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INTRODUCTION

The purpose of this notes is to introduce the reader in basic but important aspects of CAD, CAM and
Computer Graphics. The pre-requisites for understanding it are the normal mathematical tools that are part of
any undergraduate engineering curricula, and a reasonable interest in scientific programming.

Although the material seems aimed to practitioners and programmers in CAD / CAM / CG, the underlying
concepts directly apply to kinematics, robotics, machine tool characterization and, more recently, to medical
applications in the boundary with engineering disciplines. This is particularly true for the section on
geometric transformations, which is the basis for understanding and working with kinematics and dynamics.
A shallow and pragmatic review of topology, as applied by engineersto CAD, allows the reader to understand
many particularities and limitations of t he CAD packages. It allows to make informed decisions on the data
format used to transmit geometric information for design and manufacturing operations.

The material on parametric curves and surfaces is aimed to inform the reader of the basic technical challenges
met by the early researcher on this topic (Bezier and De Casteljeau). In this a way, that procedures and
formulae proposed by those researchers become natural consequences when attempting to solve the problem
of interpolating sequences of points in E3. The reader will find in here surface types that are not in the
common literature (and whose engineering application may not be widespread), but which oblige a complete
understanding of the basic concepts.
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1. BASIC CONCEPTS OF PROGRAMMING

11 Algorithms

The solution of a problem can be developed by means of a mathematical model. This model can be
represented as a set of instructions that are realized by an algorithm. Each instruction has a precise meaning
and is executed afinite number of times.

12 Pseudo language

The pseudo language or pseudo code is a way to describe sequentially the logical procedure that an algorithm
must realize. It is also the previous step to the codification or implementation of the algorithm in any
programming language. Its use allows the planning of the program, that is to say, the programmer is only
interested in the logic and the control structures, not in the syntactic rules of a specific language. This
facilitates the correction of possible logical errors that the algorithm may contain.

(function Find maximum value

e

3) {Let M = array of real numbers}

4) maximum = value of the first position in the array M;
(5

(6) for (each positioniinarray M)

(7

(8) if (valueiin array M is greater than value stored in maximum)
(9) {

(10 update the value of maximum;

(11) }

(12) }

(13)

(14) {maximum = maximum value in M}

Figure 1. Pseudo codestructure

In Figure 1 some important characteristics of a pseudo code are observed. The first of them is that small
letters in bold are used for the key words of programming languages. The conditions of flow control (f, for,
while) are used in the propositions of the pseudo language. The conditional expressions as the one expressed
in Figure 1 line (8), may be informal propositions, instead of conditional expressions of a programming
language. Notice that the assignment in the Figure 1 line (4) uses an informal expression to the right, and that
the cycle for of Figure 1 line (6) closes the repetition of the set of instructions under its domain. The domain
is a group of instructions that opens and closes the pair of characters"{" and"}" respectively.
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121 Assertion (Pre, Pogt, Inv)

The status of a program can be described by using propositions located in any place of interest. This type of
proposition is called an assertion. In the design and interpretation of the different parts of the pseudo code,
the assertions are between brackets “{ }”. The assertion describes the status of the variables of the program
when the execution passes by the point where it is located. Therefore the assertion is NOT an executable
instruction, but only a description of a status of the program. In conclusion an assertion doesn't have any
effect on the execution of the program.

By definition, when describing the state of the execution of the program (with all the possible cases) an
assertion is rever false. For example, the assertion in Figure 2 indicates that when the execution of the
program passes by it, the variableInterrupter 1is True and Interrupter 2is False.

{ (Interruptorl ==True) U (Interruptor2 = = False) }

Figure 2. Representation of an assertion

1.2.2 Precondition and postcondition

When one wants to specify the operation of a program, itsinitial and final status should be described so that
its correct execution can be verified. To describe the initial status of the program, an assertion called

precondition is used and to describe the final status of the program another assertion called postcondition is
used as well. Retaking the pseudo code from Figure 1, it is established that the precondition and the
postcondition are defined as they are shown in Figure 3.

{pre: M = array of real numbers}
{post: Maximum = maximum value in M}

Figure3.Preconditionand postcondition

It is recommended to specify the precondition at the beginning and the postcondition at the end of the code.
They should be fulfilled every time that the program is executed

13 Executableinstructions

131 Assignment, verification or comparison

The use of variables allows the simulation of a process, task or problem in such a way that the information
stored in them can be manipulated according to the user's necessity. An assignment example is observed in
Tablel.

Table 1. Graphic Representation of an assignment

a=1 Arithmetic assignation

color = ‘rojo’; Character string assignation
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The computer executes each assignment sentence in two stages. In the first one, the value of the expression
that iswritten to the right side of the assignment operator is calculated. In the second stage, the valueis stored
in the variable whose name is written to the | eft of the assignment operator.

In the assertions that evaluate the content of variables in a program the relationship or comparison operators

shown inTable 2 are used

Table 2. Comparison symbols

MATLAB | C/IC++ MEANING
> > Greater than
< < L ower than
== == Equal to
~= | = Different d
<= <= Lower or equal to
>= >= Greater or equal to

1.3.2 Sdection and decision making

It is necessary to incorporate decision structures, so that an algorithm can follow different execution routes. A
decision instruction evaluates a condition and in function of the result obtained, the execution branches. The
most used structure in programming languages is if and else. Table 3 illustrates the general form of this
instruction and an example of its usage. Generic illustration of conditional instructions Program that
calculates the absolute value of a number by means of decision structures

Table3. lllustration of Conditionals

if (conditionl)

{
group of commands 1;
}
elseif (condition2)
{

group of commands 2;

}
elseif (condition3)
{

}

else

{

group of commands 3;

group of commands 4;

Genericillustrationof conditional instructions

{pre: Nisareal number}
if(N>0)
{
ABS =N
}
elseif (N<0)
{
ABS=-N
}
else
{
ABS=0
}
{post : ABS= N3
Programthat cal cul ates the absol ute val ue of a number by means of
decisionstructures

The conditions are verified one by one. If the condition is satisfied, the command block in its interior is
executed. If it isnot satisfied, the other conditions will be verified. An else should always be placed at the end

to include the pathological or not foreseen cases.
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14  Iterative commandsor cycles

The iterative commands allow the repeated execution of one or several commands, whenever a condition
initially established is satisfied. The iterative instructions are also known as cycles. Every cycle should be
characterized by containing:
1. Preparatory instructions.
2. Condition of authorization for execution of the cycle body.
3. Invariant: an assertion that is true at the beginning of each iteration of the cycle.
4. Cycle body.
4.1Job of the cycle and maintenance of the invariant.
4.2 Advancing towards cycle ending.

The execution of an iterative command is authorized by a condition that must be evaluated as true. If the
condition is true, the body of the cycle is executed. The execution of the iterative command ends at the
moment in which the condition becomes false.

Table4. Sructureof aniterativecommand

Program that finds the maximum value of ' Diagram of the components
an array of numbers of acycle
Function Find maximum value ’

{ —
{ pre: M[1.. M= array of real numbers} B e {pre: precondition}

i=1;

maximune M[1]; @ Preparation
while (i <=N) <4---------- cmoees s CONDITION
{ SATISFIED ? “—

{inv: maximum = max j=.; (MI[i1)} < e

. . X Cyclejob and
if (ML]? maximum) > maintenance of
change the value of maximum theinvariant
}
v
=i+t D T Advance towards
} ending

{ Post: maximum = max =1 (M[j])} «----

) b §— e
A4

Variablein final state. Result |

In order to specify the behavior of an iterative command, an assertion or statement (it is not an executable
instruction) isidentified. This assertion iscalled invariant and represents the status of the execution exactly
after the Boolean condition controlling the iterations, and holds invariant and true each time the cycle body is
going to be executed (see Table 4). Therefore, theinvariant determines (a) the preparation for theloop, (b) the
hard-work part of the loop, and (c) the advancement towards termination. In addition, the logical ecuation:
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“invariant AND not (Boolean condition for the loop)” must coincide with the Post-condition. Becauseits
massive influence in al other instructions of an iterative instruction, the invariant is the single-most important
logical predicate to be identified when writing such instructions

One of the most common iterative commands is for (Figure 4). Its operation results from the previous
knowledge of the number of iterations (N) required to execute the block of commands. The iterative cycle
stops when the execution reaches this predetermined number of iterations. Inside the area of commands the
variable “i”, which carries the value of the number of iterations, should NOT be manipulated, becausethe
cycle for automatically updates it in each cycle.

for i £N)
{

{inv: (invariant)}
commands

}

Figure4. Iterativestructurefor

While, is another iterative command (Figure 5) whose authorization to be executed is controlled explicitly in
its preparation and within the commands in its domain. In these commands, when the execution has reached
its objective, it so happens that the condition is not fulfilled anymore and therefore the cyclewhileends. Then
thefollowing instruction to the cycle whileis executed.

while (condition)

{

{inv: (invariant)}

commands
variable = variablex increment

Figureb. Iterativestructurewhile

The use of whileallows the termination of the cycle according to the user's necessities.

15 Programmingcriteria

For the interpretation of a program the use of certain programming norms that allow the follow up of the
program become necessary, as well as the detection and correction of errors.

151 Structure

A program or task can be realized in two ways. In the first, commands should be grouped by specific
functions and then call them from a main code. By doing so, a short, simple and easy to understand code is
achieved. The second aternative is to make a long and complex sequence of commands, therefore it is not
advisable.

A function is a short sequence of commands that solves a specific problem. For complex tasks this problem
will be divided in conceptually consistent sub problems. Each one will be responsibility of a function. The
decomposition of sub-problems in yet other sub-problems follows the same philosophy, until achieving that
the biggest problem is solved with the collaboration of several sub routines and small functions.
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Figure 6 shows a group of calls and dependencies inside the program or function F. An arrow of F; toward F;
indicates that the function F uses the function F.

Figure6. Graph of functioncalls

It is always suggested to begin to write the functions from the base of the graph of calls (Fs, Fs, Fo, F10, Fs). It
alows to write and to prove each function as they end, thus saving time and avoiding errors.

15.2 Name of functions and variables

In the case of the functions, the name should describe its purpose clearly. The name of the variables has to be
of mnemonic type so that it describes as much as possible their content. In order to increase the information
provided by the names, it is necessary to implement the use of comments inside the program that give bigger

description of use and type of data.

It is not advisable that numeric literals (constants) or others (1.05, 2, -1, ' &, etc) appear in the program. It is
necessary to assign the literal to a variable and to use only that variable for that objective during the whole
program. In the event of being required the change of such literal, it is easier to change the value in the initial
assignment of the variable than to look for that literal in each instruction where it was used and replace the
value. See Table 5.

Table 5. Usage of Symbolic Names

NOT RECOMENDED OPTIMAL
if (N==2) size=2;
{ . o
=2 . if (N size
k= ki2; t
i=2
} k= Kisize
)

Notice that the use of constant2 in the substitution process on the left side of Table 5 is not convenient. One
reason is that its processis risky because NOT al constants 2 should be changed (See Table 5right side).
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15.3 Validation of data

It must be verified that the data input to every function are within the established range and that they have

consistent values. There may exist erroneous data which enter the function, if this happens the problem should
be solved. If it is not possible the program must be aborted and a report should be made informing the user

about the existing error.

154 Errors

There exist two types of errors:

Of Syntax: they are found in the compilation phase or interpretation phase of the program, they occur due to
characteristic causes of the language syntax. They are easy to correct.

Of Logic: they occur during the execution of a program. They are difficult to detect, they may or may not
stop the execution of the program, thus producing erroneous results. The following are typical errors:

1. Inconsistent handling of matrix dimensions, operating matrices whose dimension is NOT compatible.
2. Omission of the “advancing towards ending” in awhile cycle.

3. Incorrect calls of functions or disorder inthe input parameters.

155 Association of operations

When using expressions, which involve two or more operators, it is important to apply the priority rules,

which govern the order and the precedence of the operations. When a combination of conditions must be
fulfilled, it is necessary to use grouping signs in order to ensure that they are executed in the desired sense.
(Table 6).

Table 6. Association of conditions

NOT RECOMENDED IMPROVED
size = 3; size = 3;
degrees = 2; degrees=2,
if ~N<sizzUM > degrees UR==1 if (~((N<size UM > degrees)) JU(R==1)
{ {
} }
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15.6 Indentation

Indentation is a tabulation that is controlled by the user, in which executions or specific tasks are visually
grouped. A good indentation improves the design; it facilitates the debugging and modification of a program

as well.

The structure of a program that calculates the factorial of a non-negative number is taken as an example
(Table 7). It is obvious that the right side code is clearer, since it can be easily established which tasks are

executed in the iterative command while.

Table 7. Comparison betweenindented and non-indented code.

Thismaterial isproperty of theAmerican society of mechanica engineers (ASME). All copy or reproduction isforbidden. Personal
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NON-INDENTED CODE INDENTED CODE
{pre: N3 0} {pre N3 0}
i=0; i=0;
fact = 1; fact=1;
while (it N) while(it N
{inv: fact = (i-1)!}
fact =fact* i; {inv: fact = (i-1)! }
i=i+1;} fact = fact* i;
{post: fact =N! } i=i+1;

}

{post: fact =N }
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16 EXERCISES - BASIC CONCEPTS OF PROGRAMMING.

