x
x

?aa
a?a

2

1

2221

1211  

In components we have: 

( ) ( ) 0x?axaand0xax?a 222121212111 =−+=+−  

A -  λI is singular if and only if the determinant det(A - λI), known as the characteristic polynomial of A, is 
zero.  

0)().det( 211222112211
2

2221

1211 =−++−=
−

−
=− aaaaaa

aa
aa

A λλ
λ

λ
λ ?  

Equation 15. Characteristic Polynomial of a matrix A. 

This equation is used to find the values of λ. Since it is a polynomial with real coefficients, it may have 
complex solutions. In such a case, each complex solution λ = a + ib (a,b ∈ R ) guaranties that λ* = a – ib is 
also a solution. The same holds for the eigenvectors: x = c + id, c – id are solutions of Ax = λx. 

2.5 Norms of vectors and matrices  

In general the “size” of a vector has been measured with the traditional Pythagorean distance 
|v| = vT . v. However, there are many estimators for the size of a vector or matrix, suited for the particular 
application at hand (see Table 9). In control theory, is common the use of || ||∞ for such an estimation. In 
CAGD (Computer Aided Geometric Design) the norm of a vector (or point) will remain as as |v| = vT . v while 
the norm of a matrix will, in general be ||A|| = det(A). 

Table 9. Norms of vectors and matrices  

NORMS OF A VECTOR NORMS OF A MATRIX 

( ) nn
in

X
1

∑=X

( ) 2
1

2
2 ∑= iXX

( ) xx
i

X
XLim

1

∑
∞→

∞
=X  

∑= i?A

∑= )Diag.( AA

)det( AA =  

 



UNDERLYING TOPICS IN CAD / CAM / CG Dr. Oscar E. Ruiz S. 
CAD/CAM/CG Laboratory - EAFIT University - Medellin, Colombia  

Copyright A.S.M.E. (American Society of Mechanical En gineers) 

This material is property  of the American society of mechanical engineers (ASME). All copy or  reproduction is forbidden. Personal 
Copy of  Prof. C. U. Xoán Leiceaga Baltar . 

33 

3. GEOMETRIC TRANSFORMATIONS 

Objects in Computer Aided Geometric Design are expressed by describing two aspects: geometry and 
topology. Geometry is responsible for giving dimensions and position to the particular object at hand. 
Therefore, geometric transformations change the dimensions and/or positions of such objects.  

Geometric transformations that only change position of the object are called rigid, while those that change 
dimensions, proportions or angles of the object components are non-rigid. In order to evaluate the effects of 
transformations on the geometries of objects, formalism is required to express those geometries. This 
formalism is the one of coordinate frames (or systems). It is used in two ways: (i) To locate an object in the E3 
space, a basic, omnipresent coordinate frame is defined, called the World Coordinate System (WCS), usually 
noted [Xw ,  Yw ,  Zw ,  Ow] and discussed below. (ii) An instantaneous coordinate system, usually called  
Si = [Xi, Y i, Zi, Oi] is anchored to an object, in arbitrary position within it. A geometric transformation of the 
object is totally determined if one knows the effects that it performs on that coordinate system Si, 
independently of how complex or large is the object. 

3.1 Definitions of mathematical entities  

Definition. Coordinate Frame or System  

A coordinate frame Si = [Xi, Y i, Zi, Oi] is formed by three vectors Xi, Yi, Zi,  applied in point Oi (Figure 14), 
with Xi, Yi, Zi linearly independent. 

3.1.1 Canonical right handed or dexterous coordinate frame 

A coordinate frame Si = [ Xi , Yi , Zi , Oi ] is formed by three vectors Xi, Yi, Z i, applied in point Oi (Figure 14). 
Si is right handed (or dexterous) system if it holds (a), (b) and (c) below:  

a) || Xi || = || Yi || = || Zi  || = 1 

b) Xi -  Yi ,  Yi -  Zi , Xi -  Zi  

c) Xi × Yi  = Zi  

The previous characteristics are equivalent to say that det( [Xi Yi Zi ]) = +1.  

Z

X Y

o

 
Figure 14. Dexterous Coordinate System. 

Zw
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Yw

f1

S1
S2

S0 Sf

S3
f2

f3

fn
ft

ff
-1

 
Figure 15 . Sequence of geometric transformations. 

In domains of mechanical engineering, computer graphics, CAD, etc., a canonical, right handed coordinate 
system is attached to an object undergoing a transformation f( ). For example, the system [ x0 ,y0 , z0 ,O0 ] in 
Figure 17. This system, chosen to be the canonical, right handed one only for the sake of simplicity, replaces 
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the whole object for the purposes of characterizing and testing the transformations proposed. Therefore, the 
coordinate system suffers the changes caused by the transformation f( ) (it moves, rotates, or is deformed). 
Moreover, defining the effects of the transformation on the coordinate system [x0 ,y0 , z0 ,O0 ] guarantees that 
such effects will be suffered by the object as a whole. Conversely, if the transformation f( ) were unknown, it 
could be determined from the initial and final coordinate systems [ x0 , y0 ,  z0 ,  O0 ] and [ xf  , yf  ,  zf ,  Of ] 
respectively. Therefore:  

[ ] [ ] 00000 .. SfOZYXfOZYXS fffff ===  

3.1.2 Geometric transformations and matrix notation  

Geometric transformations are functions f( ) that transform coordinate systems (see Figure 15). Therefore  
f(Si)  = Si+1  implies that Si was transformed by f( ) to yield Si+1. It turns out that f( ) is a linear function, and its 
application can be expressed as f.Si = Si+1, where f is a matrix, whose dimensions are such that matrix pre-
multiplication with Si is possible.  

As geometric transformations are expressed in matrix notation, the following observations are relevant: 

a) Dimensions of Si and Si+1 are the same, and thus, f must be a square matrix.  

b) Notation f(g(Si )) = f.g. Si means that g( )  is applied on Si first, and then f( ) is applied on the result g(Si ) .  

c) Transformations are not commutative: f(g(Si )) = f.g. Si ? g.f. Si = g(f(Si)) . 

d) Transformations are associative: (f1. f2 . f3 ) .Si = (f1.( f2. f3  )). Si =(( f1. f2  ). f3 ). Si =f1.( f2.(f3. Si )).  

e) f.Si = S i+1 means that f transforms Si into Si+1.  If a transformation g exists which transforms Si+1 back to 
Si, one says that g inverts the effect of f. Mathematically,  

g = f- 1 (g inverts the effect of f) 

f = g- 1 (f inverts the effect of g) 

f.g = g.f = I and thus f.g.Si = g.f.Si = Si (f and g applied consecutively have no effect: they leave the 
object unchanged). 

f) Any sequence of transformations f1 , f2 , f3 ,. fn applied to an object S0 in sequence f1, f2, etc., can be 
clustered into one equivalent transformation fn .  fn- 1 .....  f2 . f1 = ft which condenses the total information 
on the transformation chain. Therefor e,   (fn .  fn-1 .....   f2 . f1 ). S0 = ft  . S0 = Sf.  

g) A transformation chain f1,  f2,  f3 ,. fn applied on S0 to produce Sf,  ( fn .  fn-1 .....  f2 . f1). S0  = ft  . S0 =Sf 
implies that fi is applied on Si- 1 to produce an intermediate result Si (fi . Si- 1 = Si). The last result of this 
sequence is Sf.  

3.2 Rigid Transformations about World Coordinate Axes 

Rigid transformations are widely used in kinematics and robotics, since most of the mechanical devises can be 
modeled as non-deformable under operating conditions for analyzing kinematic variables (position, velocity 
and acceleration). 

3.2.1 Translation 

In a translation the objects undergo a displacement, defined by a vector [∆X, ∆Y,  ∆Z] as seen in the World 
Coordinate System [Xw ,  Yw ,  Zw ,  Ow]  (Figure 16). Observe the movement of the coordinate system  
[X0 , Y0 , Z0 , O0 ] towards [Xf , Yf , Zf , Of ] (Z0 and Zf  not shown for the sake of clarity).  
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DyDx
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S0 = [X0,Y0,Z0,S0]

X0
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Xf
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XwZw

Sf = [Xf,Yf,Zf,Sf]

 
Figure 16. Translation transformation  

θ
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x f
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Y w

S0 = [X0,Y0,Z0,O0]

Sf = [Xf,Yf,Zf,Of]

 
Figure 17 . Rotation transformation about main axis Zw. 

The coordinates of the object change as:  

x2 = x1+∆X   y2  = y1+∆Y   z2 = z1+∆Z 

which can be written in Cartesian coordinates form as shown in Equation 16. However, to express the 
translation as a multiplication rather than as an addition, homogeneous coordinates are used, as in Equation 
17. 
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Equation 16. Translation transformation in Cartesian Coordinates. 
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Equation 17 . Translation transformation in Homogeneous Coordinates 

3.2.2 Rotations about main axes. 

In this section it is assumed that the axis of rotation is one of Xw , Yw , or Zw , and therefore the pivot point is 
the origin Ow (see Figure 17). The angles have plus or minus sign, according to the right hand rule applied 
using the corresponding rotation axis. Therefore, a rotation by θ around axis Xw is not the same as a rotation 
of θ around axis –Xw. It is customary to always let the axis be one of Xw , Yw ,  or Zw, and to assign the sense of 
the rotation to θ. As an example of rotation, if point (x1 , y1 , z1 ) is rotated around Zw by an angle θ, the rotated 
point (x2 , y2 ,  z2 ) will be: 

x2= R cos (α+θ ) = R . cos(α) . cos(θ)  - R . sin(α) . sin(θ)   x2= x1 . cos(θ) -y1 . sin(θ)  

y2= R sin (α+θ ) = R . cos(α).sin(θ)  + R . sin(α) . cos( θ)  y2 =x1 . sin( θ) + y1 . cos( θ) 

        z2= z1 

In matrix form (Equation 18):  
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Equation 18 . Matrix form of Rotation around the Zw axis. 



UNDERLYING TOPICS IN CAD / CAM / CG Dr. Oscar E. Ruiz S. 
CAD/CAM/CG Laboratory - EAFIT University - Medellin, Colombia  

Copyright A.S.M.E. (American Society of Mechanical En gineers) 

This material is property  of the American society of mechanical engineers (ASME). All copy or  reproduction is forbidden. Personal 
Copy of  Prof. C. U. Xoán Leiceaga Baltar . 

36 
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Equation 19. Rotation Matrix around Z axis. 

in similar way, a rotation around Xw is (Equation 20): 
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Equation 20. Rotation transformation around the Xw axis. 
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Equation 21 . Rotation  Matrix around Xw. 

in similar way, a rotation around Yw is (Equation 22): 
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Equation 22. Rotation transformation around axis Yw 
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Equation 23. Rotation matrix around Yw 

3.2.3 Rotations parallel to world axes. 

Until now, rotations were performed around the coordinate axes Xw , Yw or Zw of the World Coordinate 
System. This implies in particular, axes pivoted in the origin (0,0,0). However, it is common to require 
rotations around arbitrary axes, parallel to Xw , Yw or Zw , anchored in an arbitrary point pv = [px,  py, p z] in E3. 
In such a case, the procedure is: 

a) Translate the pivot point pv to the origin. This means, translate S0 by M1 = trans( px, py, pz ). Or in other 
words: S1= M1*S0.   
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b) Apply the prescribed rotation as in Equation 18 to Equation 22. The transformation would be  
M2 = Rot(axis, θ ). Now, S2 = M2*S1. 

c) Translate the pivot point back to its original position. This means, translate the object by 
M3 = trans( px, py, pz ). The final position would be S3  = M3*S2.  

Therefore, the whole transformation would be: Mt = M3*M2*M1, and S3 = M3*M2*M1*S0. = Mt * S0 = Sf.  

The sequence to transform S0 into Sf can be also written as: 

( )( ) ( ) ( ) TRTMSTRTS axistaxisf ⋅⋅=⋅⋅⋅= −− ??with? 1
0

1
 

Equation 24. Decomposition of a rotation about arbitrary axis in E3 

This equation happens to be applicable to a general rotation in E3.  

3.2.4 Rigidity of Transformation vs Canonical Right Handed Systems. 

i) In cartesian coordinates, a rotation R applied on a point ( X, Y, Z ), followed by a translation T on the 
intermediate result, is written as: 
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  with R( 3 × 3 ) , T( 3 × 1 ) matrices.  

This effect can be packed into one (matrix multiplication) operation in homogeneous coordinates (for 
explanation of “homogeneous coordinates” refer to Chapter 2 “Linear Algebra”): 
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Equation 25. A “homogeneous coordinate form” transformation: Rotation followed by translation 

M represents a rotation followed by a translation, in this order. From previous discussion, it is known 
that its effect is different to a translation followed by a rotation. 

ii) If M is a pure rotation, then T = 0 (T = [0,0,0]T (3x1) vector). If M  is a pure translation, then R = I3×3, 
(the (3x3) identity matrix).  

iii) A rigid transformation (Equation 25) is identified because its submatrix R = [ U1, U2, U3 ], with each 
Ui of dimension (3×1), satisfies: 

321

322131

321 1

UUU)c

UU,UU,UU)b

UUU)a

=×

⊥⊥⊥

===

 

Equation 26. Conditions for a rigid transformation. 

Where condition (i) suggests that the matrix does not amplify the dimensions of objects. Condition ( ii) 
relates to maintaining angular relations unchanged. And (iii) says that the matrix keeps the right 
handedness of coordinate systems. The reader may observe the similarity between the conditions for 
transformation rigidity and the specifications of canonical right handed systems. Although this 
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similarity is not an accident, to establish the connection is beyond the scope of this material. It must be 
kept in mind that the rigidity of a M transformation must be tested with the conditions ( i), ( ii), (iii) in 
Equation 26. 

iv) If M is rigid, its application does not deform the object. It only changes its position in E3. 

v) The rigidity of M is stored in its R submatrix and not in the translation part T.  

vi) The transformation of system Si into Si+1 by a transformation M is written as: 

iii S
TR

SMS ⋅







=⋅=+ 101  

Equation 27. Transformation of coordinate system by Rigid Transformation. 

It is important to keep in mind that the rigidity is a characteristic of the transformation M, while canonical 
dexterity is a characteristic of the coordinate system Si or Si+1, that is, the data transformed by the function M 
(Equation 27). If the S i system is  canonical right handed, and M is rigid, then S i+1 would be canonical right 
handed. If the S i system is canonical right handed, and S i+1 is canonical right handed, the transformation that 
changes S i into S i+1 is rigid. The reader is invited to think how to diagnose the rigidity of M given only the 
information of S i and S i+1, (assume they are non-canonical right handed systems). 

3.2.5 The non-commutative group of geometric transformations 

Consider M the set of rigid geometric transformations, a,  b, c, d elements of M  and ⊕ the composition 
operation on transformations of M. The following properties make of M a (non-commutative) group because:  

1. ∀ a, b, ∈ M  a ⊕ b = c ∈ M   composition of transformations is a transformation.  

2. ∀ a ∈ S,  ∃ N∈ M  a ⊕ N = N ⊕ a = a  there exist a null transformation in M.  

3. ∀ a, b, c ∈ M (a ⊕ b) ⊕ c = a ⊕ (b ⊕ c) composition is associative.  

4. ∀ a ∈ S,  ∃ a-1∈ M a ⊕ a-1 = a-1 ⊕ a = N every rigid transformations has an inverse in M. 

By applying these concepts to geometric transformations we have that:  

a) The null transformation is:  
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Since it is formed by a null rotation (I3x3 ) and the null translation 03x1.  

b) The inverse transformation of a given M (rigid) satisfies: 
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Equation 28. Inverse of a rigid transformation. 

It is evident from Equation 28 that the inverse of a pure translation and a pure rotation are respectively:  
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From now on, the notation I3x3 will be replaced simply by I, with the dimensions of the matrices implicit in 
the equation.  
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3.2.6 Example. Rigid transformations. 

1. Determine the chain of rigid transformations (translations and rotations parallel to the World Axes) 
required to bring the object BODY0  from the initial to the final position (BODYf ). 

2. Program the example in MATLAB.  

Yw

Xw

Cf
Df

Ef

Ff  = Of

Af Bf

F = O0

C D

A B

E

Sf = [ Xf , Yf ,  Zf , O f ]

Zw

S0 = [ X0 , Y0 , Z0, O0 ]

Xf

Zf Yf

X0

Y0

Z0

BODY0

BODYf

Ow

 
Figure 18. Example of rigid transformations. 

 
The method of solution is the following: 

a. Assign coordinates [x,y,z,1] to each one of the vertices of the object, in initial and final positions. Ensure 
that initial (BODY0 ) and final objects (BODYf  ) are consistent. 

b.  Attach a canonical coordinate frame S0 to the object in the initial position. Find the numerical values for 
S0 = [  X0, Y0,  Z0, O0 ]. Verify that S0 is a canonical dexterous frame. 

c. Draw and find numerical values for the frame corresponding to the transformed S0 in the final 
configuration. Verify that Sf  is a canonical dexterous frame. 

d.  Perform the elementary transformations to bring S0 to intermediate positions until Sf is reached. An 
initial translation to Ow is suggested, to have better control upon subsequent rotations. Fill Table 10 with 
the relevant data.  

e. Numerically, check that the transformation Mi effectively transforms Si-1 into Si.  

f. Numerically, check that the accumulated transformation M = Mn.Mn-1.   .M1 indeed transforms S0  into 
Sf.  

g.  Transform object BODY0 into BODYf by application of M.  

h. Program the procedure above, by defining the functions translation_matrix( dx,dy,dz)  and 
rotation_matrix(axis, angle). Define also a function plt_axes(S,d) which draws a coordinate system S, 
scaled by a factor d (d = 1 implies no scaling).  
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Solution 

Table 10. Illustrative steps of a transformation sequence of an object. 

#M Transformation Matri x 
Graphical Frame 

Si 

 

Numerical Frame 
Si 

 

Rigid 
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The development of this example and evolution of coordinate systems in MATLAB are illustrated in 
Appendix, section 7.1.1. 
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3.3 Rigid Transformations about arbitrary directions. Quaternion Method 

Until now, rotations were performed around the coordinate axes Xw , Yw or Zw (World Coordinate System). 
Howe ver, it is common to require rotations around arbitrary axis L = [v, pv] (with direction v and pivot point 
pv) in E3 . As a first approach, in this section the method is presented to rotate an object around an axis in 
space with arbitrary orientation but passing through the origin (see Figure 19). Then, the method will be 
extended to rotated objects around axes with arbitrary direction, and anchored in an arbitrary pivot point in 
E3.  

Xw

Yw

Zw

e
?

S0 = [ X0 ,Y0 ,Z0 ,O0 ]

Sf = [ Xf ,Yf ,Zf ,Of ]

 
Figure 19. Rotation by a ? angle about arbitrarily inclined axis 

passing through the origin. 

Xw

Yw

Zw

S0

pv

Sf
e

?

S0 = [ X0 ,Y0 ,Z0 ,O0 ]

Sf = [ Xf ,Yf ,Zf ,Of ]

 
Figure 20. Rotation about an arbitrary axis L=[e,pv] by a ? angle. 

3.3.1 Rotations about arbitrary axes pivoted in the origin.  

Assume that L = [ e = (ex  , ey  , ez  ) , O = (0,0,0) ] is an infinite line in space E3, with direction e = (ex , ey, ez) 
(unit vector) and pivot point O = (0,0,0). A rotation of a system S0  by ? radians around L (positive ? means 
counterclockwise sense with respect to e) is possible by applying the quaternion formula to rotation of a point 
p0 = (x, y, z), Equation 29 ([KOR.85]):  

( )( ) ( ) ( )( )
OOOF

?F peepepp ××⋅+×⋅+=
111

22  

Equation 29. Rotation of a point about  an origin-pivoted axis calculated by the quaternion method. 

Where:  

? Rotation angle (in radians, positive with respect to e).  

e1 = sin(? /2) .e Orientation of the rotation axis.  

e = (ex, ey, ez) Orientation of the rotation axis. Unit vector. 

p0  Initial position 

pf  Final position 

F(?)  cos(? /2 ) 

Observe that Equation 29 rotates points. The reader is invited to  

a. Prove that the same formula applies in rotating vectors.  

b.  From (a), deduce the procedure to rotate coordinate frames S0 about L by ? radians to obtain Sf . 

c. From (a) and (b), deduct the procedure to compute the rotation about L by an angle ? (which are given) in 
matrix form, M?. Observe that Equation 29 is not a transformation in matrix form as are Equation 16 to 
Equation 22. Suggestion: remember that Sf = M? .S0.  
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3.3.2 Identification of axis and angle of origin-based rotations. Eigenvalue Method. 

Assume that M? is a rotation by an angle ? about a unitary axis e anchored in the origin. From the quaternion 
method, it is possible to deduce M?  from ? and e. A converse question is: given a known M? how to find ? and 
e. Without proof, the following procedure is given below. The interested reader may refer to [BOT.79]: 

1. Arrange M?  in form 







=

10
TR

Mθ . In this case, T = 0. 

2. Extract from R its eigenvalues ?i and eigenvectors vi.?  = [?1 ,  ?2  ,  ?3] , V=[v1 ,  v2,  v3].  Notice that  
R.vi, = ?i vi. 

3. Given R, a rigid transformation, it will have one eigenvalue, suppose ?1, equal to 1. v1, its corresponding 
eigenvector, is the ( non unitary) vector of the rotation axis. Make e = v1/ | v1 |. See Equation 30. 
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Equation 30. Eigenvalue and eigenvector matrices. 

4. The other two eigenvalues, say ?2 and ?3, will have the following form: ?2  ,  ?3= cos(?) ± i.sin(?) . 
Calculate ?. 

5. Because e and –e  are the same eigenvector of R, test that the angle ? found is the one that corresponds to 
the right handed rotation using the e found. Correct the sign of ? if necessary.  

6. [e ,  ?] are the direction of the rotation axis and the rotation angle respectively. The pivot point of the 
rotation axis is (0,0,0), according to the hypothesis.  

3.3.3 Rotations about arbitrary axes pivoted outside the origin. 

Assume that L = [ e = (ex  ,  ey ,  ez ),  pv = (  pvx  , pvy , pvz ) ] is an infinite line in space E3, with direction  
e = (ex, ey, ez) (unit vector) and pivot point pv = (  pvx  , pvy  , pv z  ) , as in Figure 20. A rotation of a coordinate 
system S0 about L by ? radians to obtain Sf is performed with the following sequence:  

1. Bring pv to the origin by applying M1 = trans(-pvx, -pvy, -pvz ). Therefore S1 = M1 S0 . 

2. Apply the quaternion method to rotate S1  around an axis with direction e, passing through the origin. 
Therefore S2 = q( e , ? , S1 ), where q( ) is the transformation in Equation 29. 

3. Take pv back to its original place by applying M3 = trans(pvx, pvy, pvz  ). Therefore S3 = M3 S2 . 

4. The total transformation of S0    is written as : 
)S).p(trans,,e(q).p(transS.M).S,,e(q.MS vv 001133 ?? −+==  

Equation 31. General rotation by ? about an arbitrary line L=(e,pv) in E3 
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3.3.4 Identification of axis and angle of arbitrary rotations. Eigenvalue Method. 

Given arbitrary initial and final positions of an object, determined by coordinate frames S0 = [X0, Y0, Z0, O0 ] 
and Sf = [Xf  , Yf , Zf , Of ] respectively, one needs to find L = [e, pv], the instantaneous rotation axis in E3 that 
takes S0  onto Sf . e is the unit vector direction of the rotation axis, pv is the instantaneous center of rotation, 
and ? is the rotation angle (Figure 21). Notice that pv is a special point on L, in contrast with the situation of 
Figure 20. Without proof, the following procedure is given: 

1. Find M, recalling that: existssince, 1
0

1
00

−−=⇒= SS.SMS.MS ff . 

2. Place M in form 







=

10
TR

M . In this case, T ? 0. 

3. Extract e (unit vector) and ? from R via the eigenvalue – eigenvector method.  

4. Find pv by using the Equation 32.  

00 with
)2/tan(.2

)(
2

OO?
e??

Op −=
×

−+= fo
oo

v θ
 

Equation 32. Instantaneous center of rotation for arbitrary movement in E 3 . 

 

Xw

Yw

Zw

S0

pv

Sfe
?

S0 = [ X0,Y0 ,Z0,O0 ]

Sf = [ Xf,Y f ,Zf,O f ]

 
Figure 21. Rotation about an arbitrary axis L=[e,pv] by a ? angle. 

 

The reader is invited to proof:  

1. That in spite of T being T ? 0, the direction of the instantaneous rotation axes, e , and the corresponding 
angle ? can be determined from the eigenvalue - eigenvector method in exactly the same manner as 
when T = 0.  

2. Equation 32.  

3. That Sf = M.S0 has a solution for M, given that S0 is a coordinate system. 

4. That if 







=

10
TR

Mθ  performs a rotation by an angle ? about a unitary arbitrary axis e  anchored in the 

origin, then T = 0. Suggestion: transform the origin.  

5. Let M t represent a chain of transformations Mt =  Mn.Mn- 1.Mn-2.    .M1 with pure rotations and pure 
translations mixed in arbitrary order. Prove, by induction on n, that when Mt is applied on a 
homogeneous vector Vh = [V 0]T, only the rotations affects Vh, while the translations “pass” through Vh 
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without having any effect. The reader should find the relation between this fact and proofs (1) and (4) 
above. (see Appendix, section 0).  

3.3.5 Example. General rigid transformations. 

For the exam ple in Figure 18: 

1. Determine the equivalent instantaneous rotation axis L = [ e , pv] and angle ? that replicate the whole 
displacement. Use the eigenvalue – eigenvector method. Use Equation 29 to Equation 32. 

2. Test the procedures of eigenvalue – eigenvector methods by programming the example in MATLAB. 
Starting from BODY0 and S0  you should obtain BODY f  and Sf applying Equation 31. 

3. Obtain in MATLAB a graph similar to Figure 21, including L = [ e, pv] and ?, as a consequence of the 
previous steps.  

 

3.4 Non rigid transformations  

Non-rigid transformations are widely used in visualization activities. Although many applications lay in the 
domain of entertainment, very important ones relate to realistic display of technical systems and scientific 
data from physical phenomena. If the transformation is:  

[ ] )(U,UUUR
TR

M i 13
10 321 ×=








= with  

Non-rigid transformations have a formulation that violates the conditions in Equation 26, repeated here to 
illustrate the discussion. 

321

322131

321 1

UUU)c

UU,UU,UU)b

UUU)a

=×

⊥⊥⊥

===

 

Although there are interactions between effects, in general the violation of condition (a) produces a scaling of 
the object. Violation of condition (b) produces a shear effect, by which the object becomes slanted; and 
violation of condition (c) changes the right-handedness of the systems associated with the object, therefore 
producing mirror effects. One may realize, however, that violation of (b) will also produce dimensional 
distortions, not only angle distortions. Therefore, failure to comply with one condition usually produces 
violations in the others.  

3.4.1 Mirror or Reflection 

Mirror transformations turn right handed systems into left handed systems and viceversa. If a right handed 
coordinate system is mirrored, its right-handedness property is lost, and therefore U1 ×  U2 ≠  U3 . Conditions 
(a) and (b) in Equation 26 remain unchanged. Mirrors can be produced about a focal point or a reflection 
plane. Unexpectedly, mirrors about an axis happen to be rigid transformations, being equivalent to a rotation 
by 180 degrees around such axis.  
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3.4.1.1 Mirror about a point 

3.4.1.1.1 Mirror about the origin 

Xw

Yw

Zw

Yf

Zf
X f

Of

Y0

Z0
X0

O0

S0=[X0, Y0 ,Z0, O0 ]

Sf=[Xf, Yf ,Zf, Of ]

 
Figure 22. Mirror about the Origin 

Xw

Yw

Zw

Y0

Z0
X0

Yf

Zf

XfpvS0 = [X0, Y0 ,Z0, O0 ]

S f = [Xf, Yf ,Zf, Of ]

 
Figure 23. Mirror about a point removed from the origin. 

Given a point (Figure 22) with coordinates (x1 ,y1  , z1), its mirror image about the origin, (x2 ,y2 ,z2) is: 

x2 = -  x1  y2  = -  y1  z2 = - z1 

In homoge neous matrix coordinates one has Equation 33. 
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Equation 33. Mirror transformation about the origin  

The reader is invited to confirm that in Mirror ( point(0,0,0) ),  U1 × U2  = -U3.  Therefore, it is not a rigid 
transformation. 

3.4.1.1.2 Mirror about a point different from the origin 

Figure 23 shows the mirror transformation about a point pv, different form the origin. The procedure required 
is: 

1. Use M1 , which brings pv to the origin, to affect S0 :  S1= M1 . S0 = trans(-pv). S0.  

2. Apply M2=mirror( point(0,0,0) ) on S1 to obtain S2 :  S2= M2 . S1 = mirror( point(0,0,0)). S1. 

3. Use the inverse of M1, to take the pivot back to pv.  S3= M3 . S2 = trans(+pv). S2. 

Trivially, the transformation required is analogous to Equation 24 or Equation 31:  

)().0)point(0,0,().())point((

).().0)point(0,0,().(.).)point(( 000

vvv

vvmvf

transmirrortransmirror

transmirrortransmirror

ppp

SppSMSpS

−+=

⇒−+===

 

Equation 34. Transformation chain for mirror about an arbitrary point. 

In similar way to the process carried out in the example from Figure 18, one may fill the table corresponding 
to the evolution of the coordinate system from Figure 23, from S0 to Sf. 
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3.4.1.2 Mirror about a plane. 

In literature (see for example [FOL.90, MOR.99]) mirrors or reflections around planes are usually built by 
writing implicit equations. In contrast, this material employs a technique derived from the numerical analysis, 
called Householder Reflectors, used to calculate QR factorization of matrices. It reflects rows or columns of a 
matrix about a particular plane ([GOL.96,TRE.97]), normal to other vectors of the matrix.  

Xw

Yw

Zw

S0 = [X0, Y0 ,Z0,  O0 ]

Sf = [X f, Y f ,Zf, Of ]

Yf

Zf

X f

Of

n̂

Y0

Z0
X0

O0

 
Figure 24. Mirror or reflection about a plane that crosses the 

origin. 
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X 0O0

S0 = [X0 , Y0 , Z0 , O0 ]
S f = [Xf , Yf ,Zf , Of ]

Yf

Zf

X f

Of

n̂

 
Figure 25. Parallel projection on a plane that crosses the origin 

 

3.4.1.2.1 Householder transformation 

The version of the Householder transformation given here differs in formula to the one given in the 
references. Given a plane P = [n,(0,0,0)] passing through the origin (0,0,0), with normal unit vector n, the 
reflection of a point p0 across such a plane is defined as in Figure 24: 

[ ]
).ˆ.(ˆ2)ˆ.(ˆ.2.)

.ˆ.ˆ.2))0,0,0,ˆplane(()

00000
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pnnppnnppHp
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−=•−==
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Equation 35. Householder Reflector, used to mirror a point about an origin-pivoted plane. 

Equation 35 can be used either with Cartesian or homogeneous coordinates. p0, pf and n are column vectors, I 
is the identity matrix and n is unitary. Part (a) is the matrix form, while part (b) is the equivalent vector form 
of the equation in (a), with the dot product clearly marked ( •).  

3.4.1.2.2 Example. Mirror on the YZ plane. 

A mirror about plane YZ inverts the x  coordinate, leaving y and z  unchanged. The transformation equations 
are: 

x2 = - x1  y2 = y1  z2 = z1  

Therefore, the transformation in matrix form would be: 
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We would like to obtain the same result by applying the Householder Reflection. The procedure and result are 
illustrated in Figure 26.  
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1. Define the unit vector normal to the plane YZ: [ ]001ˆ =n  

2. Apply the Householder formula (Equation 35):  
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Figure 26. Application of Householder Reflector to get a reflection through plane YZ 

The result is the same as the one obtained by formulation of the transformation equations on each coordinate. 
The advantage of the Householder method is that allows a systematic procedure. Figure 26 shows the 
application by using Cartesian vectors. The same result is obtained if homogeneous coordinates are used.  

The reader may find easy solutions with simple variations of the Householder Reflector for two problems:  

1. To find the parallel projection of an object onto a plane (Figure 25). 

2. To find the perspective projection of an object onto a plane.  

Other illustrated cases of mirr or about planes are considered in Appendix, section 0. 

3.4.1.2.3 Mirror through an arbitrary plane. 

The Householder transformation reflects the object through a plane passing by the origin, (0,0,0). If the 
coordinate system S0  must be reflected through a general plane P = [ n, pv] with normal n and pivot point pv, 
to get Sf, the procedure is analogous to the applied in mirror or rotations outside the origin: 

1. Use M1 , which takes pv to the origin, to affect S0:  S1= M1 . S0 = trans(-pv). S0.  

2. Apply M2=mirror( plane[  n, (0,0,0)])  on S1 to obtain S2:  

S2= M2 . S1 = Hn . S1 = mirror( plane[ n, ( 0,0,0)]). S1.  

3. Use the inverse of M1, to take the pivot back to pv.  S3= M3 . S2 = trans(+pv). S2. 

[ ]
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Equation 36 . Mirror transformation about a plane not crossing the origin. 
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3.4.2 Scaling 

The scaling transformation selectively enlarges or contracts coordinates of the object S0, yielding a scaled 
object Sf. For example, Sf  may have its X coordinat es equal to twice the X coordinate of S0, while at the same 
time having Y equal to half of the Y coordinate in S0 , etc.  

Z

Y

X

Af=(Xf,Yf ,Zf)

B0 C0Bf Cf

Pivot A0=(X o,Y0,Z0)

 
Figure 27. Scaling transformation with the origin as the fixed 

point. 

Z

Y

XC0B0=Bf

A0=(Xo,Y 0,Z0)

Af=(Xf,Yf,Zf)

Cf

Pivot

 
Figure 28 . Scaling transformation with fixed point (B) away from 

the origin. 

There may be different scaling factors Sx , Sy and Sz , for the three main axes (anisotropic scaling). For strictly 
scaling transformations one has Si ∈ [0, ∝], with the negative case being a hybrid between mirror and scaling. 
For the example in Figure 27, Sx =2.0, Sy =0.5 and Sz=1.0. 

3.4.2.1 Scaling with respect to the origin. 

Figure 27 shows the case in which the object is scaled with respect to the origin as fixed point. This means 
that the origin is considered part of the object. The scaling is performed with respect to the origin, and 
therefore points such as B, C, or D move away from (or towards) i t . 

Equation 37 presents the general matrix form of scaling with respect to the origin.  
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Equation 37. Scaling Transformation with origin as fixed point. 

According to the values of the Si parameter, the following effects are produced: 

1. If Si > 1, there is an expansion  in the i th direction. 
2. If Si < 1, there is a contraction in the i th direction.  

3. If Si = 1, there is no deformation in the ith direction. 
4. If Si < 0, there is a reflection and scaling in the i th direction. 

The reader is invited to find which conditions in Equation 26 are violated and which ones are preserved by a 
scale transformation (Equation 37). 
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3.4.2.2 Scaling with respect to an arbitrary point. 

Up to now, Equation 37 scales an object assuming that it is pivoted in the origin, (0,0,0).  Figure 27 shows that 
scaling will in this case translate the object. Every point of the object moves. However, if it is wished that a 
point pv of the object S0 be fixed (for example point B in Figure 28), with final object Sf, the procedure is 
analogous to the applied in mirror or rotations outside the origin: 

1. Use M1  , which takes pv to the origin, to affect S0:   S1= M1 . S0 = trans(-pv).  S0.  
2. Apply M2=scale( Sx, Sy, Sz ) on S1 to obtain S2 :    S2= M2 . S1 = scale( Sx, Sy, Sz ). S1. 

3. Use the inverse of M1, to take the pivot back to pv.   S3= M3 . S2 = trans(+pv) . S2. 
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Equation 38. Scaling transformation with respect to an arbitrary fixed point in E 3  

3.4.3 Shear 

In the shear effect, points of the object change their position, in an amount proportional to other coordinates. 
Therefore, the x coordinate may change as influenced by the y coordinate via a ∆x/∆y value, and similarly 
happens with every coordinate (see Equation 39). In this example, for point ( x,y,z), x  changes in proportion to 
coordinate y,  measured from the origin.  This transformation is obviously non-rigid since it preserves neither 
lengths nor angles.  

∆y

∆x

P1 =(x1 , y1 , z1) P2 = (x2 , y2 , z2)

pv
Xw

Yw

Zw  
Figure 29. Shear Effect with origin as fixed point. 

Xw

∆y
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pv

Yw
P1 = (x 1 , y1 , z1)

P2 = (x2 , y2 , z2)

Zw  
Figure 30. Shear Effect with arbitrary fixed point  

For the example displayed in Figure 29 the deformation equations would be:  

x2 = x1  +  ∆x/∆y . y1 y2  = y1  z2 = z1 

It is easy to realize that the general form for shear with the origin as pivot point is the one shown in Equation 
39: 
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Equation 39. Matrix for shear with respect to the origin. 
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Notice that interactions of any coordinate upon others are possible. This transformation, in general, satisfies 
none of the conditions for rigidity (Equation 26).  

3.4.3.1 Shear with respect to an arbitrary point. 

Equation 39 shears an object assuming that it is pivoted in the origin. Figure 29 shows that shearing also 
translates the object. If point pv of the object S0 is to be fixed (Figure 30), with final object Sf, the procedure is 
analogous to Equation 38 (see Equation 40).  

1. Use M1 , which takes pv to the origin, to affect S0:   S1= M1 . S0 = trans(-pv).  S0.  

2. Apply M2= shear(∆xy, ∆xz, ∆yx, ∆yz, ∆zx, ∆zy ) on S1 to obtain S2: 
S2= M2 . S1 = shear(∆xy, ∆xz, ∆yx, ∆yz, ∆zx , ∆zy ). S1 . 

3. Use the inverse of M1, to take the pivot back to pv.   S3= M3 . S2 = trans(+pv) . S2. 
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Equation 40. Shear transformation about an arbitrary point pv in E3  
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3.5 EXERCISES – GEOMETRIC TRANSFORMATIONS – 

 

3.5.1 Rotations around the Main Axes. 

ROTATION MATRIX 

OBJECTIVE: To experiment with rigid transformations applied on a 2-dimensional figure. 

PROCEDURE:  

1. Create matrix that stores the vertices A, B, C and D of the plane that is shown in  Figure 31 and name it 
face1. 
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Figure 31. Exercise 3.1 

 

2. Prompt the user for angle of rotation ( th ) and the coordinated rotation axis (ax ) to be used to rotate the 
figure. 

3. Create a function named [M] = rotation_matrix ( ax, th ), in which the rotation matrix is calculated. 
Remember that the variable ax takes values 'X', 'Y' or 'Z'.  

4. Make the transformation of face1 using M and assign the result to a variable named face2. 

5. Plot both figures in the same MAT LAB figure window, the original figure with blue, and with red the 
transformed one. 

6. Name each one of the axes and title the graph. 
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3.5.2 Iterative Rotations I.  

ROTATION MATRIX 

OBJECTIVE: To experiment with iterative rigid transformations applied on a 2-dimensional figure. 

PROCEDURE:  

1. Create matrix that stores the vertices A,  B ,C and D of the horizontal rectangle shown in Figure 32. 
Assign it the name face_1 . 
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Figure 32. Exercise 3.2 

 
2. Prompt for the number of rotations to execute on face1. 

3. Use 'Y' as the rotation axis. Calculate the rotation angle in order to obtain intermediate symmetrical 
positions.  

4. Create a function named [M] = rotation_matrix ( ax, th ), in which the rotation matrix is calculated. 
Remember that the variable ax takes values 'X', 'Y' or 'Z'.  

5. Make the transformation of facei using M and assign the result to a variable named facei+1.  

6. Make an iteration structure such that the sequence of facei is plotted in the same MATLAB figure 
window.  

7. Name each one of the axes and title the graph. 
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3.5.3 Iterative Rotations II.  

ROTATION MATRIX  

OBJECTIVE: To experiment with iterative rigid transformations on a planar polygon. The polygon does not 
pass trough the origin.  

PROCEDURE:  

The procedure is the same as for the exercise of Figure 32, but in this case face1 is defined by:  

A = [1 1 0 1]' 
B = [3 1 0 1]' 
C = [3 3 0 1]' 
D = [1 3 0 1]' 

Use 'Z' as the rotation axis. The rotation angle for each iteration is 45 degrees.  
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Figure 33. Exercise 3.3 
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3.5.4 Mirror about the origin. 

Create a polygon and mirror it about the origin. 

3.5.5 Mirror about XY plane. 

Create a polygon and mirror it about the plane XY.  

3.5.6 Mirror about X=Y plane. 

Create a polygon and mirror it about the plane X =Y. 

3.5.7 Mirror About Z axis. 

Create a polygon and mirror it about the Z axis (Is this a non-rigid transformation?). 

3.5.8 Scaling. 

Create a polygon and scale it about the origin with scaling factors 1/2 , 2 y 0.3 in the directions X, Y and Z 
respectively. 

3.5.9 Shearing. 

Create a polygon and transform it with a shear defined by ∆xy=2. All the remaining interactions are null.  
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3.5.10 Iterative Rotations III. 

RIGID TRANSFORMATIONS 

OBECTIVE:  

To make iteratively two independent rotations around the principal axes.  

PROCEDURE:  

Given the body ABCD, with the edge AD having vertex A at the origin and D along the X axis (Figure 34), 
you must make a program that: (a) Rotates the body N times about the Z axis (rotation angle θ.=π/N), and (b) 
in each iteration rotates it an angle α about the instantaneous position of the AD edge 
(α = θ).  
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Figure 34 . Exercise 3.10 

 

1. Write a function [body] = create_body( ) that will be in charged of generating and delivering the 
information of the vertices and the faces of the body in an array named body. Also, this function must 
plot the body in its initial position with the color blue. 

2. Attach to the solid in every position an auxiliary coordinated system anchored to vertex D (use a specific 
function for this task, such as plt_axes( ) ).  

3. Write the function bodyi+1 = my_trans(body i, theta , alpha) , that rotates the object bodyi an angle θ 
around the Z axis and subsequently around the AD edge an angle α, to then deliver the result bodyi+1. 
(Remember that this edge is  parallel to the X axis in the initial position of the body).  

4. Create a function that plots the evolution of the body. The odd iterations will use green , while the even 
iterations will use red. 
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3.5.11 Iterative Rotations IV. 

RIGID TRANSFORMATIONS 

OBJECTIVE: 

To use the Quaternion method to verify the effect of a transformation made by prescribed rotation matrices 
used to rotate about the principal axes.  

PROCEDURE:  

1. Write a function [ Px  , Py , Pz ] = my_mesh( ) that fills the necessary matrices for declaring a mesh and 
outputs it as Px  , Py  , Pz . The base of the mesh, of size 10x10, will be on the plane XY. 
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Figure 35 . Exercise 3.11 

 

2. Write a function [ Pf  ] = rotate_by_quaternion( e , th , P0 ), that applies the quaternion formula. This 
function rotates a point P0 around the vector e  and outputs the rotated point Pf . The angle th is in degrees. 
Assume for this function that e is not necessary unitary.  

3. Write a function [ Qx , Qy  , Q z  ] = rotate_mesh( P x , Py , Pz  , e , th ) . This function rotates a mesh given by 
Px , Py, Pz around the vector e (not unitary)  an angle th (in degrees) .  Outputs the result (rotated mesh) in 
the matrices Qx, Qy , Qz. 

4. Write a function [ Mr ] = rotation_matrix( th , ax ) , that outputs the homogeneous coordinate matrix  for 
a rotation of th degrees around any axis ´X´, ´Y´ or ´Z´.  

5. Write a function [ Qx , Qy  , Qz ] = rotate_mesh_2( Px  , Py , Pz  , ax , th ). This function rotates with an 
angle th (degrees) a mesh given by Px,  Py,  Pz  around an axis ax (axis ´X´, ´Y´ or ́ Ź ). Outputs the result 
(rotated mesh) in the matrices Qx  , Qy , Qz. Use the function rotation_matrix( ). 
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6. Create a program named “main” , where the following step are included: 

a) Calls the function [ Px  , Py  , Pz ] = my_mesh( ) that creates the entry data (the mesh). 

b) In a MATLAB figure window plots the mesh formed by Px , Py  , Pz . 

c) Applies the function [ Qx , Qy , Qz ] = rotate_mesh( Px , Py , Pz , e , th ) on Px , Py  , Pz. The axis e 
must be one of the principal axes X, Y, or Z, in vector form (3x1). The angle th must be given in 
degrees. Here the function [ Pf ] = rotate_by_quaternion( e , th , P0 ) must be used. 

d) In a new MATLAB figure window shows the original position of the mesh as well as the one 
obtained by the quaternion method. The title should be “Transformation by the Quaternion Method”. 

e) Calls the function [ Qmx , Qm y , Qm z ] = rotate_mesh_2( Px , Py , Pz , ax , ang ), on Px , Py  , Pz , 
where the axis ax (as ´X´, ´Y´o ´Z´) and the rotation angle are to be consistent with (c). In 
rotate_mesh_2( ) the funct ion [ Mr ] = rotation_matrix( ang , ax ) must be used.  

f) In a third MATLAB figure window shows the original mesh as well as the mesh obtained by this 
method (matrix). The title should be “Transformation by Matrix Method”. Compare the plots of (d) 
and (f). 

g) Include the principal axes names in every graph. 
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3.5.12 Solid Generation. 

FUNCTIONS WITH SOLIDS 

OBECTIVE:  

To create a function that simplifies the display of an arbitrary solid of planar faces.  

PROCEDURE:  

1. Describe the solid of Figure 36 as: 
body = [ a,d,c,b,a, a,e,d,a,  a,b,f,e,a,  b,c,f,b,   c,d,e,f,c ]; 
  Loop1  Loop2  Loop3  Loop4   Loop5 

loop_dim = [4,3,4,3,4];  

2. Create a function draw_solid(body, loop_dim) , where body is a matrix 4xM or 3xM that contains each 
one of the loops of edges  of the body. loop_dim  is a 1xL vector that contains the number of vertices that 
compose each loop that compose the body. L = number of loops of straight edges that conform the body. 
The vertices in body may be input as homogeneous coordinates or cartesian coordinates.  

3. Make a plot of the faces by means of the above procedure.  
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Figure 36 . Exercise 3.12 

 



UNDERLYING TOPICS IN CAD / CAM / CG Dr. Oscar E. Ruiz S. 
CAD/CAM/CG Laboratory - EAFIT University - Medellin, Colombia  

Copyright A.S.M.E. (American Society of Mechanical En gineers) 

This material is property  of the American society of mechanical engineers (ASME). All copy or  reproduction is forbidden. Personal 
Copy of  Prof. C. U. Xoán Leiceaga Baltar . 

59 

 

3.5.13 Transformation of a Solid Body I. 

OBECTIVE:  

To create and plot objects in E3, to make transformations on them and to plot the transformed objects.  

PROCEDURE:  

1. Create points A, B,  C, D, E and F for the vertices of the body (wedge).  

2. Create the loops corresponding to the five faces of the body.  

3. Execute the necessary transformations to go form the initial to  the final position.  

4. Plot the body in intermediate positions drawing each position in a different color. 
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Figure 37 . Exercise 3.13 

 



UNDERLYING TOPICS IN CAD / CAM / CG Dr. Oscar E. Ruiz S. 
CAD/CAM/CG Laboratory - EAFIT University - Medellin, Colombia  

Copyright A.S.M.E. (American Society of Mechanical En gineers) 

This material is property  of the American society of mechanical engineers (ASME). All copy or  reproduction is forbidden. Personal 
Copy of  Prof. C. U. Xoán Leiceaga Baltar . 