A brief explanation about the operating of some MATLAB commands will be found on this chapter, creation
of new functions and how to execute them from a main program. The commands are recognized because their
characters are in bold letters.

16.1 TheVariableWorking Spacein MATLAB.

OBJECTIVE:

To learn some basic commands.
PROCEDURE:

To obtain information. Type the command help and then the name of the topic or command to be consulted.
help

1. Eliminateoneor al the variables from the workspace. clear
2. Clean the command window. clc

3. Listthevariables of the workspace. who

4. Seethe latest computed result. ans

The commands used to work on MATLAB may be typed directly on the command window. They can also be
previously written on atext file with extension “.m”. When typing the file name at the MATLAB prompt the

commands are read directly from the file and executed sequentially. In order to create this type of files (also

called scripts), the “New M-file” key is selected on the MATLAB menu (File / New / M-file), allowing the
invocation the MATLAB text editor for their creation and debugging. For the correct operation of the scripts
it is necessary that the directory where the file to be executed is located be included on the MATLAB work

path directories (see the path command).

Thismaterial isproperty of theAmerican society of mechanica engineers (ASME). All copy or reproduction isforbidden. Personal
Copy of Prof. C. U. XoanLeiceagaBaltar.

12



UNDERLYING ToPICSIN CAD /CAM/ CG Dr. Oscar E. Ruiz S.
CAD/CAM/CG Laboratory- EAFIT University- Medellin, Colombia
Copyright A.S.M.E. (American Society of Mechanical Engineers)

16.2 Scalars, Vector and Matrix Operations in MATLAB.

OBJECTIVE:

Realize the main arithmetic operation among scalars, vector and matrices. To store the history of the session
in alog file.

PROCEDURE:

1.

© N o~ wN

10.
11.
12.
13.
14.
15.
16.

17.
18.

19.
20.
21.
22.
23.
24,
25.
26.
27.

Read the help about the diary command. Open a diary or log for the work that follows, with the name
that you wish. You will need this file at the end of this exercise.

Eliminate one or al the variables from the workspace.

Create a scalar whose value is 12. Store the value of the variable at esc;.

Create a scalar whose value is 4. Store the value of the variable at esc,.

Add the values of the variable esc; and esc,. Store the result in the variable sum_esc.

Subtract the values of the variable escy and esce. Store theresult in the variable subst_esc.

Multiply the values of the variable esc, and esc,. Store the result in the variable mult_esc.

Divide the value of the variable esc; by the values of the variable esc,. Store the result in the variable
div_esc.

Raise the value of the variable esc, to the value of variable div_esc. Store the result in the variable
exp_esc. operator .

Calculate the square root of the variable exp_esc Store the result in the variable rz_esc. sqrt

Create a 4x4 matrix M, with dl its elements equal to one.ones

Create a 4x4 matrix M, with all its elements being random numbers. rand

Create a 3x4 matrix Mz with all its elements equal to zero. zeros

Create a 4x4 identity matrix, the matrix name must be identity. eye

Multiply the value d the variable esc; by the matrix identity. Store the result in the variable mults.

Multiply the matrix mult, by the matrix M ,. Store the result in the variable mult,. To calculate M3 =
M1*M?2 verify that M1 ismx nand M2is n xp.

Multiply the value of the variable esc, by the matrix M ;. Storetheresult in the variable produc;.

Multiply the elements of the matrix produc, one by one by the elements of the matrix M, . Store the
result in the variable produc,.

Raise the element of the matrix M,to the squareroot. Store the result in the variable elev.
Create the vector (1x3) vect; = [1 2 3].

Save the first three values of an M , column in the variable vect ,.

Create a vector vecky wich values are in arange from 1 to 50 with intervals of 2. Operator :
Query the size of vectz and store the result on the variable v_size size

Transposethevector vect; and store the result on the same variable.

Multiply the vector vect, by vector vect; and store the result on the variable prod.

Close and save the log file.

Put the commands of this exercise in the file or script“ exercise CP1 002.m”. Such commands can be
found in the log file. Execute the file “ exercise_CP1_002.m" from the prompt MATLAB. script.
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1.6.3 Introduction to User Commandsfor Session Control in MATLAB.

OBJECTIVE:

Create applications to work with users interface commands. Enter the input data with the keyboard or the
mouse. This exercise must be executed from a script or aMATLAB file commands (*.m).

PROCEDURE:
1. Eliminate al the variables from the workspace
2. Clean the command window.

3. Create amenu window (for example to choose a day from the week) and store the result on the variable

day . menu.
4. Make apause and then continue with the execution. pause

5. Display a message on the MATLAB command line. It should request the user to press any key to

continue with the execution program. disp, pause

6. Display a message on MATLAB command line. It should request the user to type a number. Store the

result on the variable number . Input
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164 2D Plotting in MATLAB.

OBJECTIVE:

Plot the expression “y = sn(x)”. The x values are in arange [0, 2p] with intervals of p/12. This exercise must

be executed from a scriptor a MATLAB file commands (*.m).

PROCEDURE:

1. Eliminate al the variables from the workspace

2. Request a MATLAB graphic window. figure

Clean the graphic window. clf

Create arow vector x with valuesin [0, 2p] with intervals of p/12.
Calculate yvector as“y = sin(x)”. sin()

Plot xvsy. plot

N oo g M w

Name the axis “X” and “Y” on the graphic. xlabel, ylabel

Title the graphic. title

9. Turn on the graphic grid. grid

10. Make a pause during the execution program.

11. Change the axis limits of the graphic. Left inferior point = (-1, -2), right superior point = (3p,2). axis
12. Make a pause during the execution.

13. Turn off the graphic grid.

14. Display in the graphic window the text '(1.0, 1.1)' on the window position (1.0, 1.1). text

15. Put on the graphic window labels for the left inferior point and right superior point.

16. Display amessage on MATLAB command line. It should request the user to pick a point with the mouse,
by using the graphic window. ginput

17. Display atext on the graphic window, use the mouse to pick its position. gtext
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1.65 3D Plotting in MATLAB.

OBJECTIVE:

Calculate and plot the expression “ z = cos(x) + sin(y)” for values of x andy in arange [0, 10] with intervals

of 0.05. This exercise must be executed from a script or aMATLAB file commands (*.m).

PROCEDURE:

1. Eliminate all the variables from the workspace.

2. Request aMATLAB graphic window.

3. Clean the graphic window.

4. Create arow vector x with valuesarein [0, 10] with intervals of 0.05.

5. Create arow vector ywith values arein [0, 10] with intervals of 0.05.

6. Calculate zvector as function of “ z= cos(x) + sin(y)”. cos(), sin().

7. Plot x,y, z plot3

8. Place axeslabels“X” ,“Y” and “Z" on the graphic window.

9. Titlethegraph.

10. Turn on the graphic grid.
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1.6.6 Plotting of 2D Polygonal Regionsin MATLAB.

OBJECTIVE:

Use the mouse to capture points from the screen. Data input with keyboard or the mouse. This exercise must

be executed from a scriptor a MATLAB file commands (*.m).

PROCEDURE:

1. Eliminate one or all the variables from the workspace

2. Display amessage on MATLAB command line. It should request the user to type the number of pointsto
be captured from the screen. Store the result on the variable N

3. Request aMATLAB graphic window.

4. Clean the graphic window.

5. Change the axis limits of the graphic. Left inferior point (0,1.5), right superior point (3,3.5).

6. Label the axis X” and “Y” on the graphic window.

7. Createthevector coordX =[1,2,2,1].

8. Createthevect or coordY =[2,2,3,3].

9. Plot thevector coordY vs coordX

10. Make a pause during the execution program.

11. Request anew MATLAB graphic window.

12. Extend the vector coordX and coordY in such a way that the command to plot coordY vs coordX
generates a closed rectangl e. Plot again coordY vs coordX.

13. Freeze the graphic. hold

14. Change the axis limits of the graphic. Left inferior point (0,1.5), right superior point (3,3.5).

15. Fill theclosed polygon. fill

16. Display a message on MATLAB command line to request the user to catch the N points from the screen.

17. Usethe mouseto catch N points from the screen. Store the result on the array xy (Nx2) .

18. Plot the second column of xy vs. thefirst one.

17
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1.6.7 Generation and Plotting of 3D Meshesin MATLAB.

OBJECTIVE:

Plot a surface with different colors, by using the colormap. This exercise must be executed from a script ora
MATLAB command file (*.m).

PROCEDURE:

11.

12.

10.

11.

12.

13.

14.

Eliminate the variables from the work space.

Request a MATLAB graphic window.

Clean the graphic window.

Create arow vector x with valuesarein [-3, 3] with intervals of 0.5.
Create a y vector equal to

Calculate Xand Y matrices that define a grid, based on x and y. meshgrid
Calculatethe Z matrix in function of X and Y. peaks

Plot Z. surf

Define a gray color map. colormap

Title the graphic.

Label theaxis“X”,“Y” and “Z” on the graphic.

Request a new MATLAB graphic window.
Plot Z.

Define a different color map.

Titlethe graphic.

Nametheaxis“X”, “Y” and “Z” on the graphic.
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1.6.8 Menu Managementin MATLAB.

OBJECTIVE:

To create an applicaion by using the graph command figure and the interface command menu. Thisexercise
must be executed from a script or a MATLAB command file (*.m).

PROCEDURE:

1. Eliminate all the variables from the work space.

2. Clean the command window

3. Create a window menu with the following options: yellow, blue, red, green and exit.

4, lteratively, place atext (see table) in the graphic window, according to the user selection. To do that, you

must request and clean a MATLAB graphic window inside of the iterative cycle. text, i f, while

Selection Text Position in graphic window
‘yellow’ ‘yellow’ Lower right corner
‘blue’ ‘blue’ Upper right corner
‘red’ ‘red’ Upper left corner
‘green’ ‘green’ Lower left corner
‘exit’ -- --

5. The program must end when the user selects the option exit while
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1.6.9 Invariantsand lterative Cycles (summation of array contents) in MATLAB.

OBJECTIVE:

To calculate the summation of the values of a column vector M. This exercise must be executed from a script
or aMATLAB command file (*.m).

PROCEDURE:

1. Eliminate all the variables from the workspace.

2. Prompt the user for the number of rows of vector M. Store that value in the variable N.

3. Generate the vector M of Nx1. This vector must be filled with random values.

4, Calculate the summation of entriesinM by using an iterative cycle while with a control variablei. A

variable sum serves as a partial accumulator along the cycle execution.

5. Store the final result of sum in a new variable called Sumator.

6. Display on the command line the value of Sumator.
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1.6.10 Invariantsand lterative Cycles (average values of array contents) in MATLAB.

OBJECTIVE:

To calculate the average of the values of a column vector M. This exercise must be executed from a scriptor
aMATLAB command file (*.m).

PROCEDURE:

1. Eliminate all the variables from the work space.
2. Prompt the user for the number of rows of vector M. Store that value on the variable N.
3. Generate the vector M of Nx1. This vector must be filled with random values.

4. Calculate the summation of entriesinM by using an iterative cycle while with a control variablei. A
variable sum serves as a partial accumulator along the cycle execution.

5. Calculate the average of the M values. This result must be store in the variable mean.
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1.6.11 Invariantsand lterative Cycles (sorting or array contents) in MATLAB.

OBJECTIVE:

To sort the values of a row vector a in decreasing order. This exercise must be executed from a script or a
MATLAB command file (*.m).

PROCEDURE:

1. Writeafunction [b] = swap(a, iy, b,i 3, ig. This function swaps two values in a matrix. The inputs are:
matrix a and the locations of the two values, (i1, i2) and (i3, i4) . The output parameter is the matrix b,
equal to a, except for the swapped values.

2. Write afunction [b] = my_sort(a). The input parameter to this function is the vector (1xXN o Nx1) ain
arbitrary order. The out put parameter b is the sorted copy of a, with its values in decreasing order. This

function should contain:
2.1. A counter contl, started at one.

2.2. Aniterative cycle while which covers all the positions of vector a. Use the counter contl andthe
variable N to control the iterative cycle operation. Create inside this cycle another iterative cycle
while It must be controlled by another counter called cont2 and by the variable N. Thislast cycle
ensures the organizing of the sub-array a(1 : contl) by calling function swap.
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1.6.12 Invariants and Iterative Cycles (minima and maxima of array contents) in
MATLAB

OBJECTIVE:

To identify the maximum, minimum and the locations of those values within avector M (1IXN o Nx1). This

exercise must be executed from a scriptor aMATLAB command file (*.m).

PROCEDURE:

1. Eliminate all the variables from the work space.

2. Prompt the user for the number of rows of vector M. Store, that value in the variable N
3. Generate the vector M of Nx1. This vector must be filled with random values.

4, Initialize and use the variables:

posmax index where the maximum value is stored.
posmin: index where the minimum value is stored.
Max: maximum value of the vector.

Min: minimum value of the vector.

5. Executethe iterative cycle for controlled by i and N to calculate the maximum and minimum values

and its positions.

6. When the iterative cycle is completed store the final result is as it appears on Figure 7, in amatrix
called Minmax

éMin posming

Minmax= 3
Max  posmaxy]

Figure7. StoretheFinal Results.
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1.6.13 Functionsand Sub-Routinesin MATLAB.

OBJECTIVE:

To build aMATLAB program which calculates the average, addition, min y max, of the values of a matrix A.

This exercise must be executed from a scriptor aMATLAB command file (*.m).

PROCEDURE:

1. Prompt the user for the number of rows and columns of matrix A. Store these values in the variable M

and N respectively.

2. Generate amatrix A of MxN This matrix must be filled with random values.

3. Writeafunction[ sum] = sumt (A) that calculates the total addition (sum) of the elements of matrix A.

4. Writeafunction [ avg] = average (A that calculates the average value (avg) of the elements of matrix A.

5. Writeafunction[max_v, posmax] = maximum (A) that finds the maximum value (max_v) of the matrix

Aand stores its location in vector (1x2) posmax.

6. Writeafunction[min_v, posmin] =minimum (A) that finds the minimum value (vmin_v) of the matrix A
and stores its location in vector (1x2) posmin.

7. Writeamain program called exercise 1 13, where each one of the developed functions is used.
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2. BASIC CONCEPTSON LINEAR ALGEBRA

21 Vectorsand points

A point, represents a specific position in E. Seen from a reference frame, it is described by coordinatevalues
specific to such acoordinate system. A vector is defined as the difference between the positions of two points.
A three-dimensional vector is defined as follows: (Equation 1):

V=(—P) = 0= X1, Y2—Y1,2—2) = (%, W V)
Equation 1. Definition of a vector asthe difference between two coordinate points.

Here the cartesian components vy, Vy, vz are the components of von the X, Yand Z axes respectively.

A vector can be described as a directed line segment, between two points, with a magnitude and a direction.
For any three-dimensional vector, the magnitude is found by using Pythagoras' theorem, Equation 2.

|V|: ’Vx2+VY2 +v,2

Equation 2. Magnitude of a Vector

The magnitude of avector isindependent of its coordinate representation. The vector’s direction is given by
thedirection angles a, b, gthat the vector forms with each one of the positive coordinate axes (Equation 3).

VX
[v]

Vy

cos (g)= =% cos (b )= V]

cos (@ )=

Equation 3. Direction Cosines of a vector
It is only necessary to specify two of the direction cosines of the vector, since:
cos 2(a)+ cos 2(R)+ cos 2(?)= 1

The length of a vector v, written as |v], is called magnitude or norm. For an n-dimensional vector the lengthis
calculated as follows:

if v=[vl,v2,v3, ..... .vn] then |v|=Jv12+v22+v32+ ..... + vn2

211 Operationswith vectors

2111 Addition and Subtraction
Functionality: [+]: R" x R ® R

This operation is limited only to vectors of the same dimension, Equation 4.

Let v= v, w, v, W= Wy, Wy, W,
VE WS [V Wy, Vy Wy, vy W

Equation 4. Addition or subtraction of Vectors
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2112 Product

21.1.2.1 Scalar, inner or Dot Product (-)
Functiondity: [-]: R xR ® R
The scalar product of two vectors A and B is defined as a scalar quantity that is equal to the multiplication of

the vectors magnitudes and the cosine of the angle a between their directions. This operation is written
mathematically asin Equation 5

A- B° |A4Bcos(a) OELafp

Equation 5. Scalar product of two vectors

YBYzos (@)

A

Figure 8. Scalar product (Projection of a vector over another)

Where a is the angle between A and B. In Figure 8 the magnitudes of vectors Aand B are shown. Observe
that it is not necessary for A and B to have the same length. In this figure can also be seen that | Bjcos(a)
stands for the projection of B over A, therefore, the definition of (A-B) can be considered as the (signed)
magnitude of theprojection of B over A (or viceversa, since (A-B) = (B-A) ).

The dot product of two vectors is zero if the two vectors are orthogonal and obeys the distributive law of
multiplication with respect to addition (Equation 6).
A-(B+C)=(A-B)+(A-C)
Equation 6. Distributive law of multiplication for vectors
If Aisperpendicular to B (a = 90°), then(A-B) = 0. Also, (A B) = 0in the most trivial casein which A or B

are zero. If Aor B point to the same direction (a = (), then (A-B) = (JA| [B|). If Aand B point to opposite
directions (a = 180°), then (A-B) =-(JA| |B]). The scalar product is negative when 90°< a <180°.

Theunitary vectors, i, j and k, that define positive direction of the axes X, Y and Z of aright-handedreference
frame satisfy:
i.i=j.j=k. k=1, i.j=i.k=j.k=0, i" j=k
Equation 7. Relations between unitary axes vectors

Thevectors A and B can be expressed in component form like:

A= (ax)i + (av)i + (az)k B = (bx)i + (by)j + (bz)k
So, the scalar product of A and B given by the preceding equations can be reduced to:

(A- B)=ab+ gb +ab,

26
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In the special caseinwhich (A= B), it is seen that: (A - A) = a’ +a° + &> = VAL

21122 CrossProduct ()
Functionality: [* ]: RxR® R
Given two vectors A and B, the cross product(A ~ B) is defined as a third vector C. Thisresulting vector is
then defined as in Equation 8 and written as:
C=A"B

The magnitude of this vector is
YYo= YAYY/B/sin(a)v2

C

Figure 9. Cross product of two vectors

Observe that the quantity YA%/BYsin(a), is equa to the area of the parallelogram formed by A and B, as

shown in Figure 9. The direction of (A ~ B) is perpendicular to the plane holding A and B. The sense of this
new vector is determined based on the sense of advance of aright threaded screw. It may be more convenient
to use the right hand rule to memorize this concept, recalling that the fingers close in the same sense as is

vector A swapped onto vector B. The thumb will then point in the direction of C.

Some properties of the cross product that follow form its definition are the following:

Table 8. Propertiesof thecrossproduct.

If Aisparallel to B (a = 0° 0 180°), then (A" B) = 0; hence, (A" A) = 0

If Aisperpendicular to B, then VA" BY=1AY%/BY:

The cross product obeys the distributive law with respect to the sum.
"(B+C)=A"B+A°C

> @ DN PP

Unlike the scalar product, for the cross product it is important the order in which the operation is done,
(A” B)=-(B" A). The right handrule is away to verify this.

In the case of three-dimensional vectors, the cross product is evaluated asin Equation 8.

i ]k
C=A"B=|A, A A|=i(AB,- A.B)+j(A.B,- AB,)+k(A.B,- A.B,)
B, B, B,

C=A" B=((A/B,- A,B,).(A,.B,- A,.B),(AB,- A, B))
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Equation 8. Crossproduct of two vectorsin E®
22 Matrices

A matrixis arectangular array of m rows and n columns. The elements that conform amatrix are commonly
complex numbers. In the most part of this material, they will have null imaginary parts, that is, they will be
real numbers. Also a matrix may store non-real or complex numbers. This type of matrices will not be
considered inthis book.

If there are m rows and n columns, we say that the size of the matrix is mxn, and we refer to it asan “mxn
matrix”, or just as a “rectangular matrix”. A nxn matrix is called a“square matrix” and it is said to have size
n. The entry or element in thei'™ row and j'" column of amatrix A of size mxn, is denoted as a; (Equation 9).
NOTATION: Matrices will be written with capital letters A, B, G ...€tc.

Thematrix A of size mxn isfrequently abbreviated as A = ( g )mxn.

éa;, a, a; .. a,u
(S u
g8 Axn 8y &n
A =£: . 1
é a
gin @2 & ... @y
€. a, a; -. a,d

Equation9. Representation of an Matrix mxn

221 Propertiesof matrices

M=l3M=M>I

0=M x0=0xM

Mz =M,XM; 1 M, xM,

M :MS)(MZXMI):(MSXMZ)XMl
M3>(M2)4V|1)=M3XM1XM2

Figure 10. Propertieswithmatrices

222 Operationswith Matrices

2.22.1 Addition and subtraction

Only matrices with the same size can be added or subtracted. If Aand B are bothmx n matrices, their addition
or subtraction is a matrix resulting mxn of adding or subtracting the corresponding entries in each matrix.

If A= (&) mxnand B = (b)) mxn, their addition or subtraction is:

(A +B) = (& + bimxn
(A+B)=(B+A)
(A-B)= (B -A)
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2222 Neutral ement

The zero matrix mx n denoted by O, is a matrix of sizemxn with each entry equal to zero. In such a case
(A+O)= A= (O+A)

For every matrix A of size mxn, the zero matrix isthe neutral element of the matrix addition operation for the
set of mxn matrices.

2223 Scalar product

The scalar product of amatrix A with areal number k is defined as anew matrix. Each entry ofk Aisequal to
the product of the real number with the corresponding entry in the original matrix A Figure 11.

If A= (&) mxnand k isany real number, then the scalar product of Aand kis (Equation 10).
A :(kaij )m n

Equation 10. Scalar product of amatrixwith areal number

9 2 3 6i
it k=3 and A=g ‘b =S G
& 4y &0 12

Figure 11. Exampleof Multipliplying amatrix by a scalar

2224 Multiplication of matrices

In order to evaluate the product AB of two matrices A and B, it isrequired that the number of columns of A be
equal to the number of rowsin B.

If A= (&) mxn isamatrix of sizemxn and B = (bj),xp iSamatrix of size nxp, then ¢;is the dot productof the
th ; th
i row vector of A, g; with the | columnvector of B, b;.

Therefore, Cij=an by + aply+ ...+ 3, byj=a - by
The order of the product C= ABis: Anxn Bnxp= CGiwp
O 1 24 (?6 ! 8@' 533 36 39
A=t 5 B=%9 10 % AB=§ i
8 4 1384 e U §710 1855 20004
gl2 13 14y

Figure 12. Example of multiplication of matrices

2225 ldentity matrix

To every square matrix of size n coresponds a multiplicative neutral element. This is, there exists a unique
matrix |, of size nxn suchthat

(Aln) = (InA)= A
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For any matrix Aof size nxn, it is said that |, is the identity matrix of sizen, or simply the Identity matrix
(Equation 11).

él1 0 Ou

_ & a
l3= eO 1 O(J
g0 0 1§

Equation 11. Identity Matrix
In general, the identity will be simply noted as |, with its dimensions implicit form the context.

2226 Transposed matrix

Let matrix A = (g)mxn then the transposed matrix of A, denoted by B = AT is defined as B = (B5) nxm
where b =a;; for every ij .

>

1
PR
o W
P oA
[ ey ]

T

>

g

1

m

T

o9

1]
A
o O
OO ONC/

=

Figure 13. Exampleof amatrixtransposition

22261 Symmetric matrix
The matrix A= (&)nxnis called symmetric if A = AT Thisis, a; = by for every ij.

A symmetric matrix is symmetric across its main diagonal. Therefore, the main diagonal of A and A" arethe
same. The main diagonal of a square of order nis formed by the elements a; 1, &, ag3, .- @m.

23 Homogeneouscoordinates

A cartesian point [x, Y, 7 in E2 can be represented by a quadruple [x.h, y.h, zh, h for h T R. The quadruple
[ xh, y.h, zh, h ] issaid to be in homogeneous coordinates. The following remarks apply:

a From apoint [ %, Yn, % W] in homogeneous coordinates the corresponding cartesian point in E° can be
retrieved via [ /h , yn/w , z2/w] for w?0.

b. A point pn = [%» Y Z W in homogeneous coordinates admitsany wi R w ? 0. In this material, it is
chosenw = 1

c. If w= 1, the pointp, =[x, ¥, z 1] in homogeneous coordinates corresponds to p = [, Y, 7 in E cartesian
coordinates.

d. A vector v, in homogeneous coordinates can be seen as the subtraction between two homogeneous points;
[X2 Y2 25 1] = [%, W, zi, 1]. Therefore, it is written as v, = [y, W, Vi, 0], and it represents the cartesian
Vector V=[x, W, W in E°.

The formulation of transformations in homogeneous coordinates allows a unified mathematical treatment of
al of them (rotations, translations, projections, etc.). Such a unique representation is not possible with
cartesian coordinates, as seen later in Chapter 3 “Geometric Transformations”.
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231 Poaint

A point (x, y, 2)in homogeneous coordinate form isillustrated in Equation 12.

P, =

EOKOLY
[en] ey en en Y e} end

Equation 12. Homogeneous coor dinate formof a point. For effects of CAD/CAM/CG applicationsa =1 isused.

2.3.2 Vectors

A vector [ v, \, V] in homogeneous coordinate form isillustrated in Equation 13.
&/x

Y

goo
oo oooc

Vy =
z

m: D
o

Equation 13. Homogeneous coor dinateformof a vect or

2.3.3 Matrices

If M and P are non-homogeneous matrix and point respectively, and if P, = M . P, the same operation in
homogeneous coordinates would be

P r|>>)<‘b).[9>> o

(el Y e ey ey )
oo ooocr

YOOV

u

Equation 14. Homogeneous coor dinateformof amatrix

NOTE: For the purpose of this book, points in homogeneous coordinate form will always have a 1 at the end.
Vectors in homogeneous coordinate form will always have a 0 at the end.