60 

 

3.5.14 Transformations of a Solid Body II. 

OBJECTIVE: 

To make transformations on objects in E3, To calculate the necessary transformations using the evolution of 
the auxiliary axes instead of the evolution of the body. 

PROCEDURE: 

1. Create points A, B, C, D, E and F for the vertices of the body (wedge).  

2. Create the loops corresponding to the five faces of the body.  

3. Define the initial auxiliary coordinate system.  S0 = [ X0 , Y0, Z0, O0 ].  

4. Define the final auxiliary coordinate system  Sf = [ Xf, Yf, Zf, Of ].  

5. Transform the auxiliary coordinate system form the initial to the final position using intermediate 
translations and rotations on this object.  

6. Plot the evolution of the auxiliary coordinate system form S0 to Sf . 

7. Collect the transformation matrices in a single matrix M.  

8. Apply M to the initial body in order to obtain the final body. 
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Figure 38 . Exercise 3.14 
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3.5.15 Mirror About XZ plane. 

NON-RIGID TRANSFORMATIONS 

OBJECTIVE:  To study the non-rigid transformations.  

PROCEDURE:  

1. Define the vertices of the body in Figure 39 in the variable body. Create the variable loop_dim  that would 
contain the dimensions of each loop of the body. These variables will be used to call the function 
draw_solid(body, loop_dim) defined previously.  

2. Create a function [ bodyf , Sf ] = mirror_XZ( body , S ) to apply a reflection about the plane XZ. The 
input variables are body  and S = [X Y, Z, O]. Where S = [X Y, Z, O] is the auxiliary coordinated system 
attached to the body. bodyf and Sf are respectively the transformed body and coordinated frame. 
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Figure 39 . Exercise 3.15 
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3.5.16 General Transformations I. 

GENERAL TRANSFORMATIONS 

OBJECTIVE:  To combine rigid and non-rigid transformations.  
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Figure 40 . Exercise 3.16 

 

PROCEDURE:  

1. Generate the body [body, loop_dim] corresponding to the object shown in the initial position of Figure 
40. 

2. Attach to the body, the auxiliary coordinated system as shown. 

3. Make the necessary transformations in order to obtain the body in the final position. 
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3.5.17 General Transformations II.  

GENERAL TRANSFORMATIONS 

OBJECTIVE:  To combine rigid and non-rigid transformations.  

PROCEDURE:  

1. Create the points A, B, C,  D, E and F for the vertices of the body in the initial position. (Figure 41).  

2. Generate the body by means of [body, loop_dim] explained in previous exercises.  

3. Transform the body and its corresponding auxiliary coordinate system form the initial to the final 
position, using translation, rotation, m irror, scale and/or shear where necessary.  
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Figure 41 . Exercise 3.17 
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3.5.18 Sweep of a Cross Section along an arbitrary Path. 

SWEEP OF A CROSS SECTION ALONG AN ARBITRARY PATH  

GIVEN: 

1. A Piecewise Linear 1-manif old (a straight -segment polyline) path in R3 .  
2. A closed non self- intersecting polygon Pol contained in plane XY, containing the origin (0,0,0), and 

attached to its local coordinate system  SL=[ XL,YL,ZL,OL]. The system SL is coincident with the WCS. 

 

GOAL:  

1. Calculate the transformations Mi (i=1,2,…n) which move the coordinate system SL attached to Pol to : (a) 
make the origin OL  coincident with the point path(i) , and (b) make the ZL axis coincident with the axis Zi 
from point pathi to point pathi+1 . 

2. Apply the sequence of transformations Mi to Pol, to get Poli (i=1,2,…n). 
3. Use the sequence of extruded cross sections Poli (i=1,2,…n), to generate the skin of the extruded object 

by constructing a (MATLAB) mesh, snake. ( Figure 42 ). 

 

NOTES : 

(i) For point (i) you do not have sufficient information. Answer what is the  cause of the insufficiency. Avoid 
this insufficiency by using quaternion to transform ZL into Zi. Use the quaternion to define an Mi homogenous 
transformation from SL to Si 

(ii) Your path should be a smoothly evolving curve. Otherwise you may get a self-intersecting skin.  

 

RESULTS  

 

Figure 42. Generated extrusion of circular cross section. 

 

 



UNDERLYING TOPICS IN CAD / CAM / CG Dr. Oscar E. Ruiz S. 
CAD/CAM/CG Laboratory - EAFIT University - Medellin, Colombia  

Copyright A.S.M.E. (American Society of Mechanical En gineers) 

This material is property  of the American society of mechanical engineers (ASME). All copy or  reproduction is forbidden. Personal 
Copy of  Prof. C. U. Xoán Leiceaga Baltar . 

65 

3.5.19 Simultaneous Sweep and Twist of a Cross Section.  

SIMULTANEOUS SWEEP AND TW IST OF A CROSS SECTION 

GIVEN 

1. A right-handed WCS.  
2. An  ellipsoidal cross section pol, whose contour follows the equation  

x(?) = a. cos (?) 

y(?) = b. sin (?) 

z = 0 

with  0= ? =360°, and a and b are the x- and y-direction semi -axes respectively. The polyline pol  is 
defined in a local frame SL = [XL, YL, ZL, OL], initially coincident with the WCS. 

3. A circular path path ( defined in the WCS) with radius R, lying on the Xw-Yw plane, defined by the dF 
(angular increment of the arc )  
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Figure 43. Sweeping and Tweaking of a Cross Section 

 

 

GOAL:  

1. To generate a sequence pol(1), pol(2), ...., pol(i),....  of rigid transformations of pol with the following 
conditions for pol(i): (a) The geometric center OL of pol(i) must be placed onto the point path(i)=Oi, (b) 
The  ZL axis of pol must be placed in the direction path(i+1)-  path(i), which defines the axis  Zi. (c) in 
each iteration i  the instantaneous Si system rotates a d? around the instantaneous Zi axis. (Figure 43).  

2. To thread corresponding points between stages pol(i) and pol(i+1) to generate a mesh called ribbon. 
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REMARKS :  

4. The program must define a proper d?  to accomplish the desired number of spins of the cross section 
around its local Zi axis. 

5. The program must define a proper dF , taking into account that the ribbon must be defined by n radial 
partitions.  

6. The program must draw each intermediate position pol(i)  (i=1,2,3…n) that the cross section pol  adopts 
trough the generation of the ribbon.  

7. The program must accumulate and thread all  pol(i) cross sections into an ordered mesh format. 

 

PROCEDURE: 

1. Generate the ellipsoid pol in the local coordinate frame SL.  
2. Generate the circular path with an R radius.  
3. Reposition the cross section pol in position S1. 
4. For each Si position calculate a transformation matrix Mti that transforms S1 onto Si. This matrix has two 

components; (i) rotation about some axis in the WCS. (ii) rotation about an instantaneous Zi axis. (Figure 
44). 

 

RESULTS :  

 

 

Figure 44. Ribbon of Radius =40, a=3, b=6, ?=360° and n=120 
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3.5.20 Parallel Projection. 

PARALLEL PROJECTION 

GIVEN: 

1. A right-handed WCS pivoted on Oo. 
2. A Solid Body Bo with an attached coordinate system So.  
3. A plane ?  =[Pv  ,  n]  in R3, pivoted into any Pv point and defined by a normal vector n. In general, Pv is 

not the origin. 

GOAL:  

To write down a program that calculates and applies (to a body Bo) the transformation matrix M for parallel 
projection onto a given plane ?  =[ Pv  , n]. 

PROCEDURE:  

1. Generate the body Bo and its attached coordinate system So. 
2. Write down a generic function M=project(pv, n) that calculates the homogenous non rigid transformation 

M  for parallel projection onto a plane ?  =[pv, n].  
3. Apply the transformation M to the coordinate frame So. 
4. Apply the transformation M to the body Bo. 
5. Plot the body Bo and its projection Bop .(Figure 45) 
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Figure 45. Parallel Projection  
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3.5.21 Perspective Projection. 

PERSPECTIVE PROJECTION 

GIVEN 

1. A right-handed WCS pivoted on Oo. 
2. A Solid Body Bo with an attached coordinate system So.  
3. A plane ?  =[ Pv , n]  in R3, pivoted on a point Pv with normal ( non unitary ) vector n. In general, Pv  is 

not the origin. 
4. A point of observation Pobs .  

 

TASK 

To write down a program that calculates and draws the perspective projection (calculated from Pobs  ) of a body 
Bo projected over a given plane ?  =[ Pv , n]. 

PROCEDURE 

1. Generate the body Bo and its attached coordinate system So. 
2. Plot the projection lines from Pobs to each vertex in Bo . 
3. Write down a generic function Bp=persp_project(Bo ,Pv, n, Pobs)  which calculates Bp, the perspective 

projection of Bo onto plane ?  =[pv, n], with observer position Pobs  , using the following formula for each 
vertex Po that will be projected:  

( ) ( ) ( )
( ) ( )nPP

nPPPPPP
obso

vo
obsoobsp •−

•−−⋅−+= 1
 

Equation 41.Calculation of a Perspective projection of a single point into a plane. 

4. Plot the body Bo and its projection Bp.(Figure 46) 

 

Remarks 

The reader must visually check if each projection of each point pi of Bo  onto the ?  plane is the intersection 
between the ray Pobs - pi against ? .  
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Figure 46. Perspective Projection 
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4. CURVES AND SURFACES 

In Computer Aided Geometric Design (CAGD) analytic curves and surfaces are required as carriers for the 
topological entities of a geometric model. For example, FACEs are connected, compact subsets of an analytic 
surface (a 2-manifold with boundary) in E3 , while EDGEs are connected, compact subsets of an analytic 
curve (a 1-manifold with boundary) in E3. FACEs and EDGEs are only subsets of the surface or curve 
(respectively) in which they are mounted. The mathematical definition of carrier geometries (curves or 
surfaces) immediately affects how subsets of them can be expressed and bounded. The definition of curves 
and surfaces is generally expressed in terms of parameters, giving origin to what is called parametric 
equations.  

The mathematical problems faced in CAGD applications are the following:  

(i) Given a finite set of points sampled on a curve or surface, how to find a mathematical expression of such 
a set. The set of points might be randomly (without order) sampled, requiring a different treatment, in 
contrast with cases in which points are sampled following a systematic and ordered pattern. When the 
order of the point set is not meaningful, there are two techniques widely used: (a) polynomial and (b) 
statistical equation fitting. When the order of the point sample must be respected, parametric forms are 
applied.  

(ii) Once the mathematical expression has been found, estimations of its likeness may be required.  

(iii) Evaluation of the formula in locations away from the initial point set is required.  

(iv) In addition to simply compute the locus of the points (item (iii)), other estimations are of interest: 
tangent planes, derivatives, gradients, Frenet frames, curvatures, etc. These estimations are important in 
Computer Aided Manufacturing applications (CAM), for example CNC machining.  

(v) Given a mathematical expression of a curve or surface, it is of interest to convert it to other 
representation or equation, with a different set of parameters or variables.  

The purpose of this chapter is to introduce the reader into this domain, and to provide concepts to respond 
some of the issues stated.  

4.1 Random Samples 

 

4.1.1 Polynomial Interpolation 

In this case, an equation of the form z = f(x,y) or g(x,y,z) = c is forced to pass exactly by each one of the point 
samples pi = ( xi, yi, zi ) (i = 1..n ). The natural candidate to propose is a polynomial equation of the form  

Z = aoXo + a1X1 + a2X2 +...+ anXn + boYo + b1Y1 +...+ bnYn
n + bo,o  X

o
 Y

o
 + b1,1  X

1
 Y

1
 +...+ Bn,n  X

n Yn+... 

in which the degree is controlled by the number of points collected. For example, if a sample of five (x,y) 
pairs is available, the equation to fit would have the form: 

Y1 = ao+a1X1 + a2X1
2 + a3X1

3 + a4X1
4 

Y2 = ao+a1X2 + a2X2
2 + a3X2

3 + a4X2
4 

....... 
Y5 = ao+a1X5 + a2X5

2 + a3X5
3 + a4X5

4 
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With unknowns ao, a1, a2, a3 , a4. The matrix equation to solve for the unknowns takes the form: 
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which can be abbreviated as: 

X.A = Y 

The following observations are relevant: 

(i) X is called a Vandermonde  Matrix ( [GOLUB.96] ), which is known to be ill-conditioned for inversion, 
given the radical variation in the absolute value of its entries.  

(ii) The form g(x,y,z)= c so defined effectively passes through each sampled point. However, its oscillation 
between samples is uncontrolled, particularly as the value of n grows.  

(iii) Due to the previous considerations, only low degree (2 or 3) solutions are attempted in very specific 
CAGD problems. Therefore the applicability of this method in CAGD is limited.  

4.1.2 Statistic Interpolation 

In this case, the designer estimates that the data set adheres to a particular equation form. Therefore the data 
set is used to give the best estimation (in statistical sense) of the equation parameters. Again, the equation 
form is g(x,y,z) = c. However, in contrast with polynomial interpolation, the number of samples is not limited 
by the number of parameters to estimate (the limitation in taking large samples lies on economical reasons). 
In the equations below, the proposed form is a quadratic equation y = a2.x2 + a1.x1  + a0. The number of 
samples is not limited to 3, so in this case 20 samples are collected. The equations are stated as follows:  

Y0 = ao+a1X1 + a2X1
2 + oe  

Y1 = ao+a1X2 + a2X2
2 + 1e  

. 

. 

. 

. 

. 

Y20 = ao+a1X20 + a2X20
2 + 20e  

Where ε corresponds to both the limitations of the equation to estimate the data, and to sampling 
(experimental) errors.  

The following observations are relevant: 

(i) By changing variables (for example naming X2 as x2, etc.), a linear regression analysis can be applied to 
solve for a0, a1, a2. A thorough explanation is beyond the purpose of this chapter, since the statistical – 
mathematical procedures vary with the form of each estimated shape. However, the usual goal is to 
express the problem in terms of linear regressions, and to convert the results back to the original 
parameters.  

(ii) In CAGD and CAM the usual forms are cylinders, planes, circles, cones, etc., since these are the most 
common primitives and finishing features used in mechanical design (bevels, chamfers, fillets, etc.). 
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Therefore the equations to fit will acquire the corresponding form. For instance in a circle  
(x-x0)2 + (y-y0)2  = R2 the unknowns are x0, y0 and R; a minimum of three (non-collinear) samples would 
be then required.  

(iii) An important field of application of this approach is in Geometric Tolerances, where verifications on 
proposed features determine whether the part is within tolerances and quality limits or not. In this case, 
position of axes, perpendicularity, coaxiality, flatness, etc., are estimated as expressed above.  

4.2 Ordered Samples. Parametric Equations 

In contrast with polynomial and statistical fits, a parametric curve f(u) (or surface f(u,v)) when fit to a 
sequence of points S = { p0, p1, ...pn } (S is called control polygon) changes with the order (sense) of the points 
in S. A parametric curve (Figure 47) is a function f(u): E → E3 , with f(u) = (x(u), y(u), z(u)), where the 
parameter u is one of many possible ways to parameterize the curve. For example, another parameterization 
could be g(v) = f(u/2) = (x(u/2), y(u/2), z(u/2)), with v = u/2. On the curve, parameter v would vary twice as 
fast as u. However, given a consistent definition of the respective domains of u and v,  f(u)  and g(v) describe 
exactly the same set of points in E3. A special parameterization h(s) of a curve is the one in which the 
parameter s measures the length of the curve. This case is called unit-speed parameterization, and presents 
special conditions in engineering and physics. However, not all the curves allow an analytic closed form with 
unit speed parameterization ([ONE.66]).  

Likewise, a parametric surface is a function f(u,v): E2 → E3, with f(u,v) = (x(u,v), y(u,v), z(u,v)). The same 
considerations expressed for parametric curves are valid, including the fact that unit -speed parameterizations 
for surfaces imply that a square unit in parameter space determines a square unit on the surface. Again, such 
parameterizations are rarely available in analytic closed form. It is common practice to define the parameters 
in such a way that the relevant part of the curve or surface corresponds to u∈ [0,1], v∈  [0,1].  

Z

X

Y

f(u i ,vi )

(0,0) (1,0)

(0,1) (1,1)

u

v

(ui ,vi)

Z

X

Y

f(ui  )

[0,1]

u

ui

 
Figure 47. Parametric mappings for curves and surfaces  

 

Natural questions arise about parametric curves and surfaces, such as: (i) which are their mathematical 
characteristics, (ii) how to deform, translate or rotate them, (iii) how to relate their mathematical properties to 
consequences in the domains of manufacturing and design.  

In order to present a coherent discussion, several concepts must be introduced, as follows: 
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Figure 48. Set convexity 
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Figure 49. Convex Hull of a 2D set S  
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Figure 50 . Containment of a parametric form 
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Figure 51. Invariance under inversion of sample order. 

Definition 1. Convex Set.  

A set C contained in a universe U is convex if 

CpqCqp ⊆∈∀ ,,  

Where pq  represents the segment with end elements p and q, defined by pq  = { λ.p + (1-λ).q | λ ∈ [0,1]}, 

with the addition and multiplication operators defined in the universe U. If U = E3, with real addition and 
multiplication, a segment has the usual meaning, of a connected subset of a straight line (Figure 48).  

Definition 2. Convex Hull. 

Let S = { p0, p1, ...pn }  be a set of points pi ∈  E3. The convex hull of S,  H(S) ∈ E3  is the minimal convex set 
such that S ⊆  H(S)  (Figure 49). 

Property 1. Containment for a parametric form. 

In industrial applications it is required that parametric curves f(u) (or surfaces f(u,v) ) fit to a control polygon 
(or polyhedron) S = { p0, p 1 , ...pn }  and to hold that f(u) ⊆ H(S). ( f(u,v) ⊆ H(S) ). This property establishes that 
the approximation to the control polygon cannot have erratical behavior (Figure 50). 

Property 2. Invariance of a parametric form under inversion of the originating set. 

Let a parametric curve f(u)  (or surface  f(u,v) ) be fit to a control polygon S = { p0,  p1, ...pn }, and a parametric 
curve g(w)  (or surface g(w,s)) be fit to a control polygon S = { pn, pn-1, ...p0  }. The sets g(w) ⊂ E3 and f(u) ⊂ E3 
satisfy f(u) ≡ g(w). This property (Figure 51) establishes that the parametric forms (used in industrial 
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applications) must be invariant under inversion of the sequence of their originating point set. This property is 
essential in applications in which the actual shape produced is independent of the direction of sampling of the 
point set.  

4.2.1 Parametric Curves  

The following definitions sustain previous considerations and properties: 

Definition 3. Parametric Curve as a Weighted Sum . 

Given a sequence of n points S = { p0,  p1, ...pn-1 } a parametric shape proposed by Bezier (BEZIER), 
De Casteljeau (DeCasteljeau) and others is: 

∑
−

=

⋅=
1

0
i )(B)(

n

i
iuu Pp   with  1,0 ≤≤ u  ∑

=

=
1-n

0i
i 1B  

It can be easily  seen that this formulation satisfies Property 1 (containment for a parametric form). The Bi(u) 
are called weights, blending functions or coefficients. In Bezier the amount of blending functions is dependent 
on the number of control points). 
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Figure 52. Set of Bezier weight coefficients  
(num. poins = 4). 
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Figure 53. Set of Uniform B-spline weight coefficients  
(num. points = 4). 
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Figure 54. Example of Bezier Curve  
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Figure 55. Example of Spline Curve 
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Property 3. Symmetry of the Weight Set. 

In order to satisfy Property 2 (invariance under inversion of point sequence), the Bi(u) coefficients of the 
equation  

∑
−

=

⋅=
1

0
i (u)B)(

n

i
iPup  

must be symmetrical about u = 0.5 (Figure 52 and Figure 53). Therefore 

)1()(...),1()(),1()( 12110 uBuBuBuBuBuB jnjnn −=−=−= −−−−  

Property 4. Adherence of curve to control polygon at endpoints . 

A special case of Property 1 (Containment for a parametric form), is the one in which the Bi(u) coefficients of 
the equation  

∑
−

=

⋅=
1

0
i (u)B)(

n

i
iPup  

hold that (condition 1): 

0)0(...,0)0(,1)0( 110 === −nBBB  

1)1(...,0)1(,0)1( 110 === −nBBB  

In this case the calculated point equals to the control point,  

10 )1(,)0( −==== nPupPup  

Which makes the curve to adhere to the initial and final points of the control polygon (Figure 54). If, in 
addition one has (condition 2) t he derivative evaluated in a specific value of the parameter: 

)P(Pp')P(Pp' nnu)(u 21f10100 kk −−== −=∧−=   for some scalars k0, kf,  

the  tangent of the curve adheres to the initial and final segments of the control polygon. There exist curve 
formulations that do not obey these two conditions, for example Spline curves (Figure 55), while Bezier ones 
do adjust to them.  

Definition 4. A Polynomial formulation for the blending functions. 

A common case of Property 1 (containment for a parametric form), is the one in which the Bi(u) blending 
functions of the equation  

∑
−

=

⋅=
1

0
i (u)B)(

n

i
iPup  

are polynomials.  

Figure 52 and Figure 53 show sets of Bi(u)  polynomial blending functions. Notice that (a) u ∈ [0,1],  (b) the 
evaluated weight or coefficient Bi(u) ∈ [0,1] , (c) the Bezier set satisfies Property 4 (adherence of curve to 
control polygon at endpoints) while the Spline set does not. Instead, Spline curves are strongly attracted by 
the intermediate control points (in this case P1 and P2) as the large relative size of the B1 and B2  coefficients 
suggest. (d) The Property 3 (symmetry of the weight set around u=0.5) is evident, since B0(u) = B3(1-u) and 
B1(u)= B2(1-u). The degree of each polynomial blending function in both the Bezier and Spline cases depends 
on the number of points to interpolate (degree = n = num_ points-1 in C programming language. n = 
num_points in MATLAB programming language).  
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4.2.1.1 Bezier Curve 

4.2.1.1.1 Scalar form of the Bezier coefficients. 

The Bezier curve approaching an n-point control polygon is given by: 

[0,1]u,)(
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0

∈⋅= ∑
−

=

n

i
ii P(u)Bup  

with Bi(u) (also known as Bernstein  polynomial) being the ith ( i=0..n) weight coefficient for the i- th control 
point: 
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Equation 42. Bernstein form of the Bezier coefficients  

Figure 57 shows a set of Bezier coefficients for the case k = 7 control points. Observe the symmetry property, 
as well as the fact that the Bi(u)  coefficients are independent of the location of the control points. Thus, any 
other Bezier curve with k=7 points will have the same Bi(u) coefficients. It is also evident (Figure 56) that the 
Bezier formulation forces the curve to adhere,  in position and tangency, to the extremes of the control 
polyhedron.  

4.2.1.1.2 Matrix form of the Bezier coefficients. 

From the example discussed above ( n = 3 , control points = 4) and Equation 42, the Bezier formulation for the 
curve is: 
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Which can be expressed in matrix form as:  
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Equation 43 . Matrix formulation of parametric curves. 

Where the terms Uk, Mk and Qk in Equation 43 are characteristic for k control points. They appear in 

Table  11.  
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Table 11 . Matrix formulation for Bezier Curves. 
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Figure 54 and Figure 55 show the results of using the two different types of interpolation coefficients (Bezier 
and Spline) in fitting a curve to the same 4-point control polygon.  