24  Eigenvalues and Eigenvectors

Given asquare matrix A =[ay]. The eigenvalues | and eigenvectors x satisfy the equation::
Ax=1x , x10

31
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Wherel isaspecific scalar (real or complex number), and x is a specific vector. A scalar |, liketheoneinthe
previous equation for avector x * 0, is called an eigenvalue of A, and the vector x iscalled an eigen vector of

A corresponding to the eigenvalue .
The previous equation can also be written as:
(A-ll)x =0

These are nunknown, algebraic, linear equations Xy,..., X, (the components of x). For these equations to have
solutions x 1 O, their matricial coefficient (A - I'1) must be singular. For example, for n = 2, the matrix would
be:

éa,-?7 3y

g 8y axp-?

>

OCNC

OCNC

&,
&,

oOCNC

In components we have:
(311 - ?)Xl +apX, =0 and ayXx, + (322 - ?)Xz =0

A- Il issingular if and only if the determinant det(A - | 1), known as the characteristic polynomial of A is
zero.

aﬂ'l ap
a,- |

det(A-1.?) = =12- (A +ay,)l +aya, - a,a, =0

1 22

Equation 15. Characteristic Polynomial of amatrix A.

This equation is used to find the values of | . Since it is a polynomial with real coefficients, it may have
complex solutions. In such a case, each complex solution| = a+ ib(ab T R) guarantiesthat| = a—ibis
also a solution. The same holds for the eigenvectors: x = ¢ + id, c—id are solutionsof Ax = | x.

25 Norms of vectors and matrices

In general the “size” of a vector has been measured with the traditional Pythagorean distance
Iv] = V . v. However, there are many estimators for the size of a vector or matrix, suited for the particular
application at hand (see Table 9). In control theory, is common the use of || |l¢ for such an estimation. In
CAGD (Computer Aided Geometric Design) the norm of avector (or point) will remain asas |v| = v' . vwhile
the norm of amatrix will, in general be ||A]| = det(A).

Table 9. Normsof vectorsand matrices

NORMSOF A VECTOR NORMS OF A MATRIX

IxI, =& x " Al=8

2 2 % .
IxI, =& x?) |A|= & Diag(A)
IXI, = Lim& xF | 1A= detca)
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3. GEOMETRIC TRANSFORMATIONS

Objects in Computer Aided Geometric Design are expressed by describing two aspects: geometry and
topology. Geometry is responsible for giving dimensions and position to the particular object at hand.
Therefore, geometric transformations change the dimensions and/or positions of such objects.

Geometric transformations that only change position of the object are called rigid, while those that change
dimensions, proportions or angles of the object components are nortrigid. In order to evaluate the effects of
transformations on the geometries of objects, formalism is required to express those geometries. This
formalism isthe one of coordinate frames (or systems). Itisused in two ways: (i) To locate an object in the E®
space, a basic, omnipresent coordinate frame is defined, called the World Coordinate System (WCS), usually
noted [Xw, Yw, Zyv, Q4 and discussed below. (ii) An instantaneous coordinate system, usually called
S =[X, Yi, Zi, Q] isanchored to an object, in arbitrary position within it. A geometric transformation of the
object is totally determined if one knows the effects that it performs on that coordinate system S,
independently of how complex or large is the object. )

31 Definitions of mathematical entities

Definition. Coordinate Frame or System

A coordinate frame S=[X;, Y;, Z;, O] is formed by three vectors X, Y;, Z;, applied in point Q (Figure 14),
with X, Yi, Z linearly independent.

3.1.1 Canonical right handed or dexterous coordinate frame

A coordinate frame S=[ Xi, Yi, Zi, Q] isformed by three vectorsX;, Y, Zi, applied in point O (Figure 14).
S isright handed (or dexterous) system if it holds (a), (b) and (c) below:

a [IXl=lYl=01zl=1

b)) Xi- Yi,Yi- Z,X- Z

0 X' Y=z
The previous characteristics are equivalent to say that det( [X Y Zi]) = +1.

z \j
f
fy n
f
So ! S

fit

X Y N

Xw

Figure 14. Dexterous Coor dinate System. . ) .
Figure 15. Sequence of geometric transformations.

In domains of mechanical engineering, computer graphics, CAD, etc., a canonical, right handed coordinate
system is attached to an object undergoing a transformation f( ). For example, the system [ Xq,Y0,%,00] in
Figure 17. This system, chosen to be the canonical, right handed one only for the sake of simplicity, replaces
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the whol e object for the purposes of characterizing and testing the transformations proposed. T herefore, the
coordinate system suffers the changes caused by the transformation f( ) (it moves, rotates, or is deformed).
Moreover, defining the effects of the transformation on the coordinate system [xo ,Yo,% ,00] guarantees that
such effects will be suffered by the object as a whole. Conversely, if the transformation f( ) were unknown, it
could be determined from the initial and final coordinate systems|[ X, Yo, %, Oo] ad [ % ,¥% , 2, O ]
respectively. Therefore:

S=Xe Vi Ze o=1lX Y% Z Of=1%

3.1.2 Geometric transfor mations and matrix notation

Geometric transformations are functions f( ) that transform coordinate systems (see Figure 15). Therefore
f(S) = S+ impliesthat § was transformed by f( ) toyield S;. It turns out that f() isalinear function, and its
application can be expressed as .S = S, where f is a matrix, whose dimensions are such that matrix pre-
multiplication with S ispossible.

As geometric transformations are expressed in matrix notation, the following observations are relevant:

a) Dimensionsof S and S.; are the same, and thus, f must be a square matrix.

b) Notation f(g(S)) =f.g. S meansthat g() isapplied on S first, and then () is applied on the result g(S).
¢) Transformations are not commutative: f(g(S)) =f.g. S ? g.f. S=g(f(S)).

d) Transformations are associative: (f1. fo. ). = (fi.(f2 f3)). §=((f1. f2). ). § =f1.( & (f3. §)).

e) f.S=Si+x1 meansthat f transforms S into S«. If atransformation g exists which transforms S+ back to
S, one saysthat ginverts the effect of f. Mathematically,

g = f1(ginverts the effect of f)

f = g1 (f inverts the effect of g)

f.g = gf = land thus f.g.§5 = g.f.§ = § (f and g applied consecutively have no effect: they leave the
object unchanged).

f)  Any sequence of transformations f;, f,, f3,. f, applied to an object & in sequence f,, %, etc., can be
clustered into one equivalent transformation f,, . f,.1 ..... f». f; = f; which condensesthetotal information
on the transformation chain. Therefore, (f. fog ... . f).S=f. =S

g A transformation chain f1, fz, fs,. fn applied on S to produce &, (fa. fat ... fa.f). So=ft . So =%
implies that f; is applied on S ; to produce an intermediate result S (f; . S 1 = S). Thelast result of this
sequenceis .

32 Rigid Transformations about World Coordinate Axes

Rigid transformations are widely used in kinematics and robotics, since most of the mechanical devises can be
modeled as non-deformable under operating conditions for analyzing kinematic variables (position, velocity
and acceleration).

321 Trandation

In a translation the objects undergo a displacement, defined by a vector [ Dy, Dy, D;] as seen in the World
Coordinate System [X,, , Yo, Zv, QJ (Figure 16). Observe the movement of the coordinate system
[Xo, Yo, Zo, O] towards [Xs, Yz, Zt, Ot ] (Zo and Zs not shown for the sake of clarity).
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X
Yu O of ! Yw
Si= [ X YnZs Or
= [Xi,%,Z1, S]
A
N Yo,
f . ]
Dy .|
]
- ”
Zw So= [Xo,Y0,Z0,S] Xw Zw / Xo X
So=[Xo0,Y0,Z0,00)
Figure16. Trandationtransformation Figure 17 . Rotation transfor mation about main axis Zw.
The coordinates of the object change as:
X2 = % +Dx Y2 = y1+Dy 2 = 2+Dz

which can be written in Cartesian coordinates form as shown in Equation 16. However, to express the
translation as a multiplication rather than as an addition, homogeneous coordinates are used, as in Equation
17.

0 éxu 7,0 @(zu gél 0 0[‘:|A ug é'? u
eyzﬂ Sylﬂ g’)vﬂ 2u = (;eO 1 OH ld g? H
8z 8zH &4 éZZH eg) 0 1E|821EIg £2.H

‘?(ZU g’l 00 Dxu exlu @(1u
u g ueé,
&,0 €& 1 0o
&2 & % G,8%10=tran¢D,.D, D, ) Symp f =trangD,.D,.D,)=
€,0 € 0 1|D,U €ézu
éla & 0 0] 1gelg élo

Equation 17 . Trand ation transfor mation in Homogeneous Coor dinates

3.2.2 Rotationsabout main axes.

In this section it is assumed that the axis of rotation is one of X, , Yy, or Z,,, and therefore the pivot point is
the origin Q, (see Figure 17). The angles have plus or minus sign, according to the right hand rule applied
using the corresponding rotation axis. Therefore, a rotation by q around axis X, is not the same as arotation
of g around axis —X,. It is customary to alwayslet the axis be one of X,,, Y, or Z,, and to assign the sense of
therotation to q. As an example of rotation, if point(x,, y1, z ) isrotated around Z,, by an angle g, therotated
point (% , ¥», 2) will be:

%= Rcos (@a+q) = R. cos(@) . cogq) - R.sin(@) . sin(g) Xo= X% .€0S(Q) -y . sin(q)
y>= Rsn (a+q) = R.cos(a).sin(g + R.sin(a) .oy Qq) y2 =x1. 9n(q) + y1 . cos( Q)
5= 3

In matrix form (Equation 18):

b0 of?) -sn(?) 0 oy e &l
2 4_gsn(?)  cof?) 0 Ouxg‘/lu Ro(Z,. )S\/H
éz,0 € 0 0 1o0ded 8
€18 & o 0 010é10 610

Equation 18. Matrix formof Rotation around the Zw axis.
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&og?) -sin(?) 0 Oy
esun cod?) 0 oY
Rot(Z,,,?) = S o() ;() 1 03
& 0 o o0 13

Equation 19. Rotation Matrix around Z axis.

in similar way, a rotation around Xw is (Equation 20):

&x,u él 0 0 Ou é&,u &l
a u u & u
4. cof?) - snl?) of &y o Rot(X...q) &
2,0 0 sn(?) cof?) og ez Ve
e, u e, u e, u
elg & O 0 1lg elg elg
Equation 20. Rotation transfor mation around the Xw axis.
g 0 0 Oy
eO cog?) - sn(?) o
Rot(X,,,q) = & v
@0 sn(?) cod?) o
O 0 o 1
Equation 21 . Rotation Matrix around Xw.
in similar way, a rotation aroundY,, is (Equation 22):
o,u écod?) 0 sn(?) 00 &, &0
u é u u u
du-e 0 1 O O pyy g
€,0 &sn?) 0 cog?) 00 &, A
e, u e u u e, u
alg 6 O 0 0 lgelg alg

Equation 22. Rotation transformation around axis Yw

écod?) 0 sin(?) oy
€0 1 o ol
R é a
ot(Y,,.a) = & sn(?) 0 cod?) oG
S— o o o0 1

Equation 23. Rotation matrix around Yw

323 Rotations parallel to world axes.

Until now, rotations were performed around the coordinate axes Xw , Yw or Zw of the World Coordinate
System. This implies in particular, axes pivoted in the origin (0,0,0). However, it is common to require

rotations around arbitrary axes, parallel to X, Yyo0r Z,, anchored in an arbitrary point pv = [p,, B, pZ in ES.

In such a case, the procedure is:

a) Translate the pivot point pv to the origin. Thismeans, translate S by M, = trang( py, py, ;). Or in other
words: S;=M* S,
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b) Apply the prescribed rotation as in Equation 18 to Equation 22. The transformation would be
M, = Rot(axis, q ). Now, S, = My* S;.

c) Translate the pivot point back to its original position. This means, translate the object by
M3 = trans( p,, py, P, ). The final position would be S; = M3* S,

Therefore, the whole transformation would be: M; = Mz* MM, and S = Mza*MFAM* S =M * §=S.

The sequence to transform Sinto S can be also written as:
S =(THR,(2)T)xs,  with M, (2) =T xR, (?) 7
Equation24. Decomposition of arotation about arbitrary axisin E3

This equation happens to be applicable to a general rotation in E°,

3.24 Rigidity of Transformation vs Canonical Right Handed Systems.

i) In cartesian coordinates, a rotation Rapplied on a point ( X, Y, Z), followed by a translation T on the
intermediate result, is written as:

&l @ 6

Zyzﬂ=cR>§y13 T withR(3" 3),T(3 " 1) matrices.

20 & Ealiy
This effect can be packed into one (matrix multiplication) operation in homogeneous coordinates (for
explanation of “homogeneous coordinates’ refer to Chapter 2 “Linear Algebra’):

D P D O
I—',\’;‘% &

@: D>

Equation 25. A* homogeneouscoordinateform” transformation: Rotation followed by translation

M represents a rotation followed by a translation, in this order. From previous discussion, it is known
that its effect is different to a trandation followed by a rotation.

i) If M isapure rotation, then T = 0(T =[0,0,0] " (3x1) vector). If M isa pure translation, then R = I,
(the (3x3) identity matrix).

iii)  Arigid transformation (Equation 25) is identified because its submatrix R = [ Uy, U2, Uz ], witheach
U, of dimension (3x1), satisfies:

a) |y =|U,]=|ugl =1
b)  UMU3UMU,, U U
c) U;"U,=U;

Equation 26. Conditionsfor arigid transformation.

Where condition () suggests that the matrix does not amplify the dimensions of objects. Condition (i)
relates to maintaining angular relations unchanged. And (ii) says that the matrix keeps the right
handedness of coordinate systems. The reader may observe the similarity between the conditions for
transformation rigidity and the specifications of canonical right handed systems. Although this
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similarity is not an accident, to establish the connection is beyond the scope of this material. It must be
kept in mind that the rigidity of a M transformation must be tested with the conditions (i), (ii), (iii)in
Equation 26.

iv) If M isrigid, its application does not deform the object. It only changes its position in E°.

V) Therigidity of M isstoredinits R submatrix and not in the trandlation part T.
vi)  The transformation of system S into S, by atransformation M is written as:

éR Tu
S+1=M>S=eo lgﬁ
e u

Equation 27. Transformation of coordinate systemby Rigid Transformation.

It isimportant to keep in mind that the rigidity is a characteristic of the transformation M, while canonical

dexterity is a characteristic of the coordinate system S or S., that is, the data transformed by the function M
(Equation 27). If the S; system is canonical right handed, and M isrigid, then S;,; woud be canonical right
handed. If the S; system is canonical right handed, and S;.; is canonical right handed, the transformation that
changes S; into S, isrigid. The reader is invited to think how to diagnose the rigidity of M given only the
information of Sj and Si+1, (assume they are non-canonical right handed systems).

3.25 The non-commutative group of geometric transfor mations

Consider M the set of rigid geometric transformations, a, b, ¢, d elements of M and A the composition
operation on transformationsof M. The following properties make of M a (non-commutative) group because:

1. "abiM aAb=ci M composition of transformations is a transformation.
2. "al SN M aAN=NAa=a there exist anull transformationin M.

3. "abcl M (aAb)Ac=aA (bA c) composition is associative.

4. "al s %$a'T M aAal=zalAa=N every rigid transformations has an inverse in M.

By applying these concepts to geometric transformations we have that:

a) Thenull transformation is:

él OgqU
Nz S 3><1l,J
gjlxa Laa

Sinceit isformed by anull rotation (I33) and the null translation Osy.

b) Theinverse transformation of agiven M (rigid) satisfies:
&R T érR'l _RITU
a U b Mmt=gR R 'Tl] snceR ! exists

é 1] é y
&3 Lag s Ly, @

Equation 28. Inverseof arigid transformation.
It is evident from Equation 28 that the inverse of a pure translation and a pure rotation are respectively:

élas -TU ér! u
Tiny = é a =é 03X1U
&ixs  Lag Oz Lab

From now on, the notation I3; will be replaced simply by I, with the dimensions of the matrices implicitin
the eguation.

' Rinv
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326 Example. Rigid transformations.

1. Determine the chain of rigid transformations (translations and rotations parallel to the World Axes)
required to bring the object BODY, from the initial to the final position (BODYj ).
2. Program the example in MATLAB.
| YA
Ft = Of
BODY:
Ef X
o = S=[ X, Y, Zs, O]
Dr
Zt YY;
0 Yw
At Bt
[Zo E=0p
= [ Xo, Yo, Zo, O]
xw BODY Yo
A B

Figure 18. Exampleofrigidtransformations.

The method of solution is the following:

a.  Assign coordinates [X,y,z1] to each one of the vertices of the object, in initial and final positons. Ensure
that initial (BODYo) and final objects (BODY; ) are consistent.

b.  Attach a canonical coordinate frame S, to the object in the initial position. Find the numerical values for
So=1[ Xo, Yo, Zo, Ov]. Verify that S isacanonica dexterous frame.

c. Draw and find numerical values for the frame corresponding to the transformed &, in the final
configuration. Verify that § isacanonical dexterous frame.

d.  Perform the elementary transformations to bring S to intermediate positions until & is reached. An
initial translation to Oy, is suggested, to have better control upon subsequent rotations. Fill Table 10 with
the relevant data.

e.  Numerically, check that the transformation M; effectively transforms S ;into S.

f.  Numerically, check that the accumulated transformation M = Mn.Mn1. .M1indeed transforms S into
S.

g Transform object BODY, into BODY; by application of M.
h. Program the procedure above, by defining the functions translation_matrix(dx,dy,d2 and

rotation_matrix(axis, angle. Define also a function plt_axes(S,d) which draws a coordinate system S,
scaled by afactor d(d= 1 implies no scaling).
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Solution

Table 10. lllustrative steps of a transformation sequence of an object.

Graphical Frame | Numerical Frame

S S

Transformation

Na

DS
N

N

o

trans(Fx; Fy,+z)

m:D> D (D)I('D> [0S
=
o O O -

o O

x
3
<
@
N
&
O

o

’ L

© ©

=]

‘o
=

o o

rot (Yw, 90°

@:(D> (P> D> D> D~
o o

'

=
O O O
Ec L2 2

@:D> D> D> (D> (D
o

X
=

O

trans( Fxf,Fyf,Fzf)

o

D:D> D DD D>
o

The development of this example and evolution of coordinate systems in MATLAB are illustrated in

Appendix, section 7.1.1.
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33 Rigid Transformations about arbitrary directions. Quaternion Method

Until now, rotations were performed around the coordinate axes X, Yy or Z,, (World Coordinate System).
Howe ver, it is common to require rotations around arbitrary axis L = [v, pv] (with direction v and pivot point
pv) in E3. As afirst approach, in this section the method is presented to rotate an object around an axis in
space with arbitrary orientation but passing through the origin (see Figure 19). Then, the method will be
e>étended to rotated objects around axes with arbitrary direction, and anchored in an arbitrary pivot point in
E°.

S=[ Xr,Y1,2t,Or]

S=[ X:,Y:,Z1,O]

ZW
So=[Xo,Y0,Z0,00]
So=[ Xo,Yo0,Z0,00]
Yw
XW xw
Figure 19. Rotation by a ? angle about arbitrarily inclined axis ) . . )
passingthroughtheorigin. Figure20. Rotationabout anarbitraryaxisL=[e,pv] bya?angle.

3.3.1 Rotationsabout arbitrary axes pivoted in the origin.

Assumethat L =[e= (g, g ,€),0= (0,0,0)] isaninfinite line in space E® with direction e= (g, €, &)
(unit vector) and pivot point O = (0,0,0. A rotation of a system S by ?radians around L (positive ? means
counterclockwise sense with respect to €) is possible by applying the quaternion formulato rotation of a point
po= (X, ¥, 3, Equation 29 ([KOR.85]):

P, =p, +(F (e, p, )+ 24 (e p,)

Equation 29. Rotation of a point about an origin-pivoted axiscal cul ated by the quater nion method.

Where:
? Rotation angle (in radians, positive with respect to €).
e;=38n(?/2) e Orientation of the rotation axis.
e=(s, €, €) Orientation of the rotation axis. Unit vector.
Po Initial position
Pr Final position
F(?) cos(? /2)

Observe that Equation 29 rotates points The reader is invited to

a.  Provethat the same formula appliesin rotating vectors
b. From (&), deduce the procedure to rotate coordinate frames S, about L by ? radiansto obtain S .

c. From (&) and (b), deduct the procedure to compute the rotation aboutL by an angle? (which aregiven) in

matrix form, M». Observe that Equation 29 is not a transformation in matrix form as are Equation 16 to
Equation 22. Suggestion: remember that S = M,.S,
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3.3.2 ldentification of axis and angle of origin-based rotations. Eigenvalue M ethod.

Assumethat M, is arotation by an angle ? about a unitary axis e anchored in the origin. From the quaternion
method, it is possible to deduceM, from ?and e. A converse question is: given aknown M, how to find ? and
e. Without proof, the following procedure is given below. The interested reader may refer to [BOT.79]:

1.

2.

3.

? =

4.

5.

6.

R To
Arrange M- inform M, :g H.Inthiscase,TZO

é a
Extract from R its eigenvalues ?; and eigenvectors vi.? = [?1, %, %], V=[v1, », w]. Notice that
RV, =2 Vi

Given R, arigid transformation, it will have one eigenvalue, suppose ?;, equal to 1. vy, its corresponding
eigenvector, isthe ( non unitary) vector of the rotation axis. Make e = w/| v |. See Equation 30.

e, U Ga+iby @-ibuw

[ cos)+isin(@), cos(g)-isn@) ., V=[v, v, v, :ggeyg e +idy gc-i.d%

g H eetify ge-ifpy
Equation 30. Eigenvalue and eigenvector matrices.

The other two eigenvalues, say ?> and ?3, will have the following form: 2 , ?3= cos(?) £ i.sin(?).
Calculate 2.

Because e and —e are the same eigenvector of R, test that the angle? found isthe one that correspondsto
the right handed rotation using the e found. Correct the sign of ?if necessary.

[e, 7] are the direction of the rotation axis and the rotation angle respectively. The pivot point of the
rotation axis is (0,0,0), according to the hypothesis.

3.3.3 Rotations about arbitrary axes pivoted outside the origin.

Assumethat L = [e= (&, §, &), pv= ( P%, PV, P%) ] is an infinite line in space E3 with direction
e= (e §, &) (unit vector) and pivot pointpv = ( p\%, pvy , pv;), asin Figure 20. A rotation of a coordinate
system S about L by ?radiansto obtain S is performed with the following sequence:

1
2.

Bring pv to the origin by applying M, = trans(-pv,, -pvy, -pv; ). Therefore ;= M; & .

Apply the quaternion method to rotate § around an axis with direction e, passing through the origin.
Therefore S,= q( e,?, S;), whereq( ) isthe transformation in Equation 29.

Take pv back to its original place by applying M3 = trang(pv, py, pv; ). Therefore §= M3 S, .

Thetotal transformation of S is written as :
S; =M;0(e,?,5)M,.§ =trans(+p, ).o(e,?,trans(- p,).S )

Equation 31. General rotation by ? about an arbitrary lineL=(e,pv) in E®
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3.34 ldentification of axis and angle of arbitrary rotations. Eigenvalue M ethod.

Given arbitrary initial and final positions of an object, determined by coordinate frames S = [Xo, Yo, Zo, O]
and & =[Xr, Yr, Z, O] respectively, one needs to find L = [g pv], the instantaneous rotation axis in E° that
takes S onto & . eisthe unit vector direction of the rotation axis, pv isthe instantaneous cente of rotation,
and ?isthe rotation angle (Figure 21). Notice that pv isaspecia point on L, in contrast with the situation of
Figure 20. Without proof, the following procedure is given:

1. Find M, recallingthat: S; =M Syb M =S;.§%, snce S' exists.

. éR Ty )
2. PlaceMinform M =g G- Inthiscase, T? 0.
€0 1g

3. Extract e(unit vector) and ? from R via the eigenvalue —eigenvector method.
4.  Find pv by using the Equation 32.
? ? € .
pV=OO+—°-M with ?,=0,
2 2tan(q/2)

Equation 32. Instantaneous center of rotation for arbitrary movementin E®.

-0

0

S= [ X1,Y1,Z1,01]

So=[ X0,Y0,Z0,00]
YW
Xw

Figure21. RotationaboutanarbitraryaxisL=[e,pv] bya?angle.

Thereader isinvited to proof:

1. Thatin spiteof T being T ? O, the direction of the instantaneous rotation axes, e, and the corresponding
angle ? can be determined from the eigenvalue - eigenvector method in exactly the same manner as
when T = 0.

2. Equation 32.
3. That §S=M.S hasasolution for M, given that S is a coordinate system.

R To
4. Thatif My = g; 13 performs a rotation by an angle ? about a unitary arbitrary axis e anchored inthe
e a
origin, then T = O Suggestion: transform the origin.
5. Let M¢represent a chain of transformations Mt = Mn.Mn1.Mn2 .Mz with pure rotations and pure
translations mixed in arbitrary order. Prove, by induction on n, that when M; is applied on a
homogeneous vector Vi, = [V 0], only the rotations affects V,, while the translations “pass’ through Vj,
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without having any effect. The reader should find the relation between this fact and proofs (1) and (4)
above. (see Appendix, section 0).

335 Example. General rigid transformations.

For the example in Figure 18:

1. Determine the equivalent instantaneous rotation axis L = [ e, pv] and angle ? that replicate the whole
displacement. Use the eigenvalue — eigenvector method. Use Equation 29to Equation 32.

2. Test the procedures of eigenvalue — eigenvector methods by programming the example in MATLAB.
Starting from BODY, and S you should obtain BODY; and § applying Equation 31.