Observe the effect of Property 4 (adherence of curve to control polygon) of the Bezier curve, in contrast with 
the Spline one. Figure 56 shows that, given the adherence property for Bezier curves, achieving a C1  (tangent -
continuous) closed Bezier interpolation is an over- specified problem and therefore non-solvable with arbitrary 
p1 and pn-2  points. It must be handled by controlling p1  and pn- 2 to achieve the desired tangent. If in addition C2 
(curvature-continuous) interpolations are required, points p2 and pn-3 must be manipulated.  
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Figure 56. Closed Bezier Curve  

(case. k=7 control points (p0=p6). 
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Figure 57. Bezier coefficients for k=7 control points. 
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Remarks:  

i. Bezier formulation uses Bi(u)  polynomials whose degree grows with the number of control points  
(degree = n). Therefore, with large sets of control points, the orders of such polynomials become 
extremely large. 

ii. Modification of a control point in Bezier formulation implies the recalculation of the whole curve, since 
each point P(u) of the curve is affected by all control points.  

iii. As Figure 55 suggests, Spline curves were designed to be used in subsets (stages) of a larger control 
polygon. Their weakness in tracking the endpoints of the control polygon becomes strength in 
accommodating tangency and curvature conditions of the previous and next stage. This quality also 
facilitates the design of closed smooth shapes. Because of their design in stages, Spline ease the 
disadvantages (i) and (ii) of Bezier curves.  

4.2.1.2 Uniform B -Spline Curve  

As mentioned before, the properties of parametric curves are concentrated in their coefficient set Bi(u). The 
matrix form for Bezier curves has a counterpart for Spline ones. Table 12 shows the results of the derivations 
for Uk,  Mk,  and Qk , found in the literature. The equation for Spline Curves is identical to the Bezier case, 
namely Equation 43, except for the content of the Mk matrix.  

The interested read may refer to MOR.85 and FAR.90 and many other authors in search for the derivations 
leading to Table 12.  

Table 12. Matri x formulation for Uniform B-Spline Curves. 
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In order to use Spline curves, the overall control polygon S = {p0...p n} must be processed in stages. Every stage has the same number k  of 
points (usually is k = 2, 3, 4, 5 ).  

Table 13 presents the composition of the control polygon for each stage. The reader is invited to calculate the 
number of stages (f) as function of the n (number of points –1) and k (points per stage) values.  
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Table 13. Disposition of control points in stages  for Open Spline Curves. 

 p0 p1 p2 p3 p4      ... ... pn-3 pn-2 pn-1 

Open Spline, k = 4 

Stage 1 p0 p1 p2 p3            

Stage 2  p1 p2 p3 p4           

Stage 3   p2 p3 p4 p5           

...        ...  ...  ...       

...           pn-6  pn-5 pn-4 pn-3   

...            pn-5 pn-4 pn-3 pn-2  

Stage f            pn-4 pn-3 pn-2 pn-1 

Open Spline, k = 3 

Stage 1 p0 p1 p2             

Stage 2  p1 p2 p3            

Stage 3   p2 p3 p4           

...       ...           

...        ...  ...  ... ... pn-5 pn-4 pn-3   

...             pn-4 pn-3 pn-2  

Stage f             pn-3 pn-2 pn-1 

The stage i (i=1, 2, 3...) in a Spline curve has the following form: 


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with dimensions of Uk (1 × k), of Mk (k × k) and the local control polygon (k × 3).  
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4.2.1.2.1 Continuity analysis for Spline curves 

For the Spline curves, the overlapping control points in consecutive stages allows the fulfilling of their 
continuity requirements (see  

Table  13 ). This overlap is determined by the degree of the weight coefficients Bi(u) which is dictated by the 
number of points in the stage. For example, for stages with k = 4 points, the degree of the Bi(u) coefficients is 
3 and the overlap between stages is also 3 points. In this case, one obtains C2 (curvature), and obviously C0 
(simple) and C1 (tangent) continuities between consecutive stages. 

 

Continuity Points 
per stage 

k 

Degree of  
the Stage 

n C0 C1 C2 
Comment 

1 
0 

(isolated points)     
stage i(u)  ≡ Pi ∀u ∈ [0,1]  

Spline is the control points.  

2 
1 

( linear) ¨   
Spline is the control polygon.  

Tangency is not kept. 

3 
2 

(parabolic) ¨ ¨  Tangency is kept.  

4 
3 

(cubic)  ¨ ¨ ¨ Curvature is kept.  

4.2.1.2.2 Closed Spline curves  

In order to fit closed Spline curves to a control polygon S = {p0...pn} additional stages are appended by 
recycling the initial points p0,  p1, p2, etc. and stopping before the stage [p0...pk- 1] is repeated. Table 14 shows 
the composition of the stages for closed Spline curves. Again, the reader is invited to calculate t he number of 
stages (f). 

The stage i (i=1, 2, 3...n) in a Closed Spline curve has the following form: 
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Table 14 . Disposition of control points in stages for Closed Spline Curves 

 p0 p1 p2 p3 p4   ...  ... pn-3  pn-2 pn-1 p0  p1 p2 

Closed Spline, k = 4 

Stage 1 p0 p1 p2 p3            

Stage 2  p1 p2 p3 p4           

Stage 3   p2 p3 p4 p5           

...        ...  ...         

         pn-4  pn-3  pn-2 pn-1    

          pn-3  pn-2 pn-1 P0    

           pn-2 pn-1 p0  p1  

Stage f            pn-1 p0  p1 p2 

Closed Spline, k = 3 

Stage 1 p0 p1 p2             

Stage 2  p1 p2 p3            

Stage 3   p2 p3 p4           

...       ...  ...  ...         

          pn-3  pn-2 pn-1    

           pn-2 pn-1 p0    

Stage f            pn-1 p0  p1  
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4.2.2 Surfaces  

4.2.2.1 Control point sets  

The control polyhedron (polygon) or the set of control points plays a very important role in parametric surface 
generation (as in parametric curves), this is because this object is the physical support for the creation of 
curves and surfaces that are used to model real world objects. 

It can be obtained specific control polyhedrae (and control polygons) in many ways. 1) To define them with 
mathematical expressions such as parametric and geometric definitions, for instance a plane torus, a cone, a 
sphere, a Möbius band, etc.  
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Figure 58. Mathematically obtained control points of a toroidal 

spiral. 
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Figure 59. Curve fit on the control points of a toroidal spiral. 
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Figure 60. Mathematically obtained control points of a sphere. 

 
Figure 61. Surface fit on the control points of a sphere. 
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Figure 62. Mathematically obtained control points of a cone. 

 
Figure 63. Surface fit on the control points of a cone. 
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Figure 64. Mathematically obtained control points of a 

cylinder. 

 
Figure 65. Surface fit on the control points of a cylinder. 
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Another technique, 2), is employed when such a surface or curve is not easily expressed in mathematical 
terms (Figure 66), it consists of obtaining or sampling the control points directly from the surface of an 
existing object. There are also many developed techniques in this class of control point set creation 
(digitalization). To mention just a few most common we have (in descending order of accuracy): Laser 3D 
scan, Range Imaging and tactile point capture. With the aid of these techniques together with complex surface 
reconstruction algorithms, intricate shapes like the backbone in Figure 67 can be accurately reconstructed for 
many scient ific and engineering purposes. 

 
Figure 66. Digitized control points of a backbone 

 

Figure 67. Reconstructed Surface of a backbone 
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4.2.2.1.1 Example of control Polyhedron generation (The Möbius Band) 

When defining a control point set by mathematical means, it is advisable to design a parametric representation 
in which one or several geometric parameters can be controlled in a way to generate the required points in 
space. 

In the following example a parametric technique of point generation is illustrated for creating the surface of a 
Möbius Band. 
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Figure 68. Final set of control points of a Möbius Band  

 

 

Figure 69. Mesh of a Möbius Band 

 

It is important to exercise judgement of main parameters involved in a certain shape and recognize which are 
more suitable for describing the needed shape.  In this particular case we conceive the control point set of the 
Möbius Band as an “army” of points on a generative line in space which rotates about an axis in space while it 
also rotates about it’s own midpoint ( Figure 70). For a Möbius Band the number of rotations of the generative 
line about the midpoint is related with the  revolution this line does about the axis (γ = ½ θ). The sweep about 
the axis is 2PI, and the rotation of the line about its midpoint will then be PI.  The revolution of a generative 
line of length L about an axis (θ = 2PI) and about the midpoint (γ  = ½) are the main parameters that will be 
taken into account to make a characteristic Möbius Band.  
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Figure 70. Parameterization of the Möbius Band. 
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The parameterization consists of controlling a point generative line (L) that rotates about an axis and at the 
same time about its midpoint. As for the points in the line, the coordinates of the extreme points P0 and P1 are 
defined as a function of the parameters mentioned above. Then a percentage or proportion expression 
produces the midway points between these extremes, and hence, an adequate set of control points is obtained.  

The [x, y, z] coordinates for the extreme points 

( ) ( ) ( ) ( ) ( )[ ]  sen   ,sencos   ,coscos 2220 γθγθγ LLL RRP −⋅−⋅−=  

( ) ( ) ( ) ( ) ( )[ ]  sen   ,sencos   ,coscos 2221 γθγθγ LLL RRP ⋅+⋅+=  

are related in a proportion expression for producing the rest of the points 

01 )1()( PPP ααα −+=  

where α is the longitudinal parameter and P is any point in the set. 

An interesting variation of this example can be obtained by modifying the value of the angle (γ) that the line 
rotates about its midpoint. If, for example, this value is γ = 1θ then a shape like in Figure 71 would be 
obtained, and so on. The reader is invited to explore changing the values of the parameters for this figure in 
order to obtain other forms.  

NOTE: It is advisable to use an independent cycle or loop to control each main parameter involved in the 
generation of the shape.  

 
Figure 71. Band with parameter γ = 0.25θ 

 
 Figure 72. Band with parameter γ = 1θ 

 
Figure 73 . Band with parameter γ  = 4θ 

See Appendix 7.2 for the MATLAB code developed for this example as well as for some of the control sets 
generated for Figure 58 to  

Figure 64.  
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4.2.2.2 Parametric Surfaces 

Parametric surfaces are generally defined by a vector function p( ) :[0,1]×[0,1] →E3 : 

p(u,w) = ( x(u,w), y(u,w), z(u,w) ) 

The underlying structure is based on the defi nition of parametric curves. In other words, there exists no 
special formulation for surfaces. Instead, the formulation for curves is replicated into two dimensions. The 
general form for Bezier and Spline surfaces is therefore:  

p(u,w) = ( x1(u) .x2(w),  y1(u).y2(w),  z1(u).z2(w) )  

w

u

p(u,w) = ( x(u,w), y(u,w), z(u,w) )

p0,0

p0,n
p0,3

pm,n

pm,0

p1,n

pm,n-1
m,1

p1,0

p

 

Figure 74. Disposition of the Control Polyhedron  

 

Figure 74 shows the disposition of a control polyhedron, formed by (m+1)×(n+1) control points, to which a 
parametric surface is to be fit. A surface p(u,w)  is a sequence of curves, each one corresponding to a value of 
u with internal parameter w. The formulation is exactly as in the curve case, the only difference being  that the 
control points are now function of u, Qn(u), as follows: 

)u(..)w( nnnu QMWp =  

The reasoning can be inverted to interpret the surface as a sequence of curves Pw(u) , where each curve adjusts 
to control points determined by w, Qm(w), and has internal parameter u, as follows: 

)w(..)u( mmmw QMUp =  

This symmetry leads to the formulation in Equation 44: 

T
n

T
nnmmmu WMQMUP ....)w,( ,=  

Equation 44. Formulation of surface patch with (m+1)x(n+1) control points. 

4.2.2.3 Bezier Surface 

As in the case of Bezier curves, the whole set of control points is used in one Bezier patch. As a consequence, 
the degree of the interpolating polynomials Bu,i(u)  and Bw,j(w)  is controlled by the number of rows and 
columns of the control polyhedron. Therefore, Bezier surfaces inherit characteristics of the Bezier curves: (a) 
adherence in position and tangency to the boundaries of the control polyhedron, (b) confinement within the 
convex hull H(S) (H(S)  is a polyhedron in E3 ) of the control polyhedron S, (c) weakness in following events 
in the center of the stage (Figure 75 and Figure 76), given the low weight of the central coefficients  
(Figure 57).  
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As illustration, for a control polyhedron of size 3×4 points, the equation Q(u,w) = UMuPMwTWT , applied 
using the matrices M specific for Bezier case (  

Table 11), becomes (the procedure for the “x” coordinate is shown, the same is done for the “y” and “z” 
components): 
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Equation 45. Example of Bezier Patch formulation for a 3×4 control polyhedron. 

The reader is invited to verify the sizes of the matrices in Equation 45 to realize that  it actually represents 
three matrix equations, each one with scalar result: Qx(u,w) ,  Qy(u,w)  and Qz(u,w). The individual components 
are calculated as Qx(u,w) = U.Mu.Px.Mw

T.WT , Qy(u,w) = U.Mu.Py.Mw
T.WT , Qz(u,w) = U.Mu.Pz .M w

T.WT . 
Each matrix Px, Py, Pz  must be the component x, y and z respectively of the matrix P in Equation 45, and 
therefore it must have the same layout (rows, columns and sorting).  

 
Figure 75. Control Polyhedron with 21×21 points. 

 
Figure 76. Bezier surface patch for a 21×21 control polyhedron. 

4.2.2.4 Spline Surface 

In analogous way to curve treatment, in which each stage of size k  of a control polygon is extracted to fit a 
local Spline curve, a local Spline surface is fit to a subset of k × l points of the control polyhedron (see  
Figure 77). The problem is stated as to fit a parametric uniform B-Spline patch on a rectangular polyhedron of 
(m+1) × (n+1) points, using stages of size k out of t he (m+1) points and stages of size l  out of the (n+1)  ones. 
The governing equation is:  

T
l

T
lts,kkts,  . . . . w)(u, WMPMUQ =  

Equation 46. Matrix formulation for stage of a Spline surface patch. 

The notation used in Equation 46 is:  
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 (m+1) Number of point rows of the control polyhedron. 
(n+1)  Number of point columns of the control polyhedron. 

k Points/stage and continuity control in the row direction of the control polyhedron.  
l Points/stage and continuity control  in the column direction of the control polyhedron. 
s Index of current stage in the row direction. s ∈ [1: m + 2 - k]  
t Index of current stage in the column direction. t ∈ [1: n + 2 – l]  
u Parameter of stages in the row direction. u ∈ [0,1] 
w Parameter of stages in the column direction. w ∈ [0,1]  
Ps,t Subset of of the control polyhedron, of size (k × l), located at coordinates (t,s).  
Uk  Uk = [uk-1   uk -2  ..... u  1] 
Wl Wl = [wl-1  wl-2  ..... w  1]  

Figure 77 also suggests that the way to achieve a closed patch in both directions (m  and n) is to recycle or 
reuse the control points in an analog manner to the one applied in closing Spline curves. Observe that patches, 
in general, allow independent formulations in the m  and n directions. This obviously affects the order of the 
curves in each direction, but, more interestingly, applies to the fact that the curves in the m  and n directions 
could have completely different characteristics (Spline, Bezier, NURBs, etc). The reader is in vited to visit 
exercise 5.3.3 and 5.3.6 to analyze this aspect.  

with

u,w = patch parameters
s,t = stage starting indexes
k,l = sizes of the current stagew = 1

u = 1

u = 0

w = 0

m+1
point
rows

s

k

t l

n+1 point columns

 
Figure 77 . Variable map for Spline patch, according to control polyhedron. 

 
Figure 78 and Figure 79 present the Spline version of the patch fit to the 21×21 control polyhedron in  
Figure 75. A portion of the total set of stages is presented in Figure 78, while the total patch is shown in 
Figure 79. Observe that the Spline formulation follows more faithfully the central spike.  
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Figure 78. A quarter of the Spline stages for  

21×21 control polyhedron 

 
Figure 79. Spli ne patch for 21×21 control polyhedron  

(stages with kxl=3x4 control points). 

Figure 80 shows the control polyhedron for a torus, while Figure 81 displays the Spline patch, fitted with 
stages of (k x l = 3 x 4) control points. Independent from the control polyhedron, either direction can be 
declared as “open” or “closed”, thus producing the effect shown in Figure 81.  

 
Figure 80. Control polyhedron for torus. 

 
Figure 81. Spline patch for torus control points.  
Opened in u parameter, closed in w parameter. 
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4.3 EXERCICES - CURVES AND SURFACES - 

 

4.3.1 Control point Generation of a Toroidal Spiral. 

CONTROL POINT GENERATION (TOROIDAL SPIRAL) 

OBJECTIVE 

To exercise judgement of main parameters involved for mathematically describing a certain shape. 
Computationally.  

PROCEDURE  

You will generate the control point set of the spiral shown in Figure 82. 
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Figure 82. Control point set of a sprial in a torus  

 

1. Write a function [pts] = toroidal_spiral(). This function should define or have as input the following 
arguments: R the radius of the underlying torus, r the radius of the spiral loops, a factor k that will control 
the number of loops the spiral will perform when swept around the torus axis.  

2. Recognize the main parameters involved in the generation of this shape.  

3. Define appropriate increasing steps for the parameters. For instance, δα as an increment step for an 
angular parameter.  

4. Develop and Implement underlying parametric equations that control the generation of the coordinates of 
each control point.  

5. The function should return an array of the coordinates of the control points as pts.  
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4.3.2 Bezier Inte rpolation Function. 

CURVE INTERPOLATION 

OBJECTIVE 

To generate an introductory environment for parametric curves.  

PROCEDURE 

Given 4 points in E3,  P0,  P1, P2,  P3,  calculate their coefficients in a parametric curve, as a function of a u 
parameter.  

A curve is a sequence of points, calculated with the formula:  

( ) ( ) ( ) ( ) 3322100 )( PubPubPubPubuf +++=  

Where: b0(u), b1(u), b2(u), b3(u) are scalar functions (the set of weights for the points, evaluated for each value 
of parameter u). P0, P1, P2, P3, are points of dimension (3x1) 

The sequence is produced as the parameter u takes values 0, 0.1, 0.2, 0.3, 0.4, ...1.0 

The functions b0(u), b1(u), b2(u), b3(u) are: 

( ) ( )3
0 1 uub −=  

( ) ( )2
1 13 uuub −=  

( ) ( )uuub −= 13 2
2  

( ) 3
3 uub =  

ACTIVITIES 

1. Write the 4 functions, b0(u), b1(u), b2 (u), b3(u) which calculate bi(u) for a given value of u. 

2. Calculate the history of the coefficients b0=b0(u), b1=b1(u), b2=b2(u), b3=b3(u) for u varying from 0 to 1.0 
with increments of du=0.1. Store the history of u in U (upper case) and the bi(u)  histories in Bi  (upper 
case).  

3. Plot the functions b0=b0 (u), b1=b1 (u), b2=b2  (u), b3=b3 (u) against u (in the same window). Should you 
use a 2D or 3D plot? How many and which values does the independent variable u take? 

4. Complete the code written in (2) as follows: for each element in the sequence of parameter u,  u = [0.1, 
0.2, 0.3, 0.4...1.0]  calculate f(u) (see formula above) and extract its components fx, fy, fz (f(u) = [fx, fy, 
fz]T). You should progressively fill up the row vectors X, Y, Z with fx(u), fy(u), fz(u) respectively. Use the 
code written in (2). 

( ) ( ) ( ) ( ) ( )[ ]0.1,....3.0,2.0,1.0,0.0 fxfxfxfxfxX =  

( ) ( ) ( ) ( ) ( )[ ]0.1,....3.0,2.0,1.0,0.0 fyfyfyfyfyY =  

( ) ( ) ( ) ( ) ( )[ ]0.1,....3.0,2.0,1.0,0.0 fzfzfzfzfzZ =  

 

5. From your work from (1) to (4), write a function [X,Y,Z] = my_bzr(P0,P1 ,P2,P3) which interpolates the 4 
points using the formula given above ( f(u) ). The arrays X, Y, Z are described in the previous numeral. 
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6. Write a main routine which: 

i . Initialize the required variables ( du, number of interpolated points, etc.).  

ii. Initialize the points P0, P1, P2, P3 as you wish. 

iii. Call the function my_bzr ( ) to calculate the interpolation X, Y, Z. 

iv. Open a window and draw the control polygon P0, P1, P2, P3 in E3.  

v. Draw the interpolation of the points P0, P1, P2, P3, contained in X, Y, Z. Do not change window nor 
allow the previous one to be erased. 

QUESTIONS: 

1. Which are the dimensions of bi(u)? _____________________________________ 

2. Which are the dimensions of X, Y, or Z as function of du?________________________ 

3. Which are the dimensions of U as function of du ?____________________________ 

4. Which MATLAB function is used to draw a scalar function of one variable (  i.e.  y = h(x)  )? 

You have written the MATLAB code to draw a Bezier curve in E3.  
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4.3.3 Self-Defined Interpolation Function. 

CONCEPTUAL EXERCISE. PARAMETRIC CURVES. 

OBJECTIVE 

To apply the concepts that govern parametric curves by defining an interpolation defined by the student.  

PROCEDURE 

1. Develop a set of interpolation functions  B0,  B1,  B2 ,  B3 , different from Bezier or Spline ones, for points 
P0 , P1, P2, P3, with the following conditions:  

1.1. 0 ≤ Bi(u)≤ 1 ( i=0,..,3)  for each u ∈ [0,1] 

1.2. ( )∑
=

=

=
3

0

1
i

i
i uB   for each u ∈ [0,1].  

1.3. 3..0),1()( 3 =−= − iuBuB ii  (B0 vs. B3, B1 vs. B2  should be symmetrical about 

u=0.5). 

2. Use the coefficients developed, Bi ( i = 0..3), to interpolate the group of points P0 , P1 , P2 ,  P3  ∈ E3 
defined arbitrarily.  

3. Plot:  

3.1. Bi(u) for i =0..3 and u ∈ [0,1]. (the history of coefficients Bi(u)  as function of u). 

3.2. ( ) ( )∑
=

=

=⋅
3

0

i

i
ii ufPuB  for u ∈ [0,1]. (your own interpolation).  
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4.3.4 General Curve Interpolation Function. 

EXERCICES CURVES SPLINE / BEZIER 

OBJECTIVE 

To develop a generic code for the interpolation of Spline or Bezier curves. 

PROCEDURE 

Given: 

1. The type of curve: Spline (‘s’) vs. Bezier (‘b’).  

2. The control polygon as an array of n points (size 3×n).  

3. The increment du: 0.1, 0.05 or 0.2.  

4. The number of points per stage  k (only for Spline curves). Possible values: 2, 3, 4.  

Goal 

To calculate the curve Spline or Bezier according to the parameters given by the user. 

Observations:  

1. Spline curves have several stages.  

2. For Bezier curves, you may choose between (a) to use the whole set of control points in one 
stage, (b) to define several stages, with overlaps of exactly one control point between 
consecutive stages.  

3. Draw the control polygon in the same window as the interpolated curve. 

4. Your program  must work for different combinations of the input variables (type of curve, 
control polygon, increment du, number of points per stage).  
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4.3.5 Control Point Generation of a Toroidal Surface. 

CONTROL POINT GENERATION (TORUS) 

OBJECTIVE 

To exercise judgement of main parameters involved for mathematically describing a certain shape. 
Computationally, a cycle or loop should always be used to control each main parameter involved in the 
generation of the shape.  

PROCEDURE  

You will calculate a set of rectangular arrays of the coordinates of the control points (x,y,z)  in E3, stored in 
variables Px, Py, Pz  that describe the shape of a torus. The revolution axis will be the world coordinate Z-
axis.  

1. Write a function [Px, Py, Pz] = torus_z(). This function should define or have as input the following 
arguments: R the big radius and r the small radius of the underlying torus, and other parameters you may 
consider necessary for the following tasks.  

2. Define appropriate increasing steps for the parameters. For instance, δα as an increment step for an 
angular parameter.  

3. Develop and Implement underlying parametric equations that control the generation of the coordinates of 
each control point.  