3. Obtain in MATLAB a graph similar to Figure 21, including L = [ e, pv] and ?, as a consequence of the
previous steps.

34 Nonrigid transformations

Non-rigid transformations are widely used in visualization activities. Although many applications lay in the
domain of entertainment, very important ones relate to realistic display of technical systems and scientific
datafrom physical phenomena. If thetransformationis:

R OTo

=& 4 with R=[u; U, U], U3 1)

€0 1g
Non-rigid transformations have a formulation that violates the conditions in Equation 26, repeated here to
illustrate the discussion.

a) |y =|U,]=|ugl =1

b) U;" U3 UM Up UM U

c) U;"U,=U;
Although there are interactions between effects, in general the violation of condition (&) produces a scaling of
the object. Violation of condition (b) produces a shear effect, by which the object becomes slanted; and
violation of condition (c) changes the right- handedness of the systems associated with the object, therefore
producing mirror effects. One may realize, however, that violation of (b) will also produce dimensional

distortions, not only angle distortions. Therefore, failure to comply with one condition usually produces
violations in the others.

34.1 Mirror or Reflection

Mirror transformations turn right handed systems into left handed systems and viceversa. If a right handed
coordinate system is mirrored, its ri ght-handedness property is lost, and therefore U; ©~ U, * Us. Conditions
(@ and (b) in Equation 26 remain unchanged. Mirrors can be produced about a focal point or a reflection
plane. Unexpectedly, mirrors about an axis happen to be rigid transformations, being equivalent to a rotation
by 180 degrees around such axis.

44
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3411 Mirror about a point

34.1.1.1 Mirror about theorigin

ZW‘

Zu Sr=[%n Y1.Zs, Or ]

- Zp
$=[Xao Yo,Z0, Qo] - Xt %,
O/ : v $= X0, Y0.Zo Qo]
. h f
o -
; o) Yw

y Zo S=[X, Yi.,Zi, Or]

Figure22. Mirror about the Origin Figure 23. Mirror about a point removed fromtheorigin.

Given a point (Figure 22) with coordinates (x1,y1,2), its mirror image about the origin, (% ,y2,2) is.
X=X Y2=-% L=-1

In homogeneous matrix coordinates one has Equation 33.

gey 61 0 0 Oy exw &Xaiy &1 0 0 0Oy

a é 4 é, il é U
Y S0 -1 0 0f Eval Sl 0 -1 0 O
e-u-e Us€ “U=Mirror (point(0,00))x€_"U  with  Mirror( point(0,0)) =€ u
620 60 0 -1 00zl (point(0,Q0)) & ( point(0,00)) €0 0 -1 ou
e u e gé e u é a
elpg é0 0 O 15é1lg elg g0 0 0 13

Equation 33. Mirror transformation about theorigin

The reader is invited to confirm that in Mirror ( point(0,0,0) ), U; x U, = -Us. Therefore, it is not arigid
transformation.

34.1.1.2 Mirror about a point different from the origin

Figure 23 shows the mirror transformation about a point pv, different form the origin. The procedure required
is:

1. Use M1, which brings pv to the origin, to affect $: Si=M1. S = trang(-pv). S.
2. Apply My=mirror( point(0,0,0)) on S;to obtain S: S,=M,. S, =mirror( point(0,0,0)). S;.
3. Usetheinverse of M, totake the pivot back topv. S=Mj3. S, = trans(+pv). S,.

Trivially, thetransformation required is analogous to Equation 24 or Equation 31:

S, =mirror (point(p,)).S, =M .S, =trans(+p,).mirror (point(0,0,0)) trans(- p,) S, P
mirror (point(p,)) = trans(+p,).mirror (point(0,0,0)) trans(- p,)

Equation34. Transformation chainfor mirror about anarbitrary point.

In similar way to the process carried out in the example from Figure 18, one may fill the table corresponding
to the evolution of the coordinate system from Figure 23, from S$to S.
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3412 Mirror about a plane.

In literature (see for example [FOL.90, MOR.99]) mirrors or reflections around planes are usually built by
writing implicit equations. In contrast, this material employs a technique derived from the numerical analysis,
called Householder Reflectors, used to calculate QR factorization of matrices. It reflects rows or columns of a
matrix about a particular plane ([GOL .96, TRE.97]), normal to other vectors of the matrix.

Zs Zw

Se=[Xf, Yt ,Zt, Or]

Of So0=[Xo, Y0,Z0, O0]

=[x, Y1,2f, Of]

P=[X0,Y0, 20, 00]

Figure 24. Mirror orreflection about a plane that crossesthe Figure 25. Parallel projection on a planethat crossestheorigin
origin.

34.1.21 Householder transformation
The version of the Householder transformation given here dffers in formula to the one given in the

references. Given a plane P = [n,(0,0,0)] passing through the origin (0,0,0), with normal unit vector n, the
reflection of a point py across such a plane is defined asin Figure 24:

a) H, = mirror(plane(n,[0,0,0])) =|-2nA" P p; =H,.p,
b)  p;=H,p,=po- 2A(N-py)=p,- 20(A"p,)

Equation35. Householder Reflector, used to mirror a point about an origin-pivoted plane.

Equation 35 can be used either with Cartesian or homogeneous coordinates. pg, ps and n are column vectors, |
isthe identity matrix and nisunitary. Part (a) is the matrix form, while part (b) is the equivalent vector form
of the equation in (&), with the dot product clearly marked (-).

34.1.2.2 Example. Mirror on the YZ plane.

A mirror about plane YZ inverts the x coordinate, leaving y and z unchanged. The transformation equations
are:
X2 ==X Y2=¥% HL=2

Therefore, the transformation in matrix form would be:

@(z@gloom@(m &1y &10 0 0y

u e u e u
Sv21 20 10 &, S0 1 0 of
e u-¢e OU x€ u—mlrror(planeYZ)xe W with mirror (planeYZz) =€ u
&720 €0 0 1 00 ézal éz1l 80 0 1 o0
é.u e e a é.u é a
élg €0 0 0 15 elg éla &0 0 0 13

We would like to obtain the same result by applying the Householder Reflection. The procedure and result are
illustrated in Figure 26.

Thismaterial isproperty of theAmerican society of mechanica engineers (ASME). All copy or reproduction isforbidden. Personal
Copy of Prof. C. U. XoanLeiceagaBaltar.



UNDERLYING ToPICSIN CAD /CAM/ CG Dr. Oscar E. Ruiz S.
CAD/CAM/CG Laboratory- EAFIT University- Medellin, Colombia
Copyright A.S.M.E. (American Society of Mechanical Engineers)

1. Define the unit vector normal to the plane YZ: A = [1 0 O]

2. Apply the Householder formula (Equation 35):

el 0 00 eld el 0 0u e 0 00 &1 0 0d
— u u — u u_e u
Hn_go 1 0y 2>égo@>{1 0 o]_go 1 o@-g) 0 05=g0 1 0
€0 0 1g e €0 0 1g &© 0 Og 80 0 19

H , = mirror (planeYZ)

Figure 26. Application of Householder Reflector to get areflection through plane YZ

Theresult is the same as the one obtained by formulation of the transformation equations on each coordinate.
The advantage of the Householder method is that allows a systematic procedure. Figure 26 shows the
application by using Cartesian vectors. The same result is obtained if homogeneous coordinates are used.

The reader may find easy solutions with simple variations of the Householder Reflector for two problems:

1. Tofindthe parallel projection of an object onto a plane (Figure25).
2. Tofind the perspective projection of an object onto a plane.

Other illustrated cases of mirr or about planes are considered in Appendix, section 0.

3.4.1.2.3 Mirror through an arbitrary plane.

The Householder transformation reflects the object through a plane passing by the origin, (0,0,0). If the
coordinate system S must be reflected through a general plane P = [ n, pv] with normal n and pivot pointpv,
to get S, the procedure is analogous to the applied in mirror or rotations outside the origin:

Use M 1, which takes pv to the origin, to affect So: SiI=M1. S = trans(-pv). S.
2. Apply Mo=mirror( pland n, (0,0,0)]) on S;to obtain S,

S=M,. S§=H,.S; =mirror( plane[ n, (0,0,0]). S.
3. Usetheinverse of M, to take the pivot back to pv. S=M3. S = trans(+pv). S,.

S, =mirror(plang(n,p, ))).S, =M ,,.S, = trans(+p, ).H ,.trans(- p, ).S, b
mirror (pl ane([n,pv])) =trans(+p,).H .trans(- p,)

Equation36. Mirror transformation about a planenot crossingtheorigin.
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34.2 Scaling

The scaling transformation selectively enlarges or contracts coordinates of the object &, yielding a scaled
object S. For example, § may haveits X coordinat es equal to twice the X coordinate of S, while at the same
time having Yequal to half of the Y coordinate in S, etc.

A=(%Y1,Z0)

z BB G G X
Figure27. Scaling transformation with theorigin asthefixed Figure 28. Scaling transformation with fixed point (B) away from
point. theorigin.

There may be different scaling factors S, § and S, for the three main axes (anisotropic scaling). For strictly
scaling transformations onehas S 1 [0, u], with the negative case being a hybrid between mirror and scaling.
For the example in Figure 27, §=2.0, §, =0.5 and S=1.0.

34.21 Scaling with respect to the origin.

Figure 27 shows the casein which the object is scaled with respect to the origin as fixed point. This means
that the origin is considered part of the object. The scaling is performed with respect to the origin, and
therefore points such as B, C, or D move away from (or towards) it.

Equation 37 presents the general matrix form of scaling with respect to the origin.

Xl € 0 0 00 &l & & 0 0 O
&,u € o oY&u & U % o oY
e S 02 U=gde(5,55)8 U b sde(8SS) =6 L,J
€0 @ 0 S 00 €l &z © 0 s o
e.u e e, u e, u

élg & 0 0 I5élg éla © 0 0 1

Equation 37. Scaling Transformationwith origin asfixed point.

According to the values of the S parameter, the following effects are produced:

Ifs>1, thereisan expansion inthei™ direction.

If§< 1, thereis acontractionin thei ™ direction.

IfS=1 there is no deformation in the i™" direction.
If§<0 thereisa reflection and scalingin thei ™ direction.

A w DN

The reader isinvited to find which conditionsin Equation 26 are violated and which ones are preserved by a
scale transformation (Equation 37).
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34.22 Scaling with respectto an arbitrary point.

Up to now, Equation 37 scales an object assuming that it is pivoted in the origin,(0,0,0). Figure 27 showsthat
scaling will in this case translate the object. Every point of the object moves. However, if it is wished that a
point pv of the object S, be fixed (for example point B in Figure 28), with final object S, the procedureis
analogous to the applied in mirror or rotations outside the origin:

1. UseM;, whichtakes pv to the origin, to affect So: Si= M1. S= trans(-pv). S.
2. Apply Mp=scale( S, S, S;)on Sjtoobtain S,: S=M;. S =scae(S, S, ). Si.
3. Usetheinverseof My, to take the pivot back to pv. S;= M3 . S = trans(+pv). S.

S, =scale(p,, S, S, S,).S, =M .S, =trans( +p,).scale(§,S,, S,)).trans( - p,).S, p
g;ale(pv’sx'sy’sz) =tran5( +pv)'Scale(§’Sy'Sz)'tranS( - pv)

Equation 38. Scaling transformationwithrespect toanarbitraryfixed pointinE 2

343 Shear

In the shear effect, points of the object change their position, in an amount proportional to other coordinates.
Therefore, the x coordinate may change as influenced by the y coordinate via a Dx/Dy value, and similarly
happens with every coordinate (see Equation 39). In this example, for point (x,y,2), x changesin proportion to
coordinate y, measured from the origin. This transformation is obviously non-rigid since it preserves neither

lengths nor angles.
l—‘ Y,
Yw § B Plz(xl,ylvzl)\wﬂ I_IQ(
P1-(Xy, Y1, 2) am - o
| H P2=(X2, Y2, 2) Q/i m Po=(X2,Y2,22)

Dy Py
0 ). [
ZWE); | XW ZW(/ _— XW
Figure 29. Shear Effect with origin asfixed point. Figure 30. Shear Effectwitharbitraryfixed point

For the example displayed in Figure 29 the deformation equations would be:

X2 =%+ DXDy. % Y2 = Y1 =13

Itiseasy torealize that the general form for shear with the origin as pivot point is the one shown in Equation
39:

¢, Dx Dx U

et oy o

€ u

€Dy Dy U "

&~ 1 =X oua_ DX D Dz Dz9

ax @ g shearQEX,D—:,% % D_iaz_

ebz Dz , 4 e g

éDx Dy a

go 0 o0 1§

Equation 39. Matrix for shear withrespect totheorigin.
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Notice that interactions of any coordinate upon others are possible. This transformation, in general, satisfies
none of the conditions for rigidity (Equation 26).

3431 Shear with respect to an arbitrary point.

Equation 39 shears an object assuming that it is pivoted in the origin. Figure 29 shows that shearing also
translates the object. If pointpv of the object & isto be_fixed (Figure 30), with final object &, the procedureis
analogous to Equation 38 (see Equation 40).

1. UseM,,whichtakes pvto the origin, to affect Sy: Si= My . = trans(-pv). S.

2. Apply M2= shear(Dy, Dz, Dx, Dz, Dx, Dyy) 00 Sy to obtain Sp:
82: MZ . SI.: Shear(D(y! D(Z Q/X! [%IZ! DZ(! Dzy) 3.

3. Usetheinverse of My, to take the pivot back to pv. S= M3. S = trans(+pv). S.
S; =shear(p,,D,,,D,,.D,,.D,,,0,.,D,).S,=M.S; =
=trans( +p,).shear®,,,D,,,D,D,,,D,,D, ) .trans(- p, ) .S, p
shear(p,,, D, ,Dy,Dy,D,, ,DZX,DZy) =trans( +pv).shear(ny 1DysDys Dy s Dy Dzy).trans( -py)

Equation40. Shear transformationabout anarbitrarypointpvin E3
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35 EXERCISES - GEOMETRIC TRANSFORMATIONS—

351 Rotationsaround the Main Axes.

ROTATION MATRIX
OBJECTIVE: To experiment with rigid transformations applied on a 2-dimensional figure.
PROCEDURE:

1. Create matrix that stores the vertices A, B, C and D of the plane that is shown in Figure 31 and name it
facel.

Rotation of a plane

T
15— L /\
e
2 ) // /\ \
E 054 \
0
6 e

y Axis X AXis

Figure31. Exercise3.1

2. Prompt the user for angle of rotation ( th ) and the coordinated rotation axis (ax) to be used to rotate the
figure.

3. Create a function named [M] =rotation_matrix ( ax, th ), in which the rotation matrix is calculated.
Remember that the variable ax takes values X', "Y' or 'Z'.

4, Make the transformation of facel using M and assign the result to a variable named face2.

5. Plot both figures in the same MAT LAB figure window, the original figure with blue, and with red the
transformed one.

6. Name each one of the axes and title the graph.
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352 Ilterative Rotationsl.

ROTATION MATRIX
OBJECTIVE: To experiment with iterative rigid transformations applied on a 2-dimensional figure.
PROCEDURE:

1. Create matrix that stores the vertices A, B ,C and D of the horizontal rectangle shown in Figure 32.
Assign it the name face 1.

Repeated rotation of a plane

— ] \
Py
— ] ><\\\
] \
0.54—""] ] \ \
:(0‘3 o4b—"] > < \ ~_
_0.5\/< 7 N \

y Axis 0 1

x Axis

Figure 32. Exercise 3.2

2. Prompt for the number of rotations to execute on facel

3. Use 'Y' as the rotation axis. Calculate the rotation angle in order to obtain intermediate symmetrical
positions.

4. Create afunction named [M] = rotation_matrix ( ax, th ), in which the rotation matrix is calculated.
Remember that the variable ax takes values X', 'Y' or 'Z'.

5. Make the transformation of face using M and assign the result to avariable named face;;.

6. Make an iteration structure such that the sequence of face is plotted in the same MATLAB figure
window.

7. Name each one of the axes and title the graph.
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353 lterativeRotationsl|.

ROTATION MATRIX

OBJECTIVE: To experiment with iterative rigid transformations on a planar polygon. The polygon does not

pass trough the origin.

PROCEDURE:

The procedureis the same as for the exercise of Figure 32, but in this case facel is defined by:

A = [1 1 0 1
B = [3 1 0 1
c = [3 3 0 1
D = [1 3 0 1

Use 'Z' as the rotation axis. The rotation angle for each iteration is 45 degrees.

Polygon rotated 45 degrees about Z axis

/\
/\
/\

//1/

AL

Y Axis 5 5 X Axis

Figure 33. Exercise 3.3
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354 Mirror about the origin.

Create a polygon and mirror it about the origin.

355 Mirror about XY plane.

Create a polygon and mirror it about the plane XY.

356 Mirror about X=Y plane.

Create a polygon and mirror it about the plane X =Y.

357 Mirror About Z axis.

Create a polygon and mirror it about the Z axis (Is this a non-rigid transformation?).

358 Scaling.

Create a polygon and scale it about the origin with scaling factors 1/2, 2y 0.3 in the directions X, Y and Z
respectively.

359 Shearing.

Create a polygon and transform it with a shear defined by Dy=2. All the remaining interactions are null.
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35.10 lterative RotationslI|.

RIGID TRANSFORMATIONS

OBECTIVE:

To make iteratively two independent rotations around the principal axes.

PROCEDURE:

Given the body ABCD, with the edge AD having vertex A at the origin and D along the X axis (Figure 34),

you must make a program that: (a) Rotates the body N times about the Z axis (rotation angle g.=p/N), and (b)
in each iteration rotates it an angle a about the instantaneous position of the AD edge

(a=0.

Rigid Transformations Exercise

RN
5" RN

Z axis

Y axis

Figure34.Exercise3.10

1. Write a function [body] = create_body( ) that will be in charged of generating and delivering the
information of the vertices and the faces of the body in an array named body. Also, this function must
plot the body in itsinitial position with the color blue.

2. Attach to the solid in every position an auxiliary coordinated system anchored to vertex D (use a specific
function for this task, such asplt_axes() ).

3. Write the function body;,; = my_trans(body;, theta , alpha), that rotates the object body; an angle q
around the Z axis and subsequently around the AD edge an angle a, to then deliver the result bodyi+.
(Remember that this edgeis paralel to the X axisin the initial position of the body).

4. Create afunction that plots the evolution of the body. The odd iterations will use green , while the even
iterations will use red.

55
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35.11 Iterative Rotations|V.

RIGID TRANSFORMATIONS
OBJECTIVE:

To use the Quaternion method to verify the effect of a transformation made by prescribed rotation matrices
used to rotate about the principal axes.

PROCEDURE:

1. Writeafunction [ P, Py, Pz] = my_mesh( ) that fills the necessary matrices for declaring a mesh and
outputsit as Py, P, , P,. The base of the mesh, of size 10x10, will be on the plane XY.

Initial MESH
I I

10

6
2
x
3 4
N ]
2 —
0 { i
10 \ \
5 \
) T
Y axis oV 1y 1y 1y \ { \ \
0 1 2 3 4 5 6 7 8 9
X axis

Figure35. Exercise3.11

2. Writeafunction [ P; ] = rotate_by quaternion( e, th , R ), that applies the quaternion formula. This
function rotates a point Py around the vector e and outputs the rotated pointP;. The angleth isin degrees.
Assume for this function that eis not necessary unitary.

3. Writeafunction[ Qy, Q,Q,] =rotate_mesh(P,, P, , P,, e, th). Thisfunctionrotates a mesh given by
Py, Py, P, around the vector e (not unitary) an angle th (in degrees). Outputs the result (rotated mesh) in

thematrices Q,, Q, Q.

4. Writeafunction [ Mr ] = rotation_matrix( th , ax ), that outputs the homogeneous coordinate matrix for
arotation of th degrees around any axis "X, Y or "Z'.

5. Writeafunction [ Q,, Q,, Q,] = rotate mesh_2( P, , Py, P, , ax, th ). This function rotates with an
angle th (degrees) a mesh given by P,, R, P, around an axis ax (axis X", Y or” Z). Outputsthe result
(rotated mesh) in the matrices Q, Q,, Q, Use the function rotation_matrix( ).

56
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6. Create a program named “main” , where the following step are included:

a)
b)

c)

€

f)

9

Calls the function [ P, P,, P.] = my_mesh() that creates the entry data (the mesh).
In aMATLARB figure window plots the mesh formed by Py, R, P,.

Appliesthefunction[ Qx, Qy, Q;] =rotate_mesh(Px, R, Pz, e, th)onPx, Py, P.. Theaxis e
must be one of the principal axes X, Y, or Z, in vector form (3x1). The angle th must be given in
degrees. Here the function [ B ] = rotate_by quaternion( e, th , Py ) must be used.

In a new MATLAB figure window shows the original position of the mesh as well as the one
obtained by the quaternion method. The title should be “ Transformation by the Quaternion Method”.

Calls the function [ Qmy, Qmy, Qm:] = rotate_mesh_2( Px , R, Pz, ax, ang ), on Px, Py , Pz,
where the axis ax (as X", "Y'0 “Z") and the rotation angle are to be consistent with (c). In
rotate_mesh_2( ) thefunction[ Mr ] = rotation_matrix( ang , ax ) must be used.

In a third MATLAB figure window shows the original mesh as well as the mesh obtained by this
method (matrix). The title should be “Transformation by Matrix Method”. Compare the plots of (d)
and (f).

Include the principal axes names in every graph.
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35.12 Solid Generation.

FUNCTIONSWITH SOLIDS
OBECTIVE:

To create a function that simplifies the display of an arbitrary solid of planar faces.

PROCEDURE:
1. Describethe solid of Figure 36 as:
body = [ ad,c,b,a, aed,a, a,b,fea, b,c,f,b, cdef.cl;
Loopl Loop2 Loop3 Loop4 Loop5

loop_dim = [4,3,4,3,4];

2. Create afunction draw_solid(body, loop_dim), where body is a matrix 4xM or 3xM that contains each
one of the loops of edges of the body. loop_dim is a 1xL vector that contains the number of vertices that
compose each loop that compose the body. L = number of loops of straight edges that conform the body.
The vertices in body may be input as homogeneous coordinates or cartesian coordinates.

3. Makeaplot of the faces by means of the above procedure.

Plot of a solid Body using "plot solid.m"

Z Axis

Figure36. Exercise3.12
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3.5.13 Transformation of a Solid Body I.

OBECTIVE:

To create and plot objects in E3, to make transformations on them and to plot the transformed objects.
PROCEDURE:

1. Createpoints A B, C, D, E and F for the vertices of the body (wedge).

2. Create the loops corresponding to the five faces of the body.

3. Execute the necessary transformations to go form the initia to the fina position.

4. Plot the body in intermediate positions drawing each position in a different color.

Transformation of a solid body
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Figure37.Exercise3.13
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35.14 Transformations of a Solid Body 1.

OBJECTIVE:

To maketransformations on objects in E°, To calculate the necessary transformations using the evolution of
the auxiliary axes instead of the evolution of the body.

PROCEDURE

1. Createpoints A, B, C, D, E and F for the vertices of the body (wedge).
2. Createtheloops corresponding to the five faces of the body.

3. Define the initia auxiliary coordinate system. Sy =[ X, Yo Zo, Og |-

4. Define the fina auxiliary coordinate system S=1[ X, ¥; Z;, O ].

5. Transform the auxiliary coordinate system form the initial to the final position using intermediate
tranglations and rotations on this object.

6. Plot the evolution of the auxiliary coordinate system form $to .
7. Collect the transformation matrices in asingle matrix M.

8. Apply M to theinitial body in order to obtain the final body .

Transformation of a solid body
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Figure38. Exercise3.14
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35.15 Mirror About XZ plane.

NON-RIGID TRANSFORMATIONS

OBJECTIVE: To study the non-rigid transformations.

PROCEDURE:

1. Definethe verticesof the body in Figure 39 in the variablebody. Create the variableloop_dim that would
contain the dimensions of each loop of the body. These variables will be used to call the function
draw_solid(body, loop_dim) defined previously.

2. Create afunction [ bodyf , Sf ] = mirror_XZ( body , S )to apply areflection about the plane XZ. The
input variables are body and S=[X Y, Z, O]. Where S=[X Y, Z, O] isthe auxiliary coordinated system
attached to the body. bodyf and Sf are respectively the transformed body and coordinated frame

Non Rigid Transformation - Initial Body and Final Body

—
\\

—

Z axis

Figure39.Exercise3.15
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35.16 General Transformations|.

GENERAL TRANSFORMATIONS

OBJECTIVE: To combine rigid and non-rigid transformations.

Translation - Scale - Translation

initial pofiti

04
Z axis
-104
-154)
5
20
i -15 5
Y axis X axis
Figure40.Exercise3.16
PROCEDURE:

1. Generate the body [body, loop_dim] corresponding to the object shown in the initial position of Figure
40.

2. Attach to the body, the auxiliary coordinated system as shown.

3. Make the necessary transformations in order to obtain the body in the final position.

62
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35.17 Genera Transformations ||.

GENERAL TRANSFORMATIONS

OBJECTIVE: To combine rigid and non-rigid transformations.

PROCEDURE:

1. Createthepoints A B, C, D, E and F for the vertices of the body in the initial position. (Figure 41).
2. Generate the body by means of [body, loop_dim] explained in previous exercises.

3. Transform the body and its corresponding auxiliary coordinate system form the initial to the final
position, using translation, rotation, mirror, scale and/or shear where necessary.

Transformation of a solid body
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Figure4l.Exercise3.17
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3.5.18  Sweep of a Cross Section along an arbitrary Path.

SWEEP OF A CROSS SECTION ALONG AN ARBITRARY PATH

GIVEN:
1. A Piecewise Linear 1-manif old (a straight -segment polyline) path in F.

2. A closed non self- intersecting polygon Pol contained in plane XY, containing the origin (0,0,0), and
attached to its local coordinate system § =[X.,Y.,Z.,Q]. The system S_ is coincident with the WCS.