This function must be able to control the amount of revolution in either senses or angular parameters.  This is 
to say, an open torus may be generated with a slight modification in the parameters of this function, as shown 
in Figure 85 and in Figure 86.  
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Figure 83. Mathematically obtained control points of a torus 

 
Figure 84. Surface of a torus 
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Figure 85. Control point set of a torus with an axial sweep of 1.5PI  

 
 

 
Figure 86 . Surface of a torus with sweep of 1.5PI in both angular 

parameters  

 

Con formato:  Sin viñetas ni
numeración

Eliminado:  

Eliminado:  ¶
<#>Figure 85. Control point set of 
a torus with an axial sweep of 
1.5PI¶
¶
 

Eliminado: ¶
Figure 86.
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4.3.6 Control Point Generation of a Conical Spiral Band.  

CONTROL POINT GENERATION (CONICAL SPIRAL BAND)  

OBJECTIVE 

To exercise judgement of main parameters involved for mathematically describing a certain shape. 
Computationally, a cycle or loop should always be used to control each main parameter involved in the 
generation of the shape.  

PROCEDURE  

You will calculate a set of rectangular arrays of control points (x,y,z) in E3 , stored in variables Px, Py, Pz that 
describe the shape of a band spread over a cone Figure 87. The revolution axis will be the world coordinate Z-
axis.  

 
Figure 87. Mathematically obtained control points of a band on 

a cone  

 

 
Figure 88. Mesh of a band on a cone  

1. Write a function [Px,Py,Pz] = cone_band_z( H,alfa,L,spins). This function should define or have as input 
the following arguments: H the height of the underlying cone, alfa  the aphex angle, L the size of the 
width of the band (length of generative line)  and spins as the number of spins the band must accomplish 
from the base of the cone to it’s aphex. 

2. Recognize the main parameters involved in the generation of this shape.  

3. Define appropriate increasing steps for the parameters. For instance, δα as an increment step for an 
angular parameter.  

4. Develop and Implement underlying parametric equations that control the generation of the coordinates of 
each control point.  
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5. An important expression that can be used for this problem is a length proportion expression as used to 
create the Möbius Band. See the solved example for the generation of the control points of the cone 
(Appendix 7.2). 

 

4.3.7 Bezier Surface I.  

BEZIER SURFACE I 

OBJECTIVE 

To use Bezier surfaces to prepare the student for future work with Spline surfaces.  

PROCEDURE  

You will calculate a Bezier surface for a rectangular array of control points (x,y,z)  in E3, stored in variables 
cpt_x, cpt_y,  cpt_z described below. The Bezier surface that you will produce must be stored in 3 rectangular 
matrices BZR_X, BXR_Y, BZR_Z. Therefore, your goal is to correctly fill BZR_X, BXR_Y, BZR_Z and to 
plot the resulting surface.  See Figure 89.  

Each point of the Bezier surface is calculated as a function of two parameters: u ,  v (u = 0, du, 2du, 3du,....1.0; 
v = 0, dv, 2dv, 3dv....1.0). Note that du y dv are indicators of the mesh refinement. Typical values for du or dv 
are 0.05, 0.1, 0.2. The algorithm should prompt the user or explicitly set values for du and dv. 

1. Write a function contrl_pt( ), which produce 3 matrices containing the control points for the surface. 



















=

3333
2222

1111
0000

_ xcpt  



















=

3210
3210

3210
3210

_ ycpt  



















=

1001
05.15.10

05.15.10
1001

_ zcpt  

2. Calculate, as function of du, the number of values of u that must be considered (N_cells_u). 

N_cells_u =_______________________________________ 

3. Calculate, as function of dv, the number of values of v that must be considered (N_cells_v). 

N_cells_v =_______________________________________ 
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N_cells_u 
v=1 

BZR_X(i,j) 
dv 

v = 0 

u = 0 u=1 BZR_Y 

BZR_Z 

du 

N_cells_v 

[BZR_X(u,v), BZR_Y(u,v), BZR_Z(u,v)] = BZR( u , v , cpt_x ,cpt_y ,cpt_z) 

 
Figure 89. Three matrices which store the calculated surface. 

 

4. Write the instructions (in MATLAB code) which allocate the exact amount of memory for matrices 
BZR_X, BXR_Y, BZR_Z and initialize it with zeros.  

5. Specify the range of values that  i and j should take the variable i  is an index for elements in the u 
direction and the variable j is an index for elements in the v direction. 

6. Write the instructions (in MATLAB code) which calculate the surface points (BZR_X(u,v),BZR_Y(u,v), 
BZR_Z(u,v)) for a given combination of ( u, v) and a control polyhedral  cpt_x, cpt_y, cpt_z. 

7. Write the instructions (in MATLAB code) which draw the mesh of the control points cpt_x, cpt_y, cpt_z.  

8. Write the instructions (in MATLAB code) which draw the Bezier surface BZR_X, BXR_Y, BZR_Z. 

9. Write the instructions (in MATLAB code) in a script main.m  to (a) fill the necessary data structures, (b) 
call the function to calculate the Bezier patch, and (c) plot both, the control polyhedral and its Bezier 
surface. 
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4.3.8 Bezier Surface II.  

BEZIER SURFACE II 

OBJECTIVE 

To prepare the concept of local patch within a larger control polyhedron. To calculate a Bezier patch, for a 
local control polyhedron of size l  x k, extracted from position (b,a) of a larger control polyhedron, generated 
with an analytic form. The local Bezier patch will have maximal size 4x4.  

PROCEDURE 

1. Create the control polyhedron:  

Px , Py are square matrices of integer contents [0,10]x[0,10] (meshgrid ). 

Pz is a matrix generated with the following formula: 













 ⋅−
⋅












 ⋅−
=

5
2)5cos(

5
2)5cos( ππ yx

Pz  

 Those matrices are to be created within a function [Px, Py, Pz]=contrl_p( ). 

2. Prompt the user for, or initialize in the code, the following variables: 

du : value of increment for parameter u. 
dv : value of increment for parameter v.  
k : number of control points in direction u. 
l : number of control points in direction v.  
a : column origin of the local control polyhedron within the global control polyhedron. 
b : row origin of the local control polyhedron within the global control polyhedron.  

3. Create a function M=calc_M( k ), which returns the Bezier coefficient matrix for k control points. k = 2, 3 
or 4.  

4. Extract the local control polyhedron from the global one, starting in column a, row b, with size k x l 
respectively, by using the following instructions 

pt_x = Px(b:b+l-1 , a:a+k-1)  
pt_y = Py(b:b+l-1 , a:a+k-1)  
pt_z = Pz(b:b+l-1 , a:a+k-1)  

5. Create a function  U = calc_uv(k, u), such that U = [uk-1 uk-2 .... u 1], for k ∈ N , u ∈ [1,0]. 

6. Create a function [bezX, bezY, bezZ]=Bezier (U,V, Mu, Mv, pt_x, pt_y, pt_z) , to calculate a point of the 
local Bezier patch.  U = [uk-1 uk-2 .... u 1] and V = [v l- 1 vl-2 .... v 1]. Mu is the matrix of Bezier coefficients of 
size k  x k. Similarly, Mv is a matrix l x l. pt_x, pt_y, pt_z is the local control polyhedron, extracted at 
position (b,a)  from the global polyhedron. bezX, bezY, bezZ are the coordinates of the calculated Bezier 
point.  
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7. To create the control loops (for) required to calculate and store all points [bezX, bezY, bezZ]  from the 
surface. Each Bezier point is calculated for a combination of parameters (u , v). The sizes of the variables 
bezX,bezY, bezZ, required to store the local Bezier patch are dictated by  du and dv.  

8. To create a function which plots the calculated local Bezier surface (bezX, bezY, bezZ). Title the resulting 
figure and name its axes. In another window, plot the global control polyhedral. 
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4.3.9 Generic Surface Interpolation Function. 

HYBRID SPLINE / BEZIER SURFACES  

OBJECTIVE 

To develop a generic program, able to generate Spline, Bezier or Spline – Bezier surfaces (different 
interpolations in rows and columns). 

Given: 

• surface type: Spline, Bezier, Spline-Bezier (‘s’, ‘b’, ‘sb’, ‘bs’). ‘sb’ means interpolation Spline in rows 
and Bezier in the columns of the control polyhedral (similarly with ‘bs’).  

• X,  Y, Z: control polyhedral . Grid in X , Y . Z randomly generated. 

• du : increment in value of parameter u (du =0.1, 0.05, 0.2).  
• dv : increment in value of parameter v (dv = 0.1, 0.05, 0.2). 
• k : number of control points in the u direction (columns) (k=2,3,4) to be taken per stage. 
• l  : number of control points in the v direction (rows) (l=2,3,4) to be taken per stage. 

Observations:  

1. Two windows must be used. The first one displays control polyhedron. The second shows the 
interpolated surface. 

2. The program must work correctly with all possible combinations of the input data.  
 



UNDERLYING TOPICS IN CAD / CAM / CG Dr. Oscar E. Ruiz S. 
CAD/CAM/CG Laboratory - EAFIT University - Medellin, Colombia  

Copyright A.S.M.E. (American Society of Mechanical En gineers) 

This material is property  of the American society of mechanical engineers (ASME). All copy or  reproduction is forbidden. Personal 
Copy of  Prof. C. U. Xoán Leiceaga Baltar . 

102

4.3.10 Bezier and Spline Surface Interpolation.  

BEZIER AND SPLINE SURFACES  

OBJECTIVE 

To fit a parametric Spline surface on a generated control polyhedron. (CONICAL SPIRAL BAND) 

PROCEDURE  

You will develop a set of functions in order to define essential parameters and variables needed to create the 
Bezier and Spline surfaces of a conical band according to the given specifications.  

 
Figure 90. Bezier surface of a conical band 

 
Figure 91. Spline surface of  a conical band 

NOTE: Unlike the Bezier surface interpolation, the Spline does not cover the whole range of points in width 
and length of the band. Notice that the Spline surface is thinner than the Bezier surface as well as shorter. 

1. Write a MATLAB function [Px,  Py, Pz] = gen_conical_band( H, R , L )  which generates the control 
points of a conical band in MESH format, given the height H, a radius R, and a width for the band L.  The 
variables Px, Py, Pz obtained in 4.3.6 can be used here. 

2. Develop a set of generic surface creation functions, both Bezier and Spline. The advantage of these 
functions is that they are useful for quickly building practically any surface given the control polyhedron 
in MESH format. Examine the scheme of Figure 77 in order to use the notation specified there in your 
code. 

[Bx,By,Bz] = surface_bezier(Px,Py,Pz,K,L,du,dv) [PXs,PYs,PZs] = surface_spline(Px,Py,Pz,K,L,du,dv) 

U = u_bezier(k,du)  U = u_spline(k,du)  

M = m_bezier(k)  M = m_spline(k) 

3. Write a script MAIN.m in which the polyhedron generation routine is called and the surface functions are 
called and drawn in separate figure windows. 
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5. GEOMETRIC MODELING 

The geometric modeling aided by computer implies the usage of mathematical representations and data to 
approximate virtual models to real objects, according to certain characteristics of the latter. The formalisms to 
represent objects are denominated representation schemes (or simply schemes) . An instance of data and 
relations affixed to a scheme (obviously with the purpose of representing a real object) are denominated a 
(computational) model. Typical schemes are Constructive Solid Geometry (CSG) and Boundary 
Representation (B-Rep).  

Some relevant issues to these representation schemes are the following ones: 

a) Given a real object R and a representation scheme f (for example B-rep, CSG or other) it is asked if R can 
be represented by more than a computational model f1, f2, ...  following this scheme. The answer is usually 
positive. For example, an object R can have different CSG images that represent it.  

b) Given two representation schemes, f( ) and g( ), and the computational models of an object R in such 
schemes, f1 and g1, it is asked if f1 can be translated to g1 and vice versa. The answer is usually negative. 
For example once a model has been translated from scheme CSG to B-Rep, the inverse procedure is not 
possible. 

c) Given a computational model f1 in a given representation scheme f( ), it is asked if this model represents 
one and only one object of the real world. The answer is usually positive for representations which allow 
the manufacturing of the object, while in those which imply only the graphic display the answer can be 
negative. For example in the “wireframe” scheme a single model may correspond to several real objects 
which are completely different. Of course, in engineering applications it is expected that the model f1 does 
not imply a non existent object (Escher type).  

This chapter examines briefly some representation schemes and applies notions such as Geometric 
Transformations, Curves and Surfaces and Topology to define consistent and non ambiguous representations.  

In Computer Aided Geometric Design (CAGD) the term geometry refers to the position and shape of an entity 
in space, while the term topology refers to the relations of vicinity, collective relations, number of holes, etc, 
which are in such entity. Therefore, points, lines, planes, curves, surfaces, coordinate systems are elements 
with geometric information, while segments, faces, facets, loops, shells, bodies etc. are topologic objects. 
Basically topology is a branch of mathematics in charge of studying the continuity and connectivity as well as 
preserving them when the figures are deformed.  

In topology, properties like areas, lengths, volumes or angles are not considered. Topology is not interested in 
the metric properties of the geometric entities. Instead, it interested in the properties that remain unchanged 
among transformations that scale, twist or compress the figure without breaking, perforating or creating self -
intersections.  

Two figures can be geometrically different and topologically equivalent. It is said that two geometric entities 
are topologically equivalent when one of them can be transformed into the other one by means of a 
continuous mapping, one-to-one and onto (Table 15). 
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Table 15. Example of topologic equivalence and non equivalence 

OBJECT 1 OBJECT 2 RELATION 

  

Topologically Equivalent 

 
 

Topologically non-equivalent 

The following schemes will be examined in this chapter: a) Decompositions, b) Constructive Solid Geometry 
and c) Boundary Representation. Although many other variations exist, it is considered that those mentioned 
cover a conceptual range enough to understand any other. 

5.1 Constructive Solid Geometry (CSG) 

∆y

∆z

∆ x

BOX

CYLINDER

R

∆z

∆y

WEDGE

∆x
∆z

INTERIOR ROUND

∆z
R

∆x

∆y

R

SPHERE CYLINDRIC SEGMENT

R

∆x

R

CONE

∆z

TORUS

R2

R1

 
Figure 92. Primitive Entities  

 

The Constructive Solid Geometry uses boolean operations to build a model of an object with a complex 
shape. The information obtained from this method which describes the model is stored in a structure called 
tree, as in Figure 93 in which the leaf Nodes (those with no descendants) represent predefined lumps of the 
space E3, called primitives (Figure 92).  Some basic primitives are Box( ∆x, ∆y, ∆z),  Wedge(∆x, ∆y, ∆z), 
Sphere( R ), Cylinder( ∆z, R ), Cone( ∆z, R0, R f ),   Torus ( R1, R2) , etc. 

Each node that is not a leaf represents an operation that is executed on its descendants forming a new body. 
This result is a compact subset of E3 which generally is no longer expressible as a primitive. The so-called 
boolean operations (Union, substraction, Intersection) (Figure 94) are binary since they require two 
arguments, while the geometric transformations are unitary operations since they operate on a single 
argument. 
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∪

T1 T2 T3

B 1 = Box(dx1,dy1,dz1) B2 = Box(dx2,dy2,dz2) C1 = Cylinder(R,h)

T1.B1 T2.B2 T3.C 1

T1.B1 ∪ T2.B2

Solid = (T1.B1 ∪ T2.B2) - T 3.C1

Ti = Applied geometric transformation  
 

Figure 93. Example of CSG tree 

 

B

A

C

C

C

C = B – A

C = B ∪ A

C = B ∩ A

 
Figure 94. Boolean Operations 
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5.2 Boundary Representation (B -Rep) 

A “surface” (Figure 95) is mathematically defined as a 2-manifold M  embedded in E3 . Informally, this means 
that every ball B(p,r) of radius r, centered in p (p being a point of set M) intersects M in a set D which is 
isomorphic with a planar disc.  

pD

B(p,r)

M

 
Figure 95. Definition of 2 Manifold in E3 

p

half disk

B(p,r)

M
border = ∂M

 
Figure 96. Definition of 2 Manifold with boundary, in E3 

When M is not completely closed, there are points (called boundary or border points) at the “edge” of M for 
which the disc D mentioned above is transformed into a semi-disc. In such case it is said that M is a 2-
manifold with border, embedded in E3.  

The boundary representation (B-rep) uses the convention that a body is uniquely expressed by its boundary 
M, which is a 2-manifold in E3  (Figure 97). For that, it is necessary to specify what is the “interior” of M, 
with the help of basic concepts of vector calculus. Notice that if M has borders, it is impossible to define 
interior vs. exterior. The 2-manifolds with boundary are essential to define non closed “shell s”, of vital 
importance in applications of machining CNC, stereolitography, visualization, etc. Additionally, Finite 
Element Analysis software (FEA) usually requires “shell” data rather than a solid object (defined further on).  

In some applications (for example the Marching Cubes algorithm) the decision about if a point in E3 is on, 
inside or outside M, is executed if there is a scalar function f(x,y,z). If f(x,y,z) = 0 the point is on M, if  
f(x,y,z) > 0 the point is inside M and if f(x,y,z) < 0 the point  is outside M. Such a function f( ) is not always 
available for the designer, but the B-rep or boundary of the solid plays such a role.  

 
Figure 97. Boundary Representation 
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The B-rep schemes require a strict hierarchy of geometric and topologic entities. Although every geometric 
modeler (ACIS, ParaSolids, IDEAS, CATIA, etc.) uses different names, a typical hierarchy is shown in  
Table 16.  

Table 1 6. Relations and hierarchy of topologic and geometric elements in B- rep 

TOPOLOGIES  GEOMETRIES 

BODY 
Set of possibly disconnected solid regions 

or LUMPs  

LUMP 
A solid connected region, bounded by a 

SHELL  

SHELL 
The boundary of a LUMP region.  

A 2-manifold in general without border.   

FACE 

A connected subset of points belonging to 
one SURFACE. The subset is bounded by 
closed contours ( loop) formed by EDGES 

(edge) contained in the SURFACE. 

SURFACE 

Analytic surface, in parametric 
form  

[X(u,v),Y(u,v) ,Z(u,v)]  
or implicit form 

f(x,y,z)=c. 

LOOP 
Closed non-autointersecting path, formed 

by EDGES and fully contained in a 
SURFACE carrier. 

  

EDGE 
A connected subset of points belonging to 
a CURVE. Two VERTEX, contained in 

the CURVE bound the subset. 
CURVE 

Analytic curve, in parametric 
form  

[X(u),Y(u) ,Z(u)]  
or implicit form 

f(x,y,z)=c. 

VERTEX 
A connected subset of points belonging to 

a POINT. Obviously there is only one 
POINT in such  subset. 

POINT (x,y,z) in E3 

Notes:  

1. A BODY is composed by several LUMPs or disconnected solid portions. 

2. A LUMP is a compact, connected, bounded set of points p in E3. A LUMP is bounded by SHELLs. If the 
LUMP has inner cavities it is bounded by more than one SHELL. 

3. A SHELL is a connected portion of a LUMP’s boundary. It is formed by points p of the LUMP such that a 
ball of radius r>0 centered in p has points inside and outside the LUMP.  

4. A SHELL is a connected subset of a LUMP boundary. A SHELL is composed by several FACEs. 

5. A FACE is a connected portion of a SHELL. A FACE is bounded by LOOPs. If the FACE has holes, it is 
bounded by several LOOPs. Otherwise, it is bounded by one LOOP. 

6. A LOOP is composed by a set of EDGEs.  

7. An EDGE is bounded by 2 VERTEX.  
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8. Figure 95An EDGE limits exactly two FACEs. Additionally, an EDGE e = (  v0  ,vf ) in FACE f  is traveled 
as e* = ( vf  ,v0 ) in FACE f* (the neighbor to f by e). The EDGE e* is denominated (in some texts) as the 
partner of e, and vice versa. If e is part of the border of M (that is to say M is a manifold with border 
Figure 96), it appears only in one FACE.  

9. The EDGE s of the most external LOOP of a FACE are traversed in counterclockwise direction (CCW), in 
accordance with the external normal of the FACE. The edges of internal LOOPs, corresponding to holes 
of the FACE are traversed in the clockwise direction (CW).  

Explanatory notes about Topology 

In the following definitions and observations the universal set is U (U ⊆  E3) . 

1. BALL ( B(r,p)   ).is a sphere centered in p of radius r to the set  

B(r,p) = { q ∈ U | d(p,q) ≤ r } 

 All the points belonging to the space U  that are inside a sphere of radius r centered in p. 

2. Boundary (∂A ) of a set A in U.  
∂A = { p ∈ U | ∀ r > 0 (B(p,r) ∩ A ≠ Φ ) ∧ (B(p,r) ∩  A ≠ B(p,r) )} 

 Those points on which every Ball centered falls partially outside and partially inside A.   

3. Closed set A, in U. 

 A ⊂ U is closed  if ∂A ⊆  A. If ∂A ⊆ A’  (the complement of A) then A is open . Some sets are not strictly 
open (or closed) since they contain only part  of their boundary.  

4. Bounded set  in U 

 A ⊂ U is bounded if there exist a r > 0 and a point p ∈ U such that A ⊂ B(p,r). 

 In other words, some ball centered in some point of U completely contains A. 

5. Disconnected sets A, B in U.  

 A ⊂ U and B ⊂ U are disconnected if ∀ a ∈ A, ∀ b ∈  B, ab ∩ (Α ∪ Β) ’ ≠ Φ. 

 All the segments that join points of A with points of B have a portion outside A y and B.  

6. Compact set . 

 A ⊂ U is compact if it is closed and bounded. 

7. BODY. 

A BODY B is a compact (possibly disconnected) set in U.  

8. LUMP. 

 A LUMP L is a compact connected set in U.  

9. SHELL.  

 A SHELL SH  is the boundary of a LUMP (SH = ∂L) 

10. FACE.  

 A FACE F is a connected subset of a SHELL S ( F ⊆  SH  ). Therefore a SHELL is the union of 
FACEs. A FACE must be a connected set, however it may have holes. In this case the boundary of the 
FACE, ∂F, will have several disconnected elements (called LOOPs). To calculate the boundary of a 
FACE F it is necessary to understand that F is embedded in a geometry S(u,v)  (that is called “the 
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carrier surface” of F). It is established that U = S(u,v)  and F’ = S(u,v) – F. In other words, S(u,v)  is the 
universal set where the complement of F is calculated from. Notice that ∂F ⊂  S(u,v) . 

11. LOOP. 

 A LOOP L is a connected component of the boundary of a FACE. The boundary of a FACE is formed 
with several closed LOOPs L0, L1, …Ln, where L0 ∪ L1 ∪ ...Ln ≡  ∂F. The LOOP L0 will be the 
external boundary and L1, L2, etc will be the internal boundaries (i.e. the holes) of F.  

12. EDGE.  

 An EDGE E is a connected subset of a LOOP L. Therefore a LOOP can be found as the union of 
EDGEs. A LOOP must be connected and cannot have gaps (interruptions of the LOOP). To calculate 
the boundary of an EDGE E it is necessary to understand that E is embedded in a geometry C(u) (that 
is denominated “the carrier curve” of E) . Therefore U = C(u) and E’ = C(u) – E. In other words, C(u) 
is the universal set where the complement of  E is calculated from. Notice that ∂E ⊂ C(u).  

13. VERTEX. 

 A VERTEX V is part of the boundary of an EDGE. Each EDGE E has exactly two VERTICES such 
that {V0} ∪  {V1} ≡  ∂E. Notice that {V0, V1} ⊂  C(v) . The carrier geometry of a VERTEX V is a 
POINT  (x,y,z) ∈  E3. Notice that two VERTICES can be carried by the same POINT (x,y,z) . An 
example of that would happen in an EDGE E that starts and ends at the same POINT (x,y,z) of E.  
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1 BODY

LUMP 1
LUMP 2

 
Figure 98. BODY with two LUMPs 

 
Figure 99  .LUMP bounded by two SHELLs  

 
Figure 100. SHELL (manifold) without border 

 
Figure 101. SHELLs (Manifolds) with border  

SURFACE
Loop

Edge
Edge

Face

Loop

 
Figure 102. FACE with hole, its surface (LOOPs formed by 

EDGEs) and its carrier surface (SURFACE). 

Edge

CurveVertex (Point)

Vertex (Point)

 
Figure 103.EDGE, its boundary (VERTICES) and its carrier curve 

(CURVE) 

Y

X

Z

u

v X(u,v) = R.cos (u).sin(v)
Y (u,v) = R.cos (u).cos (v)
Z (u,v) = R.sin(u)

u = 0..2π

v = 0..π  
Figure 104. Example of a parametric surface (SURFACE) 

Y

X

Z

u

v Circular Curves
X(v) = R.sin(v)
Y (v ) = R. cos (v)
Z (v) = ±h
v = 0..2 π

Cylindric Surface:
X(u,v) = R.sin(v)
Y(u,v) = R.cos(v)
Z(u,v) = u
u = -h..h
v = 0 .. 2π

 
Figure 105. Example of a surface (SURFACE) and parametric 

curves (CURVE) 
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5.2.1 Example. Relationship between Topology and Geometry 

The following example shows two bodies with same topology and different geometry 

A B

C D

E

FG

H

Solid 1

A B

C D

E

FG

Solid 2

H

F1 F2

F3

F4

F5

F6

 
 

Figure 106. Topologic Equivalency under Geometric difference 

 

Observation: The EDGE AC appears exactly in two FACES (F1 and F6). In F1 it is traveled as AC while in 
F6 it is traveled as CA. The same thing is certain for each EDGE of a manifold M without border.  

Table 17. Specification of topologies and geometries in a body  

 TOPOLOGY GEOMETRY 

       Solid 1 Solid 2  

Body: B1        
Lump: L1        

Face:  F1 F2  F3 F4 F5 F6 Planes Sphere 

Loop: L1 L2 L3 L4 L5 L6   

Edge: 

AC 
CD 
DB 
BA 

EF 
FB 
BD 
DE 

GA 
AB 
BF 
FG 

DC 
CH 
HE 
DE 

EH 
HG 
GF 
FE 

AG 
GH 
HC 
CA 

Lines  Curves  

A E G D E A 
C F A C H G 

D B B H G H 
Vertex: 

B D F E F C 

Points  
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5.3 Example 1 . Definition of Boundary Representation  
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V18 

V19 

V20 

V21 

V22 

V23 

V24 

F1 F5 F4 

F2 F3 

F6 F7 

F8 F9 

F10 F11 F12 F13 F14 

F15 

 
Figure 107. Example 1 Nomenclature of entities for the B-Rep topologic analysis of a body 

 

Next, the boundary representation is developed (Table 18) as well as the development of the construction 
through CSG (Figure 108), for the body shown in Figure 107.  

5.3.1 Boundary Representation 

In order to understand the development of the example; foll ow the notation used in Figure 107. A FACE (F) 
is a closed contour or LOOP (L) conformed by points VERTEX (V). 

Table 18. Example 1. Table of Boundary Representation of a rigid body 

Body B1                
Lump L1                
Shell S1                
Face F1 F2 F3 F4 F5 F6  F7 F8 F9 F10 F11 F12 F13 F14  F15 
Loop L1 L2 L3 L4 L5 L6 L6-1 L7 L8 L9 L10 L11 L12 L13 L14  L15 

Vertex V1 V1 V6 V8 V1 V6 V10 V17 V17 V18 V19 V20 V21 V23 V23 V19 
 V2 V5 V7 V4 V4 V5 V11 V9 V18 V19 V20 V21 V22 V15 V24 V18 
 V3 V6 V3 V3 V8 V8 V12 V16 V10 V11 V12 V13 V14 V14 V16 V17 
 V4 V2 V2 V7 V5 V7 V13 V24 V9 V10 V11 V12 V13 V22 V15 V24 
       V14         V23 
       V15         V22 
       V16         V21 
       V9         V20 

For this example, the geometric carriers of the FACEs are planes formed by straight lines.  
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5.3.2 CSG Representation 

It was implemented, in the CSG construction of the body in Figure 107, only one type of primitive: Box. In 
order to achieve a correct construction of the solid (S), it is necessary to apply certain transformations (Ti) on 
every primitive for proper placing of each with respect to existing entities.  

S1 = T1.Box1 ∪ T2.Box2

S2=S1 – T3.Box3

T1.Box1

T2.Box2

T3.Box3

 
Figure 108. Example 1. CSG Representation 
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5.4 Example 2. Definition of Boundary Representation 

The following is an example of a non - manifold. It is a non - manifold because there is an edge (V3-V4) that 
is shared by more than two faces (namely four). The final representation is based on two LUMPs belonging to 
the same BODY.  

 
Figure 109. Example 2. Rigid Body (Non manifold) 

 
Next the Boundary Representation is developed (Table 19) and the development of the construction through 
CSG (Figure 111), for the body shown in Figure 109. 
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5.4.1 Nomenclature of entities  
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Figure 110. Example 2 Nomenclature of entities for the B-Rep topologic analysis of a body. 

 
 

5.4.2 Boundary Representation 

As in the previous example, in order to understand the development of this one; follow the notation used 
Figure 110. A FACE (F) is a closed contour or LOOP (L) conformed by points VERTEX (V).  

Table 19. Example 2. Tables of Boundary Representation of a rigid body 

Body B1            
Lump  L1            
Shell  S1            
Face F1  F2 F3 F4 F5  F6 F7 F8  F9 F10 
Loop L1 L1-1 L2 L3 L3-1 L4 L5 L6 L7 L8 L9 L10 

Vertex V1 V15 V5 V5 V13 V9 V10 V11 V11 V8 V13 V13 
 V2 V16 V6 V8 V14 V6 V9 V3 V12 V5 V15 V14 
 V3  V9 V7  V7 V12 V2 V7 V1 V16 V16 
 V4  V10 V6  V12 V11 V10 V8 V4 V14 V15 
   V2      V4    
   V1      V3    
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Body B1              
Lump  L2              
Shell S1        S2      
Face F11 F12 F13 F14 F15  F16 F17 F18 F19 F20  F21 F22 F23 F24 
Loop L11 L12 L13 L14 L15  L16 L17 L18 L19 L20  L21 L22 L23 L24 

Vertex V4 V3 V24 V20 V19 V26 V26 V19 V29 V29 V30 V27 V28 V29 
 V17 V18 V23 V25 V26 V19 V3 V20 V28 V30 V31 V32 V33 V34 
 V22 V17 V22 V24 V25 V18 V4 V21 V27 V33 V32 V31 V32 V31 
 V23 V4 V21 V21 V20 V3 V23 V22 V34 V28 V33 V34 V27 V30 
       V24 V17       
       V25 V18       
               
               

In this example, the geometric carriers of the FACEs are planes formed by straight lines except for the cases 
of F9 and F10, where the EDGEs V13-V14 and V15- V16 carry curved lines. Hence, the faces bounded by 
these edges are non-planar surfaces.  
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5.4.3 CSG Representation 

 The CSG construction of this body is shown in Figure 111; The following primitives were used: Box , 
Cylinder and Wedge. In order to achieve a correct construction of the solid (S), it is necessary to apply certain 
transformations (Ti) on every primitive for proper placing of each with respect to existing entities.  

Notice that since this is a non manifold, a final union is not performed and so, for the sake of this example the 
tree is left as shown treating the object as two different LUMPs placed together. The fact of being a non 
manifold also indicates that this object cannot be achieved in reality exactly as is being represented here.  

T7.Box3
T6.Cyl

S4 = ( S2 – T5.Wedge ) -  T7.Box3S5 = ( S1 – T6.Wedge ) - T6. Cyl

S2 = (T3.Box1) – (T4. Box2 )S1 = (T1.Box1 ) – (T2. Box2 )

T6.Wedge T5.Wedge

T3.Box1
T4.Box2T1.Box1

T2.Box2

Final Body (Non manifold)

 
Figure 111. Example 2. CSG Representation 
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5.5 Example 3. Geometric Modeling  

For the body in Figure 112, which is also a non - manifold, represent the geometric model in the CSG and B-
Rep schemes. The curved features are formed by straight circular cylinders. The cavity involving faces F13 
and F14 is completely contained in the interior of the solid.  

v1

v2

F3

v 3

v 4

v 5

v 7

v6

v 8

v 9

v10

v11
v12

v13

v14
F4

F5

F8

F9

F12

F1

F2 F6 F7F10F11

v16

F13

F14

v15

Xw

Y w

Zw

v17

v18

F15

F16

F17

A

B

C

D

F
G

I
H

E

J
R

K

v20

v19

 
Figure 112. Example 3. Nomenclature of entities for the B-Rep topologic analysis of a body. 

Procedure: 

1.1 Mark in the figure, and clearly write the information of all additional topologies that you consider needed 
for the B-Rep of the solid body. Explain them here. 

Solution: 

The additional topologies are underlined. They are: F15, F16, F17, V17, V18, V19, V20, organized in this 
way:   

a) Two additional edges are defined in the internal cavity: V17-V18 and V19-V20 
b) Two additional FACEs are defined in the internal cavity: F15 and F16.  
c) One FACE F17 is marked in the feature V12-V13-V14-V11. 

In order to have manifold topology one defines two LUMPs : LMP1 and LMP2 
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1.2 Assign values to the geometries of Figure 112. You must specify the POINTs and analytic forms for all 
curved geometry present. The curves and/or surfaces must be written in the form F(x,y,z) = c, with the 
ranges for x,y and z clearly defined. Give names to all curved geometries.  

Solution: 

V1 = [A, 0, C, 1]  V12 = [J+R,E,C, 1] 
G15: Cylinder:  

(x-H)2 +(y-I)2=R2 

G <= z <= F  

V2 = [0, 0, C, 1]  V13 = [J+R,E,D, 1] 
G16: Cylinder:  

(x-H)2 +(y-I)2=R2 

G <= z <= F  

V3 = [A, 0, 0, 1]  V14 = [J-R,E,D, 1] 
G17: Cylinder:  

(x-J)2+(y-E)2 =R2 

D <= z <= C 

V4 = [0, E, C, 1]  V15 = [A, E, C, 1] 

G18 -v19: 
Circumference:  
(x-H)2 +(y-I)2=R2 

z = F 

V5 = [0, E, 0, 1]  V16 = [0, 0, 0, 1]  

G17 -v20: 
Circumference:  
(x-H)2 +(y-I)2=R2 

z = G 

V6 = [A, E, 0, 1]  V17 = [H+R, I, G, 1]  

G18 -v19: 
Circumference:  
(x-H)2 +(y-I)2=R2 

z = F 

V7 = [0, B, 0, 1]  V18 = [H+R, I, F, 1]  

G17 -v20: 
Circumference:  
(x-H)2 +(y-I)2=R2 

z = G 

V8 = [A, B, 0, 1]  V19 = [H-R, I, F, 1] 

G11 -v12: 
Circumference:  
(x-J)2+(y-E)2 =R2 

z = C 

V9 = [A, B, K, 1]  V20= [H-R, I, G, 1] 

G13 -v14: 
Circumference:  
(x-J)2+(y-E)2 =R2 

z = D 

V10 = [0, B, K, 1]   

V11 = [J-R,E,C, 1]   

Write the Topological structure for the solid of Figure 112. 
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1.3 For topologies carried by curved geometries (surfaces and / or lines) indicate the name that you assigned 
in the previous point to such geometries.  

Solution: 

Curved carrier geometries appear in bold in the cells (Table 20) corresponding to the initial or final vertex of 
the curved EDGE, or in the curved FACE, that they carry. Two LUMPS are defined in order to have manifold 
topology. 

Table 20. Example 3. Table of Boundary Representation of a rigid body 

BODY             

LUMP L1            

SHELL Sh1        Sh2     

FACE F1 F2 F5  F8 F9 F11 F12 F17 
GF17 F13  F14 F15 

GF15 
F16 
GF16 

LOOP  L1 L2 L5  L8 L9 L11 L12 L17 L13  L14 L15 L16 

VERTEX v1 v1 v15 v2 v2 v3 v14 v12 v18  
G18-19 

v17 
G17-2 0 

v18 
G18-19 

v17 
G17 -20 

 v15 v3 v6  v4 v16 v16  v13 
G13-14 v13 v19 

G18-19 
v20 

G17-2 0 
v17 

G17-20 
v18 

G18 -19 

 v12 v6 v5  v5 v3 v5  v14   v20 
G17-20 

v19 
G18 -19 

 v11 v15  v4  v16 v1 v6  v11 
G11-12 

  v19 v20 
G17 -20 

 v4  v11          

 v2  v14          

   v13          

   v12          

LUMP L2            

SHELL Sh3            

FACE F3 F4 F6  F7 F10        

LOOP  L3 L4 L6  L7 L10        

VERTEX v6 v7 v6  v9 v5        

 v8 v5 v9  v8 v7        

 v9 v10  v10 v7 v8        

   v5  v10 v6        

1.4 Write the CSG tree of the solid in Figure 112. You must give the necessary dimensions for the primitives 
BLOCK(DX,DY,DZ) and CYLINDER(R, DZ) (created with center of gravity in the origin (0,0,0) ,  Figure 
113)  and WEDGE(DX,DY,DZ; Likewise, you must specify the geometric transformations required to 
position such primitives in the right places in order to participate in the boolean operations.  
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1.4.1 List of primitives and names.  

 

X 
Y 

Z 

 
Figure 113. Cilinder . 

 

Solution: 

B1 = BLOCK(A, E, C )  // large block 

B2 = WEDGE(A, B-E, K )  // wedge 

C1 = CYLINDER(R, (C-D) ) // cylinder for the seat. Any height larger than (C-D) works fine, 
but it will affect the geometric transformation required to position 
the primitive!!!. 

C2 = CYLINDER(R, (F-G) )  // internal cylinder 

1.4.2 List of Geometric transformations and their names.  

Solution: 

M1 = trans(A/2 , E/2, C/2 )  // apply M1 to B1 

M2 = trans(A/2, B, 0)*rot( Z,180) // apply M2 to B2 

M3 = trans( A/2, E, [D+(C-D)/2] ) // apply M3 to C1 

M4 = trans( H, I, [G+( F-G )/2] ) // apply M4 to C2 

1.4.3 CSG Tree 

Solution: 

B1 C1 B2C2

M1 M3 M2M4

 
Figure 114. Example 3. CSG Tree 
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1.5 Define with equations the curved surface that you consider, is the basis to represent the curve surfaces 
of the model. Define the basic surface in the local space of size 1x1x1 units3 of Figure 115.  

Yw 

X w 

Zw 
 

Figure 115. Local Space of coordinates for definition of curved surface. 

 

Your equations must have the form:  

X=X(λ1, λ2) 
Y=Y(λ1, λ2) 
Z=Z(λ1, λ2) 

Choose, explain and draw the parameters λ1, λ2, in similar way as the used to define the Mobius Band, the 
Torus and the surface sin(R)/R.  

Solution: 

100 21

221

121

121

≤≤≤≤
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=
=
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or (since the cylinder is displaced in X direction),  

100

1

21

221

121

121

≤≤≤≤

=
=

−=

λπλ

λλλ
λλλ
λλλ

,

,),(z
),(sin.R),(y
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1.6 Define the chain of required transformations to place the primitive surface in the correct places, 
positions and with correct dimensions within the B- rep described previously. Write your answers in 
this way: 

M = rot(....) * trans( )*  ....* scale( )  etc. 

Solution: 

M_face_17 = trans( A/2, E, (C-D) )*rot(Z,180)*scale( 1,1,(C-D) ) 

M_face_15 = trans(H, I, G)*rot( Z,180)*scale( 1,1,(F-G) ) 
M_face_16 = trans(H, I, G)*scale( 1,1,(F-G) ) 

5.5.1 Programming in MATLAB  

 (See Appendix, section 7.3 to find the MATLAB code exposed here)  

Write the necessary code to computationally produce the B-rep of the object in point (1).  



UNDERLYING TOPICS IN CAD / CAM / CG Dr. Oscar E. Ruiz S. 
CAD/CAM/CG Laboratory - EAFIT University - Medellin, Colombia  

Copyright A.S.M.E. (American Society of Mechanical En gineers) 

This material is property  of the American society of mechanical engineers (ASME). All copy or  reproduction is forbidden. Personal 
Copy of  Prof. C. U. Xoán Leiceaga Baltar . 

123

Functions to write (if you feel that you may need additional functions, propose and implement them): 

main.m  

Initializes the variables, calls the sub-ordinate routines, creates the curved surfaces, positions the surfaces 
correctly, draws the solid with the curved surfaces in the right places, etc. The curved surfaces may be plotted 
with the instruction mesh( ). YOU DO NOT HAVE TO DRAW PARAMETRIC SURFACES.  

[ solid, dims_of_loops ] = gen_solid( ) 

Creates a solid whose loops are packed in solid, and whose dimensions are contained in dims_of_loops . 
Ignore here curved FACEs or EDGEs. For the purposes of this point, curves entities may be assumed as 
straight lines or plane surfaces.  

[ PX, PY, PZ]=gen_surf( )  

Generate the basic surface in unit space 1x1x1. 

[ P1X, P1Y, P1Z]=transf_1(PX, PY, PZ )  

Transform the basic surface defined in 1x1x1 to the required size and position. You will call it as 
configuration 1. Use the transformations that you proposed in point 1.6.  

[ P2X, P2Y, P2Z]=transf_2(PX, PY, PZ )  

Transform the basic surface defined in 1x1x1 to the required size and position. You will call it as 
configuration 2. Use the transformations that you proposed in point 1.6.  

[ P3X, P3Y, P3Z]=transf_3(PX, PY, PZ )  

Transform the basic surface defined in 1x1x1 to the required size and position. You will call it as 
configuration 3. Use the transformations that you proposed in point 1.6.  

If you consider it necessary, define as many functions transf_i (PX, PY, PZ ) as you wish.  

draw_solid( solid, dims_of_loops ) 

Draws the solid whose loops are packed in solid, and whose loop dimensions are contained in dims_of_loops . 
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5.6 Cell decomposition and spatial occupancy enumeration  

The spatial enumeration is based on the decomposition of the form in simple constituent elements. Such basic 
elements can be denominated in general cells, which are parallelepipeds in 2D and 3D. The capacity of such 
scheme is based on the clustering of these cells for representation of complex objects, such clustering being 
usually intensive in its amount of data. Given that an abstraction of the figure is made by representing only up 
to certain level of detail , the representations improves in quality as the level of detail to represent is smaller. 
Likewise the quantity of required data grows, being this growth of polynomial order ( O((1/d)2) or O((1/d)3  ), 
where d is the level of detail represented). When the constituent cells are identical in size and semantic 
capacity, there are exhaustive enumeration schemes, with Pixels, and Voxels (volumetric pixels). When the 
shape and semantic capacity of the cells agree with the locality of the shape in  which the cell is placed, certain 
schemes are used, such as Quadtrees /  Octrees. Given the low level of complexity of the exhaustive schemes, 
this section will focus on the Quadtrees. The Octrees are a natural extension in 3D of this principle.  

5.6.1 Quadtrees  

The quadtree representation Q (Figure 116) of a Lump B in 2D (possibly disconnected) is executed through 
the following steps:  

1 A dimension D is set, it establishes a measure of the universe that will be possible to represent. It wi ll be 
representable everything that, inside the plane R × R remains inside the minmax [(-D,-D),(D,D)].  Every 
part of B that falls outside this square, will disappear from the representation. 

2 For the universe, [(-D, -D),(D,D)]  is evaluated if, B occupies it  completely, is totally disjointed from it or 
occupies it partially. If B occupies the universe totally, Q is marked as “full” or “black”. If B is outside the 
universe Q is marked as “empty” or “white”. In these two cases the representation is concluded. But, if B 
occupies the universe partially (“partial” or “gray”), the following steps are to be taken. 

3 The universe is divided in 4 quadrants Q0 = [(-D,-D),(0,0)] , Q1  = [(0,-D),(D,0)], Q2  = [(0,0),(D,D)], 
Q3 = [( -D,0),(0,D)]. They are enumerated in CCW direction.  

4 For each Qi (Q0,  Q1,  Q2,  Q3  ) their dimensions are evaluated. In case that the level of detail that a cell 
represents is smaller than the minimum resolution of the scheme, it is approximated by “full” or “empty”. 
If the size is still inside the resolution of the scheme, then step (2) is redone for each Qi.  
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3 (D,D) 

(0,0)  
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Not represented portions 

Universe 

(-D,-D) (-D,-D) 

(D,D) 
3-3-3 

3-3-1 

1-3 

1-0 

1-2-3 

1-2-0 

1-1-0 

 
Figure 116. Quadtree Spatial Representation 

 

The conclusions of steps 1 ~ 4 are consigned in a “tree”, data structure, as seen in (Figure 117). The quadtree 
Q has as many levels as wanted. However, its depth n (n = 0,1,..) is constrained by setting a maximum 
resolution d. Given that  d ≈ D/2n then n ≈ log2(D/d). 

The analysis is made by levels in the following way: 

B G G G

B G B B B G G G B B B G

B G G GB G W G W W WGB G B B BG G W  

Figure 117. Tree structure representation for the quadtree structure. 

 

5.6.1.1 Observations 
i. Each cell of the Quadtree can be named according to its position inside the quadrants and subquadrants 

(Figure 116), the cell 1-2-3 is the one that is in a third subdivision level. In the first division it was 
classified in the quadrant 1, in the second division it was in the quadrant 2 and in the third division in the 
quadrant 3.  

ii. The length of the “word” that denotes the position of a cell also indicates its size. In the case of cell “3-1-
1” (word length = 3) its size will be D/4 = D/(23-1). Cell “1-0” (length = 2) will have size D/2 = D/(22-1), 
etc.  

iii. A sequence of geometric transformations M and M- 1 applied on Q  will not result in Q. That is  
Q ≠  M- 1 . M . Q (the reader is hereby encouraged to determine the cause). 
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iv. The Quadtree / Octree representation does not show changes below certain resolution. Therefore, 
translations of arbitrary distances are not realizable in this scheme. The recognizable distance d of any 
translation applied to Q must be approximated this way:  

...
2

....
842

++++++≈ n

DDDD
Dd  

v. For a 3-dimensional figure the same previous analysis is made, but dividing the universe in octants.  

vi. When the desired level is reached, the programmer must convert gray boxes into white or black.  
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5.7 EXERCISES – GEOMETRIC MODELING - 

 

5.7.1 CSG and B -REP I.  

CSG AND BOUNDARY REPRESENTATION. TRANSFORMATIONS  

OBJECTIVE 

To practice boundary representation and CGS  (Constructive Solid Geometry) concepts .  

PROCEDURE 

For the  body in Figure 118, write the topologic structure using boundary representation and CGS 
construction. Follow the figure notation. 

V1V2

V3

V4
V5 V6

V7
V8

V9V10

V11
V12

V13 V14

V15
V16

V25

V18 V19
V20

V29

V21

V22
V23

V24
V26

V27 V28

V17

F1F2F3F4 F5 F6 F7F8F10 F9F11

F12 F13 F14F15 F16F18 F17F19

 
Figure 118. Exercise 5.7.1 
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Figure 119. Coordinate plane 

1. Assign numerical values to all the vertices of Figure 118 using the coordinate system of Figure 119 . 

2. Write the topology structure using Boundary Representation. Follow the figure notation of Figure 118. 

3. Draw the CSG tree for the body of  of Figure 118.  Use the following primitives: block(∆X, ∆Y, ∆Z), 
pyramid (∆X, ∆Y, ∆Z) and wedge(∆X, ∆Y, ∆Z) whose local coordinate frames are as per Figure 120.  

 

Figure 120. Local Coordinate Frames for Wedge, Block  and Pyramid. 

4. Make a program to build the B-rep the solid model of Figure 118. Required functions are:  

4.1. exercise_5_7_1.m . Main program,  which initializes variables and calls sub-functions to build the 
solid. 

4.2. [solid, dims_of_loops ]=gen_solid_001(  ).  This function creates the  data for the solid. The output 
variables are solid (an array containing the loops for all faces) and dims_of_loops  (an array 
containing the number of vertices in each loop).  

4.3. draw_solid( solid, dims_of_loops ). This function draws the solid whose loops are packed in solid, 
and whose loop dimensions are contained in dims_of_loops .  

 
 

 

 
 

 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

 

 

 

 

 

 

 

 

 



UNDERLYING TOPICS IN CAD / CAM / CG Dr. Oscar E. Ruiz S. 
CAD/CAM/CG Laboratory - EAFIT University - Medellin, Colombia  

Copyright A.S.M.E. (American Society of Mechanical En gineers) 

This material is property  of the American society of mechanical engineers (ASME). All copy or  reproduction is forbidden. Personal 
Copy of  Prof. C. U. Xoán Leiceaga Baltar . 

129

 

5.7.2 CSG and B -REP II. 

CSG AND BOUNDARY REPRESENTATION 

OBJECTIVE 

To practice boundary representation and CGS  (Constructive Solid Geometry) concepts .  

PROCEDURE 

For the body in Figure 121, write the topologic structure using boundary representation and CGS 
construction. Follow the figure notation. 

V1

V2

V3V4

V5
V6

V7

V8

V9

V10

V11

V18

V17

V16

V15
V14

V13

V12

V24
V23

V22
V21

V20
V19

V25
V26

F13F6

F5 F4 F3 F2F1

F12 F9 F8F7F14F10 F11 F15

F16

 
Figure 121. Exercise 5.7.2. 

 

1. Assign numerical values to all the vertices of Figure 121, take the coordinate plane of  Figure 122 as 
reference.  



UNDERLYING TOPICS IN CAD / CAM / CG Dr. Oscar E. Ruiz S. 
CAD/CAM/CG Laboratory - EAFIT University - Medellin, Colombia  

Copyright A.S.M.E. (American Society of Mechanical En gineers) 

This material is property  of the American society of mechanical engineers (ASME). All copy or  reproduction is forbidden. Personal 
Copy of  Prof. C. U. Xoán Leiceaga Baltar . 

130

 

024681012

0

5

10

0

2

4

6

8

10

 

Figure 122. Coordinate plane  

2. Write the topologic structure using boundary representation.  Follow the figure notation Figure 121. 

3. Implement the CSG construction for the body Figure 121. Use the following primitives: BLOCK(∆X, 
∆Y, ∆Z) (created wit h mass center on the origin (0,0,0)) and WEDGE( ∆X, ∆Y, ∆Z)(Figure 123). In 
order to achieve a correct construction of the solid, it is necessary to use certain transformations on 
every primitive to realize the Boolean operations.  

X
Y

Z

 

Figure 123.  Wedge 

4. Make a program to build the solid model of Figure 121; The required functions are: 

4.1. Exercise_5_7_2.m . Main program, initialize variables and call sub-functions to build the solid.  

4.2. [solid, loop_dims]=gen_solid_003(  ).  This function creates the solid matrix. The output 
variables are solid that is an array containing the solid and loop_dims that is an array 
containing the number of vertices on each face. 

4.3. draw_solid( solid, loop_dims). This function draws the solid whose loops are packed in solid, 
and whose loop dimensions are contained in loop_dims.  

 

 

 

 
Con formato: Fuente: 8 pt,
Cursiva, Español (Colombia)

Con formato: Fuente: 8 pt,
Cursiva, Español (Colombia)

Con formato: Fuente: 8 pt,
Cursiva, Español (Colombia)
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5.7.3 CSG and B -REP II. 

CSG AND BOUNDARY REPRESENTATION, TRANSFORMATIONS  

OBJECTIVE 

To practice boundary representation and CGS  (Constructive Solid Geometry) concepts .  

PROCEDURE 

For the body in Figure 124, write the topologic structure using boundary representation and CGS 
construction. Follow the figure notation. 

 
Figure 124. Exercise 5.7.3 

 
1. Assign numerical values to all the vertices of Figure 124, take the coordinate plane of Figure 125 as 

reference.  
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Figure 125.  Coordinate plane 

 

2. Write the topologic structure using boundary representation. Follow the figure notation Figure 124. 

3. Implement the CSG construction for the body of Figure 124. Use the following primitives: BLOCK(∆X, 
∆Y, ∆Z) and CYLINDER(R, h) (created whit mass center on the origin (0,0,0)). In order to achieve a 
correct construction of the solid, it is necessary to use certain transformations on every primitive to 
realize the Boolean operations.  

4. Make a program to build the solid model Figure 124. Required functions are: 

4.1. Exercise_5_7_3.m. Main program, initialize variables and call sub- functions to built the solid.  

4.2. [solid, loop_dims ]=gen_solid_002(  ).  This function creates the solid matrix. The input variables 
are solid that is an array containing the solid and loop_dims  that is an array containing the number 
of vertices in each face.  

4.3. draw_solid( solid, loop_dims ). This function draws the solid whose loops are packed in solid, and 
whose loop dimensions are contained in loop_dims 

4.4.  [BZRX,BZRY,BZRZ]=gen_mesh(  ).This function generates a bezier surface to show  the curved 
part of the solid. The original surface has as base the XY plane in a space of 1 x 1 x 0.5 (Figure 126) 

4.5. Realize the all functions to make the indispensable t ransformations in order to place the surface on 
the final position. (Rotation, translation and scale).  
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Figure 126. Control Surface 
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5.7.4 2D Spatial Decomposition.  

SPATIAL DECOMPOSITION 

OBJECTIVE 

To practice spatial decomposition concepts.  

PROCEDURE 

Make the spatial decomposition of the following figures (Figure 127) up to the fourth level, taking into 
account  that the first quadrant is defined by the minmax of the figure: 

 

 
Figure 127. Exercise 4.4 
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6. FINAL EXERCISES 

6.1 EXERCISE I. 

OBJECTIVE:  

To practice with the combination of rigid and non- rigid transformations in order to gain agility with the 
manipulation of matrices and objects.  

PROCEDURE 

The figure shows and five-sided object, al of its faces are planar except for the one that involves vertices 
{E, F, C, D}. This face is not planar. 
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Figure 128. Final Exercise #1 
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1. Assign coordinates t o the vertices A, B, C, D and E.  

2. Assign coordinates to the face of vertices { E, F, C, D } in order to be drawn with the instruction mesh. 
The mesh should contain a minimum of 4x4 vertices. Name the variables you use as MESHX, MESHY, 
MESHZ.  

3. Write the rout ine or code named draw_solid( body, dims ) that draws all the loops or faces of the body. 
The arguments for this function should be:  

• BODY: A matrix of size (4×M ) that contains the vertices of the body packed by faces (i.e. ABCDA, 
EFBAE, etc.) 

• DIMS: A matrix of size (1×N ) that says how many real vertices has each face. See Figure 129. 

BODY

A B C D E B C EA F W S F

4 3 3 … … … …DIMS

5 4 4

 
Figure 129. Illustration of the arguments for draw_solid( body, dims ) 

 Where the elements of t he array DIMS do not take into account the initial vertex repeated at the end of the 
vertex list of a face, only real vertices per face are considered.  

4. Formulate yourself a problem in which the solid given in (1) is to be transformed to another position wi th 
at least one rotation and one translation. Draw a complete specification of the problem that you have 
planned.  

5. Write a detailed chart with the necessary transformations in order to achieve the proposed objective. 
Apply the transformations only to an auxiliary coordinate system attached to the body in the initial 
position. Draw the evolution of this reference object. 

6. Write a function named: [ NEW_X, NEW_Y, NEW_Z ] = transform_mesh( MESHX, MESHY , 
MESHZ , M ) with the necessary instructions to apply any transformation M to a mesh contained in 
MESHX, MESHY, MESHZ and that will produce as result another mesh contained in the variables 
NEW_X, NEW_Y, NEW_Z. 

7. The initial and the final body including their respective non-planar faces and auxiliary coordinate systems 
must appear in a single fully labeled MATLAB figure window.  

Con formato: Inglés (Estados
Unidos)
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6.2 EXERCISE II. 

OBJECTIVE:  

To practice with the combination of rigid and non- rigid transformations in order to gain agility with the 
manipulation of matrices and objects.  

To review the topologic description methods learned for analytically describing and building computational 
models of objects.  

PROCEDURE 

The body shown in Figure 130 has the following characteristics.  

(a) A hollow space that involves the vertices {v5,v6,v7,v8,v9,v10,v11,v12}.  

(b)  A ramp that involves the vertices {v13,v14,v15,v16,v17,v18}.  

(c) A rounded edge resembling a circular prism. 

v6 

v5 

v9 
v13 v14 

v19 

v2 

v20 

v1 

v4 

v3 

v12 

v11 v10 
v7 v8 

v15 

v16 

v17 

v18 

Xw 

Zw 

Yw 

v24 

v23 v22 

v21 

 
Figure 130. Final Exercise  #2 

 

1. Complete the nomenclature for the body according to your requirements for making a boundary 
representation (B-Rep). Label in Figure 130 the faces, the vertices, etc, as needed.  

2. Give coordinates to the vertices. (the arcs v23-v22 y v21-v24 are a quarter of a circle). 

3. Label in Figure 130 the SHELLs, LUMP s, etc. Write the B_rep of the body, and in this representation, 
clearly mark those topologies which their geometry carriers  are not straight or planar. Say which 
geometry carriers should they posses (there is no need to give the mathematical equations for these 
geometries).  
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4. In the coordinated space shown in Figure 131, define an approximated surface as you consider would fit to 
the rounded edge. You must define the mesh contained in a coordinated space given by (1.0 , 1.0,  1.0), 
and positioned as shown in the figure.  

 

X 

Y 

Z 

1.0 

1.0 

1.0 

 
Figure 131. Coordinated space for defining a mesh 

 

MESHX = 
MESHY = 
MESHZ = 

5. Define the transformation sequence that places the mesh in the position and size needed to fit the body in 
Figure 130. 

The coordinates in (2) should be such that the identification of the transformations (you propose) are as 
simple as possible. You must make suppositions when creating the transformations, explain them. 

6. Attach an auxiliary reference frame Xf,Yf,Zf,Of to the mesh in its final position. Draw the evolution of this 
reference object produced by the transformation sequence you developed in (5), form its initial position to  
Xf,Yf,Zf,Of . Is this a rigid transformation sequence?. Prove it and give a proper argument.  

7. Draw a CSG tree that produces the body shown in Figure 130. You may use the following primitives: 

 - Box(Dx, Dy, Dz), centered at the origin 

 - Wedge( Dx, Dy, Dz), placed on the planes XY, XZ y YZ  

- Cylinder (Radius , Height) centered at the origin 

 

Dz

Dy
Dx

Z

Y

X
 

Figure 132. Wedge( Dx, Dy, Dz) 
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Boolean operations 

  - Intersection 

  - Union 

  - Difference 

 Transformations: The ones you may need.  

Use dimensions consistent with the given coordinates in (2) to define the primitives. You do not need to 
exactly define the transformations, but you do need to clearly its position in the CSG tree, its type and 
function. 

8. Draw the complete body in a MATLAB figure window using the functions draw_solid(body , dims ), 
transform_mesh( MESHX, MESHY, MESHZ , M ) , plt_axes() , etc. Develop before as well as any other 
routine that you may need. Additionally draw the in another figure window, the evolution of the mesh 
MESHX, MESHY, MESHZ with its respective auxiliary reference frame.  
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6.3 EXERCISE III.  

In this exercise, it is required a surface interpolation of a torus in two different positions and with closure of 
the surfaces in different directions.  

OBJECTIVES 

i. Create the control point set or control polyhedron of a torus based on the parameters shown in Figure 
133 (Control points generated in exercise 4.3.5 can be used). 

ii. Create a Spline surface interpolation form the previous control set. 

iii. Perform a geometrical transformation on the set of control points.  

iv. Create a new interpolated Spline surface from the transformed point set of (3). 

Xw

Yw

Zw

R = 4

r = 1

θ
φ

X0

Y0

Z0

 
Figure 133. Main parameters of the initial position of the torus  

 
Figure 134. MESH of the control polyhedron of a torus 

 

PROCEDURE 

1. Write a MATLAB function [PX, PY, PZ] = gen_torus( R , r )  which generates the control points of a 
torus in MESH format, given a primary R and secondary r radius. 

2. Write in MATLAB the necessary functions to generate, from a set MxN of control points, a Spline 
surface with the following input arguments:  

draw_spline( PX, PY, PZ, k, l, close_row, open_col ) 

 Where:  
  PX, PY, PZ: Are MESH format matrices of the coordinates of the control points.  
  N:   Columns of control points (N = n+1).  
  M:   Rows of control points (M = m+1).  
  k:    Size of the stage in the row direction. 
  l:   Size of the stage in the column direction 
  close_row (0/1):  Flag for closure in row direction of the control points. 
  close_col (0/1):  Flag for closure in column direction of the control points.  

Examine the scheme of Figure 77 in order to use the notation specified there in your code.  

Other functions as specified below must be implemented in order to achieve the objectives. 



UNDERLYING TOPICS IN CAD / CAM / CG Dr. Oscar E. Ruiz S. 
CAD/CAM/CG Laboratory - EAFIT University - Medellin, Colombia  

Copyright A.S.M.E. (American Society of Mechanical En gineers) 

This material is property  of the American society of mechanical engineers (ASME). All copy or  reproduction is forbidden. Personal 
Copy of  Prof. C. U. Xoán Leiceaga Baltar . 

141

2.1. [CPX,CPY,CPZ] = complete_control( PX, PY, PZ, k, l, close_row, open_col )  

 {pre:  PX, PY, PZ: matrices MxN of real numbers. 
  N:   Columns of control points (N = n+1).  
  M:   Rows of control points (M = m+1).  
  k:    Size of the stage in the row direction. 
  l:   Size of the stage in the column direction 
  close_row (0/1):  Flag for closure in row direction of the control points. 
  close_col (0/1):  Flag for closure in column direction of the control points.  
 } 
 {post: 
  (close_row ∧ (CPX,CPY,CPZ are PX, PY, PZ extended in the row direction)) OR 
  (close_col ∧ (CPX,CPY,CPZ are PX, PY, PZ extended in the column direction)) 
 } 

This routine completes PX, PY, PZ in the direction of rows and/or columns in order to satisfy the 
closure of the surface in either direction 

 

2.2. M = spline_matrix( k ) 

 {pre:  k = 2, 3, 4} 
 {post:   M = Coefficient matrix for Spline interpolation Mk (k = 2,3,4)} 
 

2.3. U = calc_U( u , k ) 

 {pre:  u ∈ [0,1], k ∈ {2,3,4}} 
 {post:  U = [uk-1 , uk-2, ... , u1, 1 ]} 
 

2.4. [QX, QY, QZ] = local_patch(PX,PY,PZ,du,dw,Mu,Mw)  

 {pre:  QX,QY,QZ are k x l matrices of real numbers.  
   du ∈ [0,1]  
   dw ∈ [0,1] 
   Mu = Mk: Coefficient matrix of the patch. (k x k).  
   Mw = Ml: Coefficient matrix of the patch ( l  x l)  
 } 
 {post:  QX,QY,QZ contain 

   T
l

T
lXkkX W . M.P . M. Uw)(u,Q = ,  

   T
l

T
lYkkY W . M.P . M. Uw)(u,Q = , 

   T
l

T
lZkkZ W . M.P . M. Uw)(u,Q =  

   for (u=0, du, 2du, 3du,....,1.0) x (w=0, dw, 2dw, 3dw,...,1.0)  
 } 
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3. In a second figure window, generate the Spline interpolation for the points of the torus. The surface 
must be opened in θ direction and closed in φdirection. Take two points per stage in θ sense and four 
points per stage in φ sense. 

4. In Figure 135, associate and draw an auxiliar reference frame to the torus S0  = [X0,Y0,Z0,O0]. Draw 
in the figure the auxiliar reference frame Sf   = [Xf,Yf,Zf,Of]. Write here the two reference frames in 
numeric form:  

Xw

Yw

Zw

X0

Y0

Z0

 
Figure 135. Principal axes of torus in initial and final position 

 

           

S0 =      Sf  =     

           

           

5. Calculate in numeric form the matrix Mt that transforms S0 into Sf. Write clearly which equations 
were used and the result. A table of intermediate transformation steps is NOT needed.  

6. Write in MATLAB the following function: 

 [QX, QY, QZ] = transform_mesh(PX,PY,PZ,M) 

 {pre: PX,PY,PZ  are matrices of real numbers that form points in E3.  
  M: Transformation matrix in homogeneous coordinates.  
 } 
 {post: QX,QY,QZ are new points, previously PX,PY,PZ transformed by M. 
 } 

7. Write in a script MAIN.m the instructions and the necessary function calls in order to obtain the 
Spline surface interpolations of the two positions of the torus in the second figure window. The 
second position must correspond to a torus closed in the direction of θ and opened in the direction of 
φ.  For the second torus take two points per stage in the φ direction  and four points per stage in the θ. 
Your work done must permit you obtain this second torus just by changing the input arguments to the 
function draw_spline( PX, PY, PZ, k, l, close_row, open_col ).  
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Figure 136. Spline Surface of an original horizontal torus and a transformed vertical torus. 
Different closure directions are shown. 
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7.  APPENDIX 

7.1 CHAPTER 3 –Solutions for Proposed Exercises on Geometric Transformations - 

 

7.1.1 Example. Rigid transformations (section 3.2.6 . Example. Rigid transformations. ) - 
MATLAB code 

The following are the MATLAB code blocks for the example in section 3.2.6 (Chapter 3 – Geometric 
Transformations).  

%=================================== MATLAB MAIN SCRIPT ==================================== 
% Example section 3.2.6 
% 
% OBJECTIVE: To create a boundary representation of a solid  
%     and perform rigid transformations on it in order to 
%     take from an initial position and orientation to a final 
%     sate. 
% 
% FUNCTIONS USED: << rotation_matrix.m, translation_matrix.m, p_plot.m, 
%        transformation.m, plt_axes.m >> 
%  
%=========================================================================================== 
%Screen and memory cleanup 
clear 
close all 
clc 
%----------------------------------% 
%Creation of the solid body by defining vertices and loops (faces)  
%Vertices 
pa = [8 5 0 1]'; 
pb = [8 8 0 1]'; 
pc = [5 5 2 1]'; 
pd = [5 8 2 1]'; 
pe = [5 5 0 1]'; 
pf = [5 8 0 1]'; 
%Loops 
L1 = [pa pe pf pb pa]; 
L2 = [pb pd pf pb]; 
L3 = [pa pc pe pa]; 
L4 = [pc pd pf pe pc]; 
L5 = [pa pc pd pb pa]; 
%----------------------------------% 
%Building the auxiliary axes at the 
%initial position 
x =[0 -1 0 0]'; 
y =[1 0 0 0]'; 
z =[0 0 1 0]'; 
o =[5 8 0 1]'; 
So = [x,y,z,o]; 
d = 2; 
plt_axes(So,d); 
%----------------------------------% 
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% Plotting the initial figure 
hold on 
grid on 
axis([0 10 0 10 0 10]) 
view(132,28) 
p_plot(L1,L2,L3,L4,L5,'k') 
%Graph legends definition 
title('Rigid transformation of a Body'); 
xlabel('X axis') 
ylabel('Y axis') 
zlabel('Z axis') 
 
%----------------------------------% 
%----------------------------------% 
%Building the Transformation matrices 
[trans1] = translation_matrix(-5,-8,0); 
[rot] = rotation_matrix('y',90); 
[trans2] = translation_matrix(0,3,3); 
%----------------------------------% 
%Call of the function responsible of transforming the solid's loops 
% and that gives the resulting rotation parameters after all transformation have been  
% executed (axis and angle). 
 
 [nL1,nL2,nL3,nL4,nL5,V,D] = transformation(trans1,rot,trans2,L1,L2,L3,L4,L5); 
%----------------------------------% 
%Transforming the auxiliary axes 
S1 = trans1*So; 
S2 = rot*S1; 
S3 = trans2*S2; 
%----------------------------------% 
%----------------------------------% 
 
%Plotting the transformed body 
p_plot(nL1,nL2,nL3,nL4,nL5,'b') 
%----------------------------------% 
%Plotting the transformed auxilary axes 
% in each transfomation stage. 
plt_axes(S1,d); 
plt_axes(S2,d); 
plt_axes(S3,d); 
%----------------------------------% 
%The program will inform the resultant angle and axis as the parameters for a possible 
% rotation by quaternion. These parameters are obtained in "transform.m" by evaluating the 
% eigen value and eigen vector of the resultant transformation matrix.  
disp('The resulting angle of rotation for the transformations made is: ') 
a = real(D(1,1)); 
angulo = acos(a)*180/pi 
disp('The resulting rotation axis for the transformations made is: ') 
rotation_axis = V(1:3,3) 
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7.1.1.1 Auxiliary functions  
 
function [ ] = p_plot(L1,L2,L3,L4,L5,d) 
%Function that plots the specific body used in this exercise 
% the loop (FACEs storing the vertices) are given as input 
%------------------------------------------------------------------------------------------- 
plot3(L1(1,:),L1(2,:),L1(3,:),d) 
plot3(L2(1,:),L2(2,:),L2(3,:),d) 
plot3(L3(1,:),L3(2,:),L3(3,:),d) 
plot3(L4(1,:),L4(2,:),L4(3,:),d) 
plot3(L5(1,:),L5(2,:),L5(3,:),d) 

 
function [trans] = translation_matrix(dx,dy,dz) 
%Function that generates a translation matrix (trans) based on input displacements relating 
% to each coordinate dx,dy,dz 
%------------------------------------------------------------------------------------------- 
A = eye(4,4); 
A(1,4)= dx; 
A(2,4)= dy; 
A(3,4)= dz; 
trans = A; 

 
function [mr] = rotation_matrix(ax,ang) 
% This function calculates a matrix of rotation (mr) to be used in a  
%  geometric transformation procedure, based on 
%  an angle and an axis of rotation that are input. 
%------------------------------------------------------------------------------------------- 
% Input: "ang" Is the rotation angle in degrees. 
%    "ax" Axis of rotation. 
% Output: "Mr" is the rotation matrix 4x4 
%------------------------------------------------------------------------------------------- 
 
ang = ang*pi/180; 
 
if (ax =='x') 
   mr=[[1 0        0         0] 
       [0 cos(ang) -sin(ang) 0] 
       [0 sin(ang) cos(ang)  0] 
       [0 0        0         1]]; 
    
elseif (ax =='y') 
   mr=[[cos(ang) 0  sin(ang) 0] 
       [0        1  0        0] 
       [-sin(ang)0  cos(ang) 0] 
       [0        0  0        1]]; 
    
elseif (ax =='z') 
   mr=[[cos(ang) -sin(ang) 0   0] 
       [sin(ang) cos(ang)  0   0] 
       [0        0         1   0] 
       [0        0         0   1]]; 
end 
 
function [nL1,nL2,nL3,nL4,nL5,V,D] = transformation(trans1,rot,trans2,L1,L2,L3,L4,L5) 
%Function that applies a resulting transformation matrix to each loop (face) of the solid 
%The function also returns the eigen value and eigen vector of the resultant transformation 
%matrix. 
%------------------------------------------------------------------------------------------- 
m = trans2*rot*trans1; 
nL1 = m*L1; 
nL2 = m*L2; 
nL3 = m*L3; 
nL4 = m*L4; 
nL5 = m*L5; 
[V,D]=eig(m); 



UNDERLYING TOPICS IN CAD / CAM / CG Dr. Oscar E. Ruiz S. 
CAD/CAM/CG Laboratory - EAFIT University - Medellin, Colombia  

Copyright A.S.M.E. (American Society of Mechanical En gineers) 

This material is property  of the American society of mechanical engineers (ASME). All copy or  reproduction is forbidden. Personal 
Copy of  Prof. C. U. Xoán Leiceaga Baltar . 

147

function plt_axes(S,d) 
% This function plots an auxiliary coordinate system (X,Y,Z). It is useful to have all the 
% information concerning the auxiliary axes packed in one matrix S, in order to perform  
% transformations on it. 
% Input: S = [x,y,z,o]; 
%    "x","y","z" are column vectors for the axes  
%     (i.e. X = [1 0 0 0]', Y = [0 1 0 0]', Z = [0 0 1 0]' ) 
%    "o" the homogeneous-coordinate-point origin from  
%     which the three axes are going  
%     to start. (column-wise) 
%    "d" is an optional input, it represents a scaling factor  
%     for the axes when it is  
%     dimensionally necessary. 
%------------------------------------------------------------------------------------------- 
if (nargin == 1) 
   dim = 1; 
else 
   dim = d; 
end 
 
x = S(1:3,1)'; 
y = S(1:3,2)'; 
z = S(1:3,3)'; 
o = S(1:3,4)'; 
x = ( x/norm(x) )*dim; 
y = ( y/norm(y) )*dim; 
z = ( z/norm(z) )*dim; 
ox = [o',(o+x)']; 
oy = [o',(o+y)']; 
oz = [o',(o+z)']; 
 
plot3(ox(1,:),ox(2,:),ox(3,:),'r x --') 
hold on 
plot3(oy(1,:),oy(2,:),oy(3,:),'m s --') 
hold on 
plot3(oz(1,:),oz(2,:),oz(3,:),'b * --') 
hold on 
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7.1.2 Rigid Transformations - Demonstrations and proofs 

 

1. Given a set of rigid transformatio ns (arbitrarily mixed rotations and translations): 
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Figure 137. Rigid Transformations. 

 

a) Show that the orientation of a body transformed by MT depends only on the rotations R1,R2 ,R4,R5 ...... Rn.. 
(translations may be ignored for purposes of  orientation). 

b) Show that R5 . R4 . R2 . R1  = R is  the rotational part of MT. 



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c) Develop an example implemented in MATLAB, with two translations and two rotations, and verify what 
you proved in (a) and (b). 

Solution 

a) Vectors, unlike points, store the information regarding to direction. When applying a rotation R and a 
translation T to a vector v, it can be seen that the orientation of the vector is immune to the translation. It 
is not important where the vector is in space.  
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Hence, when a vector is transformed by a sequence of rotations and translations, it will only be affected by the 
rotations. The translations may be neglected. 

b) Assume that a chain of transformations is applied: 
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From the first proof above, only the rotational part prevails, and can be decomposed as:  
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This confirms that a vector is only affected by rotations and not by translations. If we apply MT (the total) and 
Mr  (the reduced, rotational) transformations to an object we will get two different final positions but the same 
orientation. 
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b) Development in MATLAB 

%=================================== MATLAB MAIN SCRIPT ==================================== 
% 
% OBJECTIVE: To proof the invariability of orientation among translations. 
%     To proof de dependence of orientation among rotations. 
% 
% FUNCTIONS USED: << rotation_matrix.m, translation_matrix.m, plt_axes.m >> 
%      See appendix section 7.1.1.1 for details of these functions. 
%=========================================================================================== 
%Screen and memory cleanup 
clear 
close all 
clc 
%----------------------------------% 
%Building the auxiliary axes at the 
%initial position (origin) 
x = [1 0 0 0]'; 
y = [0 1 0 0]'; 
z = [0 0 1 0]'; 
o = [0 0 0 1]'; 
So = [x y z o]; 
subplot(1,2,1) 
plt_axes(So,3) 
%----------------------------------% 
%Graph legends definition 
title('Initial coordinate system') 
xlabel('X axis') 
ylabel('Y axis') 
zlabel('Z axis') 
grid on 
axis([-3 3 -3 3 -3 3]); 
axis equal 
%----------------------------------% 
subplot(1,2,2) 
hold on 
grid on 
view(120,30) 
%----------------------------------% 
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%Building the transformation matrices 
[rot1] = rotation_matrix('x',30); 
[trans1] = translation_matrix(2,3,5); 
[rot2] = rotation_matrix ('y',60); 
[trans2] = translation_matrix (3,1,-4); 
%Building the resulting transformation matrices 
MT = trans2 * rot2 * trans1 * rot1; 
MTR = rot2 * rot1; 
%----------------------------------% 
 
 %Application of translations and rotations 
S1t = MT * So; 
plt_axes(S1t,3) 
 
%Application of the rotations only 
S2r = MTR * So; 
plt_axes(S2r,3) 
%----------------------------------% 
%Graph legends definition 
xlabel('X axis') 
ylabel('Y axis') 
zlabel('Z axis') 
n = sprintf('The orientation of the vectors hold among translations, but it varies among 
rotations') 
title(n) 
axis equal 
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Figure 138. Showing that translations do not affect orientation of the object. Only rotations do so 
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7.1.3 Additional cases of mirror transformations  

7.1.3.1 Mirror about XZ plane 

(Inversion of Y)  

Z
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(X1,Y1,Z1)

(X2,Y2,Z2)

 
Figure 139. Mirror about the XZ plane. 

Let a point with coordinates P1(X1 ,Y1 ,Z1). To take it to another position in space of coordinates (X2 ,Y2 ,Z2 ) 
such as 
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its mirror image about the XZ plane is calculated. This procedure is illustrated in matrix form in Equation 47. 
The transformation matrix is shown in Equation 48.  
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Equation 47. Mirror transformation about the XZ plane  
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Equation 48. Mirror transformation matrix about the XZ plane. 
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7.1.3.2 Mirror about a pl ane X = Y 

(Interchanges X with Y)  
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Figure 140. Mirror about a plane X = Y  

Let a point with coordinates P1(X1 ,Y1 ,Z1). To take it to another position in space of coordinates (X2 ,Y2 ,Z2 ) 
such as 
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its mirror image about the X = Y plane is calculated. This procedure is illustrated in matrix form in Equation 
49. The transformation matrix used is shown in Equation 48.  



















⋅=



















⋅



















=



















1

Z
Y
X

Y=X plane

1

Z
Y
X

1000

0100
0001
0010

1

Z
Y
X

1

1

1

1

1

1

2

2

2

)mirror(  

Equation 49. Mirror transformation about the plane X = Y. 
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Equation 50. Mirror transformation matrix about the X = Y plane  

Notice that mirror (plane X=Y) is not a rigid transformation since it doesn’t satisfy U1 × U2 = U3.  



UNDERLYING TOPICS IN CAD / CAM / CG Dr. Oscar E. Ruiz S. 
CAD/CAM/CG Laboratory - EAFIT University - Medellin, Colombia  

Copyright A.S.M.E. (American Society of Mechanical En gineers) 

This material is property  of the American society of mechanical engineers (ASME). All copy or  reproduction is forbidden. Personal 
Copy of  Prof. C. U. Xoán Leiceaga Baltar . 

154

 

7.1.3.2.1 Example. Application of the Householder transformation. to perform a mirror 
about the plane X = Y 

For a mirror about the plane X = Y, the corresponding normal (unitary) vector and the Householder 
transformation matrix are illustrated in Figure 141. 
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Figure 141. Procedure based on the Householder reflector to obtain  the  transformation matrix for a mirror about the plane X = Y. 

As shown, the result obtained is the same reached before for the mirror reflection through plane X = Y. 
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7.2 CHAPTER 4 - Examples of control point generation (MATLAB code) 

 

7.2.1 Example. (sphere) 
 
function  [Px,Py,Pz] = sphere() 
% This function generates the control points for a shpere 
%------------------------------------------------------------------------------------------- 
% EAFIT University 
% Dr. Prof. Oscar E. Ruiz S. 
% Colombia - Medellin 
%=========================================================================================== 
 
close all 
 
R   = 10;    % Radius of shpere 
n_arcs  = 80;    % number of generative arcs 
n_pts  = 20;    % Number of points per arc 
d_alf  = pi/n_pts;   % Incremental step of paremeter 
d_th  = 2*pi/n_arcs;  % Incremental step of paremeter 
 
Px   = []; 
Py   = []; 
Pz   = []; 
 
for (th = 0 : d_th : 2*pi) 
   i = 1; 
 x   = []; 
   y   = []; 
   z    = []; 
   for (alf = 0 : d_alf : pi) 
      x(i,1) = R*sin(alf)*cos(th); 
      y(i,1) = R*sin(alf)*sin(th); 
      z(i,1) = R*cos(alf); 
      i = i+1; 
   end 
   figure(1);hold on;grid on 
 plot3(x,y,z,'.') 
 view(145,20) 
 axis equal 
 
   Px = [Px; x']; 
   Py = [Py; y']; 
   Pz = [Pz; z']; 
    
end 
figure(2) 
surf(Px,Py,Pz) 
grid on 
view(145,20) 
axis equal 
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7.2.2 Example. (Cone) 

 
function  [Px,Py,Pz] = cone_z() 
% This function generates the control points for a cone aligned with the z-axis 
% Uses a longitudinal proportion expression for generating points on a revolving line 
%------------------------------------------------------------------------------------------- 
% EAFIT University 
% Dr. Prof. Oscar E. Ruiz S. 
% Colombia - Medellin 
%=========================================================================================== 
close all 
clc 
 
H   = 30;     % Height of the cone 
R   = 10;     % Radius of the cone 
npts  = 20;     % Number of points on the generative line 
n_slices  = 40;     % Number of generative lines 
d_alf  = 1/(npts-1);   % Increment step of longitudinal parameter 
Pint  = zeros(npts+1,3);  % initialization of array of points in the generative line 
rev   = (2*pi);    % amount of revolution 
d_th  = rev/(n_slices-1); % Increment step of angular parameter 
 
Px   = []; 
Py   = []; 
Pz   = []; 
 
for( th = 0:d_th:rev ) 
   P1 = [R*cos(th),R*sin(th),0]; 
 Po = [0,0,H]; 
   i = 1; 
 for( alf = 0:d_alf:1 ) 
       
      Pint(i,:) = (1-alf)*Po + P1*(alf);  % longitudinal proportion expression 
      i = i+1; 
   end 
   figure(1);hold on;grid on 
   plot3(Pint(:,1),Pint(:,2),Pint(:,3),'.') 
   view(145,20) 
 
   Px = [Px; Pint(:,1)']; 
   Py = [Py; Pint(:,2)']; 
   Pz = [Pz; Pint(:,3)']; 
   Pint = zeros(npts+1,3); 
end 
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7.2.3 Example. (Cylinder) 

 
function  [Px,Py,Pz] = cylinder_z() 
% This function generates the control points for a cylinder aligned with the z-axis 
%------------------------------------------------------------------------------------------- 
% EAFIT University 
% Dr. Prof. Oscar E. Ruiz S. 
% Colombia - Medellin 
%=========================================================================================== 
 
close all 
 
H   = 10;       % Height of the cylinder 
R   = 5;       % Radius of the cylinder 
npts  = 20;       % number of points per generative vertical line 
nslices  = 50;       % number of generative vertical lines 
revs  = 2*pi; 
 
dth   = revs/(nslices); 
dh   = H/(npts-1); 
Px   = []; 
Py   = []; 
Pz   = []; 
 
for (th = 0:dth:revs) 
   i = 1; 
   x = []; 
   y = []; 
   z = []; 
   for (h = 0:dh:H) 
      x(i) = R*cos(th); 
      y(i) = R*sin(th); 
      z(i) = h; 
      i = i+1; 
   end 
   figure(1);hold on;grid on, view(145,20),axis equal 
   plot3(x,y,z,'.') 
 Px = [Px; x]; 
   Py = [Py; y]; 
   Pz = [Pz; z]; 
end 
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7.2.4 Example. (The Möbius Band)  

function  [Px,Py,Pz] = mobius_band() 
 
% This function generates the control points for a mobius band 
% Uses a longitudinal proportion expression for generating points on a revolving line 
%------------------------------------------------------------------------------------------- 
% EAFIT University 
% Dr. Prof. Oscar E. Ruiz S. 
% Colombia - Medellin 
%=========================================================================================== 
 
close all 
 
R    = 20; 
n_slices  = 50;     % INT. Number of generative lines to make along theta. 
rev    = (2*pi);    % Amount of revolution to perform about theta. 
dth    = rev/n_slices;  % Increment step for the sweep angle theta. 
n_pts   = 10;     % Amount of points in the generative line. 
dalf   = 1/(n_pts-1);   % Increment step for the point coordinate generaion on 

the line. 
L    = 10;     % Length of the generative line. 
 
Px    = []; 
Py    = []; 
Pz    = []; 
Pint   = []; 
for (th = 0:dth:rev) 
   gama  = 1/2*th;       % Control of the number of loops the band will make 
   P1   = [(R-L/2*cos(gama))*cos(th),... 

   (R-L/2*cos(gama))*sin(th),... 
           (-L/2*sin(gama))]; 
   P2   = [(R+L/2*cos(gama))*cos(th),... 
           (R+L/2*cos(gama))*sin(th),... 
           (L/2*sin(gama))]; 
   
   for ( alf = 0:dalf:1 ) 
      Pint = [Pint; (alf)*P2 + (1-alf)*P1 ]; 
   end 
    
   figure(1) 
   plot3(Pint(:,1),Pint(:,2),Pint(:,3),'.') 
   hold on; grid on;axis equal  
   Px  = [Px; Pint(:,1)']; 
   Py  = [Py; Pint(:,2)']; 
   Pz   = [Pz; Pint(:,3)']; 
   Pint  = []; 
    
end 
figure(2) 
surf(Px,Py,Pz) 
grid on 
axis equal  
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7.3 CHAPTER 5 – Example 3 – Implementation in MATLAB – 

%=================================== MATLAB MAIN SCRIPT ==================================== 
% Appendix Chapter 5  -GEOMETRIC MODELING- 
% exercise_CP3_01.m 
% 
% OBJECTIVE:   To integrate the concepts of transformations, 
%       boundary representations, and parametric curves. 
% 
% FUNCTIONS USED: << rotation_matrix.m >>  
%       << translate_matrix.m >> 
%       << draw_solid.m >> 
%       << gen_solid.m >> 
%       << gen_surf.m >> 
%       << scale.m >> 
%       << transf_1.m >> 
%       << transf_2.m >> 
%       << transf_3.m >> 
%       << transmsh.m >> 
%------------------------------------------------------------------------------------------- 
% EAFIT University 
% Dr. Prof. Oscar E. Ruiz S. 
% Colombia - Medellin 
%=========================================================================================== 
clear all 
clc 
clf 
 
% Solid 
[solid,dims_of_loops]= gen_solid; 
draw_solid(solid,dims_of_loops); 
 
%primitive 
[PX,PY,PZ] = gen_surf; 
 
% Tranformation 1: face 15 
[P1X,P1Y,P1Z] = transf_1(PX,PY,PZ); 
mesh(P1X,P1Y,P1Z); 
 
% Tranformation 2: face 16 
[P2X,P2Y,P2Z] = transf_2(PX,PY,PZ); 
mesh(P2X,P2Y,P2Z); 
 
% Tranformation 3: face 17 
[P3X,P3Y,P3Z] = transf_3(PX,PY,PZ); 
mesh(P3X,P3Y,P3Z); 
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7.3.1 Auxiliary functions  

function [ ] = draw_solid(obj,loop_dim) 
% This function draws the solid whose loops are packed in obj,  
%  and whose loop dimensions are contained in loop_dim. 
%------------------------------------------------------------------------------------------- 
% Input: obj: packed loops of the body. Each loop has format 
%      v0, v1,....vn, v0. Each vertex Vi is a (3x1)or (4x1) vector. 
%    loop_dim: a (1xM) vector of integer numbers (M=number of loops 
%      in "obj". loop_dim(i) is the number of edges of loop i-th. 
% Output: none. The routine draws the solid. 
% 
%------------------------------------------------------------------------------------------- 
N=size(obj,2); 
i=1; 
st=0; 
 
while (i<=N) 
   if (st==0) 
      draw=[obj(:,i)]; 
      st=1; 
   else if (st==1) 
         draw=[draw obj(:,i)]; 
         if (draw(:,1)==obj(:,i)) 
            plot3(draw(1,:),draw(2,:),draw(3,:)) 
            st=0; 
            hold on 
            grid on 
            axis equal 
         end 
      end 
   end 
   i=i+1; 
end 
xlabel('EJE X') 
ylabel('EJE Y') 
zlabel('EJE Z') 
title('SOLID BODY') 

 
function [solid,dims_of_loops] = gen_solid 
 
% Coordinates of the vertices 
v1= [10  0  10 1]'; 
v2= [0   0  10 1]'; 
v3= [10  0  0  1]'; 
v4= [0  10  10 1]'; 
v5= [0  10  0  1]'; 
v6= [10 10  0  1]'; 
v7= [0  20  0  1]'; 
v8= [10 20  0  1]'; 
v9= [10 20  3  1]'; 
v10=[0  20  3  1]'; 
v11=[3  10  10 1]'; 
v12=[7  10  10 1]'; 
v13=[7  10  6  1]'; 
v14=[3  10  6  1]'; 
v15=[10 10  10 1]'; 
v16=[0  0   0  1]'; 
v17=[8  4   5  1]'; 
v18=[8  4   8  1]'; 
v19=[6  4   8  1]'; 
v20=[6  4   5  1]'; 
 
%Packing of loops 
%lump shell 
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L1=[v1 v15 v12 v11 v4 v2 v1]; 
L2=[v1 v3 v6 v15 v1]; 
L5=[v15 v6 v5 v4 v11 v14 v13 v12 v15]; 
L8=[v2 v4 v5 v16 v2]; 
L9=[v2 v16 v3 v1 v2]; 
L11=[v3 v16 v5 v6 v3]; 
L12=[v14 v13 v14]; 
L17=[v12 v13 v14 v11 v12]; 
B1=[L1 L2 L5 L8 L9 L11 L12 L17]; %Big box 
%lump2  shell3 
L3=[v6 v8 v9 v6]; 
L4=[v7 v5 v10 v7]; 
L6=[v6 v9 v10 v5 v6]; 
L7=[v9 v8 v7 v10 v9]; 
L10=[v5 v7 v8 v6 v5]; 
B2=[L3 L4 L6 L7 L10]; %wedge 
 
% Solid 
solid=[B1 B2]; 
dims_of_loops=[6 4 8 4 4 2 4 3 3 4 4 4]; 

 
function [PX,PY,PZ] = gen_surf 
% This function generates a half cylinder surface.  
% The axis of the cylinder is the Z axis. Its radius is R=1. 
%------------------------------------------------------------------------------------------- 
% Input: none 
% Output: PX, PY, PZ: the mesh for the half cylinder 
% 
%------------------------------------------------------------------------------------------- 
R=.5; 
dH=0.1; 
dth=15; 
PX=[]; 
PY=[]; 
PZ=[]; 
i=1; 
for ang=0:dth:180 
   ang=ang*pi/180; 
   x=R*cos(ang); 
   y=R*sin(ang); 
   j=1; 
   for H=0:dH:1 
      z=H; 
      PX(i,j)=x; 
      PY(i,j)=y; 
      PZ(i,j)=z; 
      j=j+1;              
   end 
   i=i+1;      
end 

 
function [M] = scale(Sx,Sy,Sz) 
 
s=[Sx 0 0 0 
   0 Sy 0 0 
   0 0 Sz 0 
   0 0 0 1]; 
M=s; 
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function [M] = rotation_matrix(ang,ax) 
% This function produces the rotation matrix 
%  in homogeneous coordinates. Rotation is about one  
% of the World Coordinate System: X, Y or Z. 
%------------------------------------------------------------------------------------------- 
% Input: ang= angle of rotation (in degrees) 
%    ax = axis of rotation ('X', 'Y', 'Z') 
% Output: M: the 4x4 homogeneous rotation matrix. 
%------------------------------------------------------------------------------------------- 
 
ang=ang*pi/180; 
 
if (ax=='X') 
   m=[[1 0 0 0] 
      [0 (cos(ang)) (-sin(ang)) 0] 
      [0 (sin(ang)) (cos(ang)) 0] 
      [0 0 0 1]]; 
elseif (ax=='Y') 
   m=[[(cos(ang)) 0 (sin(ang)) 0] 
      [0 1 0 0] 
      [(-sin(ang)) 0 (cos(ang)) 0] 
      [0 0 0 1]]; 
elseif (ax=='Z') 
   m=[[(cos(ang)) (-sin(ang)) 0 0] 
      [(sin(ang)) (cos(ang)) 0 0] 
      [0 0 1 0] 
      [0 0 0 1]]; 
else 
   'error: rotation_matrix( ): wrong axis' 
   keyboard 
end 
M=m; 

 
function [P1X,P1Y,P1Z] = transf_1(PX,PY,PZ) 
% This function transforms a mesh PX, Py, PZ to a new 
%  position. The transformation chain is:  
% (1) rot(z,_), (2) scale(), (3) trans() 
%-------------------------------------------------------------------------------- 
% Input: PX, PY, PZ: the input mesh 
% Output: P1X, P1Y, P1Z: the transformed mesh 
% 
%-------------------------------------------------------------------------------- 
[M1] = rotation_matrix(180,'Z'); 
[M2] = scale(2,2,3); 
[M3] = translate_matrix(7,4,5); 
Mt1 = M3*M2*M1; 
[P1X,P1Y,P1Z] = transmsh(PX,PY,PZ,Mt1); 
 
function [P2X,P2Y,P2Z] = transf_2(PX,PY,PZ) 
% This function transforms a mesh PX, Py, PZ to a new 
%  position. The transformation chain is:  
% (1) scale(), (2) trans() 
%-------------------------------------------------------------------------------- 
% Input: PX, PY, PZ: the input mesh 
% Output: P2X, P2Y, P2Z: the transformed mesh 
% 
%-------------------------------------------------------------------------------- 
 
[M1] = scale(2,2,3); 
[M2] = translate_matrix(7,4,5); 
Mt2 = M2*M1; 
[P2X,P2Y,P2Z] = transmsh(PX,PY,PZ,Mt2); 
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function [P3X,P3Y,P3Z] = transf_3(PX,PY,PZ) 
% This function transforms a mesh PX, Py, PZ to a new 
%  position. The transformation chain is:  
% (1) rot(z,_), (2) scale(), (3) trans() 
%------------------------------------------------------------------------------------------- 
% Input: PX, PY, PZ: the input mesh 
% Output: P3X, P3Y, P3Z: the transformed mesh 
% 
%------------------------------------------------------------------------------------------- 
 
[M1]= rotation_matrix(180,'Z'); 
[M2]= scale(4,4,4); 
[M3]= translate_matrix(5,10,6); 
Mt3 = M3*M2*M1; 
[P3X,P3Y,P3Z]= transmsh(PX,PY,PZ,Mt3); 

 
function [M] = translate_matrix(dx,dy,dz) 
% This function produces the translation matrix 
%  in homogeneous coordinates, for displacement dx, dy, dz.  
%------------------------------------------------------------------------ 
% Input: dx,dy,dz= displacement vector 
% Output: M: the 4x4 homogeneous translation matrix. 
%------------------------------------------------------------------------ 
 
A = eye(4,4); 
A(1,4)= dx; 
A(2,4)= dy; 
A(3,4)= dz; 
M=A; 

 
function [Px,Py,Pz] = transmsh(X,Y,Z,M) 
% This function transforms a mesh X, Y, Z by a (4x4).  
% transformation M. 
%------------------------------------------------------------------------------------------- 
% Input: X, Y, Z: the mesh to transform 
%    M : the homogeneous transformation matrix 
% Output: Px,Py,Pz: The transformed mesh. 
% 
%------------------------------------------------------------------------------------------- 
 
[r,c]=size(X); 
 
Px=[]; 
Py=[]; 
Pz=[]; 
 
for i=1:r 
   for j=1:c 
      Pto_i=[X(i,j) Y(i,j) Z(i,j) 1]'; %Initial point  
      Pto_f=M*Pto_i; %Final point 
      Px(i,j)=Pto_f(1,1); 
      Py(i,j)=Pto_f(2,1); 
      Pz(i,j)=Pto_f(3,1); 
   end 
end 
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