GOAL:

1. CalculatethetransformationsM; (i=1,2,..n) which movethecoordinate system S attached toPol to: (a)
make the origin 0. coincident with the point pathg), and (b) make the z axis coincident with the axis z

from point path; to point pathi:1 .
2. Apply thesequence of transformations M;to Pal, to get Pol; (i=1,2,...n).

3. Use the sequence of extruded cross sections Pol; (i=1,2,...n), to generate the skin of the extruded object

by constructing a (MATLAB) mesh, snake. (Figure 42).

NOTES:

(i) For point (i) you do not have sufficient information. Answer what is the cause of the insufficiency. Avoid
this insufficiency by using quaternion totransform Z, into Z;. Use the quaternion to define an M; homogenous

transformationfrom S to §

(ii) Your path should be a smoothly evolving curve. Otherwise you may get a self-intersecting skin.

RESULTS

Figure42.Generated extrusion of circular cross section.
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3.5.19  Simultaneous Sweep and Twist of a Cross Section.

SIMULTANEOUS SWEEP AND TW ISTOF A CROSS SECTION

GIVEN

1. A right-handed WCS.
2. An édllipsoidal cross section pol, whose contour follows the equation

x(?) = a. cos(?)
¥(?) = b. sin (?)
z=0

with 0=? =360° and aand b are the x and y-direction semi -axes respectively. The polyline pol is
defined in aloca frame S =[X, Y, Z,, Q ], initially coincident with the WCS.

3. A circular path path ( defined in the WCS) with radius R, lying on the Xw-Yw plane, defined by the dF
(angular increment of thearc)

Figure 43. Sweeping and Tweaking of a Cross Section

GOAL:

1. To generate a sequence pol(1), pol(2), ...., pol(i),.... of rigid transformations of pol with the following
conditions for pol(i): (a) The geometric center O of pol(i) must be placed onto the point path(i)=0;, (b)
The Z axisof pol must be placed in the direction path(i+1)- path(i), which defines the axis Z. (c) in
each iterationi the instantaneous S system rotates a d? around the instantaneous Z; axis. (Figure 43).

2. To thread corresponding points between stages pol (i) and pol (i+1) to generate a mesh called ribbon.
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REMARKS:

4.

The program must define a proper d? to accomplish the desired number of spins of the cross section
around its local Z; axis.

5. The program must define a proper dF, taking into account that the ribbon must be defined by nradial
partitions.

6. The program must draw each intermediate position pol(i) (i=1,2,3...n) that the cross section pol adopts
trough the generation of the ribbon.

7. The program must accumulate and thread all  pol(i) cross sections into an ordered mesh format.

PROCEDURE

1. Generatetheellipsoid pol in the local coordinate frame S, .

2. Generatethecircular path with anRradius.

3. Reposition the cross section pol in position S;.

4. For each S position calculate a transformation matrix Mtjthat transforms S; onto S. This matrix has two
components; (i) rotation about some axis in the WCS. (ii) rotation about an instantaneous Z; axis (Figure
44).

RESULTS:

Ribbon generation %ia Quaternion Rotation

Figure44. Ribbon of Radius=40, a=3, b=6, ?=360° and n=120
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3.5.20 Paralld Projection.

PARALLEL PROJECTION

GIVEN:

1. A right-handed WCS pivoted on Q,.

2. A Solid Body B, with an attached coordinate system S,

3. Aplane ? =[R,, n] in R, pivoted into any P, point and defined by a normal vector n. In general, P, is
not the origin.

GOAL:

To write down a program that calculates and applies (to a body Bo) the transformation matrix M for parallel
projection onto a given plane ? =[ R,, n].

PROCEDURE:

1. Generate the body Bo and its attached coordinate system S,

2. Write down ageneric function M=project(pv, n) that calculates the homogenous non rigid transformation
M for parallel projection onto aplane ? =[pv, n].

3. Apply thetransformation M to the coordinate frame ..

4. Apply thetransformation M to the body B,.

5. Plot the body Bo and its projection B,.(Figure 45)

15,

104

54

04

[ L LS

8gte:!

4

Figure45. Parallel Projection
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3.5.21  Perspective Projection.

PERSPECTIVE PROJECTION

GIVEN

1.

A right-handed WCS pivoted on Q..

2. A Solid Body B, with an attached coordinate system S

3. Aplane? =[P,, n] in R® pivoted on apoint P, with normal ( non unitary ) vector n. In general, P, is
not the origin.

4. A point of observation Pyy.

TASK

To writedown a program that cal culates and draws the perspective projection (cal culated from Pyy) of abody
B, projected over agiven plane? =[ R, n].

PROCEDURE

1. Generate the body Bo and its attached coordinate system S,

2. Plot the projection lines from P,usto each vertex in B, .

3. Write down a generic function By=persp_project(Bo ,Pv, n, Pas) Which calculates By, the perspective
projection of Bo onto plane? =[pv, n], with observer position Py, using the following formulafor each
vertex P,that will be projected:

1-(P,- R)- (n)
Pp = FZ)bs + (Po - Pobs)y 2 3
(- Pus)- (n)
o} obs
Equation 41.Cal cul ation of a Per spective projection of asingle point into a plane.
4. Plot the body Bo and its projection Bp.(Figure 46)
Remarks

The reader must visually check if each projection of each point p; of B, ontothe ? planeisthe intersection
between the ray Py,s- p; against ? .
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Figure 46. Perspective Projection
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4. CURVESAND SURFACES

In Computer Aided Geometric Design (CAGD) analytic curves and surfaces are required as carriers for the

topological entities of a geometric model. For example, FACEs are connected, compact subsets of an analytic

surface (a 2-manifold with boundary) in E®, while EDGEs are connected, compact subsets of an analytic

curve (a 1-manifold with boundary) in E3 FACEs and EDGEs are only subsets of the surface or curve
(respectively) in which they are mounted. The mathematical definition of carrier geometries (curves or
surfaces) immediately affects how subsets of them can be expressed and bounded. The definition of curves
and surfaces is generally expressed in terms of parameters, giving origin to what is called parametric
equations.

The mathematical problems faced in CAGD applications are the following:

(i) Given afinite set of points sampled on a curve or surface, how to find a mathematical expression of such
a set. The set of points might be randomly (without order) sampled, requiring a different treatment, in
contrast with cases in which points are sampled following a systematic and ordered pattern. When the
order of the point set is not meaningful, there are two techniques widely used: (a) polynomial and (b)
statistical equation fitting. When the order of the point sample must be respected, parametric forms are
applied.

(i)  Once the mathematical expression has been found, estimations of its likeness may be required.

(iii) Evaluation of the formulain locations away from the initial point set is required.

(iv) In addition to simply compute the locus of the points (item (iii)), other estimations are of interest:
tangent planes, derivatives, gradients, Frenet frames, curvatures, etc. These estimations are important in

Computer Aided Manufacturing applications (CAM), for example CNC machining.

(v) Given a mathematical expression of a curve or surface, it is of interest to convert it to other
representation or equation, with a different set of parameters or variables.

The purpose of this chapter is to introduce the reader into this domain, and to provide concepts to respond
some of the issues stated.

41 Random Samples

411 Polynomial Interpolation

In this case, an equation of the formz = f(x,y) or g(x,y,2) = cisforced to pass exactly by each one of the point
samplesp; = ( X; ¥i, Z) (i =1..n). The natural candidate to propose is a polynomial equation of the form

Z=a X%+ aX + g)XP+.+ a X + by Y+ BY +o b Y+ o XOYO+ by XYL+ By XY+
in which the degree is controlled by the number of points collected. For example, if a sample of five (x,y)
pairsis available, the equation to fit would have the form:
Yi = atanXs + aX’ + aXg + aX’
Y2 = atarXe + aXe’ + aXs + ae'

Ys = ataXs + aXs + aXs + aXs'
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With unknowns a,, a;, a,, as, & The matrix equation to solve for the unknowns takes the form:

g‘- Xy XZ X X14g au €Yyu
2 3 U é 0 a

&l X, X© X, le} ey nglJ
Xy Xg2 X3 X5'U" €a,0=@y,0
3 A oeu u
X4 Xq X4 U &0 eYag
Xs X5 Xs Xs'g &.H 8YsH

P @O P

which can be abbreviated as:
XA=Y

The following observations are relevant:

(i) Xiscalled a Vandermonde Matrix ( [GOLUB.96] ), which is known to be ill-conditioned for inversion,
given theradical variation in the absolute value of itsentries.

(i) Theform g(x,y,2= c so defined effectively passes through each sampled point. However, its oscillation
between samples is uncontrolled, particularly as the value of n grows.

(iii) Due to the previous considerations, only low degree (2 or 3) solutions are attempted in very specific
CAGD problems Therefore the applicability of this method in CAGD is limited.

412 Satistic Interpolation

In this case, the designer estimates that the data set adheres to a particular equation form. Therefore the data
set is used to give the best estimation (in statistical sense) of the equation parameters. Again, the equation
formis g(x,y,2) = ¢ However, in contrast with polynomial interpolation, the number of samplesis not limited
by the number of parameters to estimate (the limitation in taking large samples lies on economical reasons).
In the equations below, the proposed form is a quadratic equation y = &.¢ + a.x* + a The number of
samplesis not limited to 3, so in this case 20 samples are collected. The equations are stated as follows:

Yo = atan X + aX’ + €

Y= ataXo + Xl + €4

Ya0 = ataiXeo + @Xa’ + € o

Where e corresponds to both the limitations of the equation to estimate the data, and to sampling
(experimental) errors.

T he following observations are relevant:

(i) By changing variables (for example naming X? as x,, etc.), a linear regression analysis can be applied to
solve for &y, &, &. A thorough explanation is beyond the purpose of this chapter, since the statistical —
mathematical procedures vary with the form of each estimated shape. However, the usual goal is to
express the problem in terms of linear regressions and to convert the results back to the original
parameters.

(i) In CAGD and CAM the usual forms are cylinders, planes, circles, cones, etc., since these are the most
common primitives and finishing features used in mechanical design (bevels, chamfers, fillets, etc.).
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Therefore the eguations to fit will acquire the corresponding form. For instance in a circle
(%-%)% + (¥Yo)? = R the unknowns are Xo, Yo and R; @ minimum of three (non-collinear) samples would
be then required.

(iif) An important field of application of this approach is in Geometric Tolerances, where verifications on

proposed features determine whether the part is within tolerances and quality limits or not. In this case,
position of axes, perpendicularity, coaxiality, flatness, etc., are estimated as expressed above.

42  Ordered Samples. Parametric Equations

In contrast with polynomial and statistical fits, a parametric curve f(u) (or surface f(u,v)) when fit to a
sequence of points S={ po, px, ...pn} (Siscaled control polygon) changeswith the order (sense) of the points
in S. A parametric curve (Figure 47) is a function f(u): E® E3, with f(u) = (x(u), y(u), z(u)), where the
parameter u is one of many possible ways to parameterize the curve. For example, another parameterization
couldbe g(v) = f(u/2) = (x(w/2), y(u/2), z(u/2)), with v = u/2. On the curve, parameter v would vary twice as
fast as u. However, given a consistent definition of the respective domains of u and v, f(u) and g(v) describe
exactly the same set of points in E3 A special parameterization h(s) of a curve is the one in which the
parameter s measures the length of the curve. This case is called unit-speed parameterization, and presents
special conditions in engineering and physics. However, not all the curves allow an analytic closed form with
unit speed parameterization ([ONE.66]).

Likewise, a parametric surfaceisafunction f(u,v): B ® E3 with f(uy) = (x(uv), y(u,v), Z(u,v)). Thesame
considerations expressed for parametric curves are valid, including the fact that unit -speed parameterizations
for surfaces imply that a square unit in parameter space determines a square unit on the surface. Again, such
parameterizations are rarely available in analytic closed form. It is common practice to define the parameters
in such away that the relevant part of the curve or surface correspondsto ul [0,1], i [0,1].

$ f(u) N

0,2) (1,1) z
uie Y w ’\AZ v
[0.1] X 0o @y Y X

Figure47. Parametric mappingsfor curvesand surfaces

Natural questions arise about parametric curves and surfaces, such as: (i) which are their mathematical
characteristics, (ii) how to deform, translate or rotate them, (iii) how to relate their mathematical properties to
consequences in the domains of manufacturing and design.

In order to present a coherent discussion, several concepts must be introduced, as follows:
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point set S convex hull H(S)
convex set non-convex set
Figure48. Set convexity Figure49. Convex Hull of a2D set S
p P2 Ps
o} — P1 Pa m
1 |
> P3 P2
P Po Ps
P Pa P1
curve contained in curve not contained in F(U=F({Po,pr,P2Pe PaPs}) © AW)=F({ Ps.P4,Pa.2 P1.Po})
H(S):P(u)! H(S) H(S): Pu) E H(9)
Figure50. Containment of a parametric form Figure51. Invariance under inversion of sampleorder.

Definition 1. Convex Set.
A set C contained in a universe U is convex if
"pql C,pgi C

Wherem represents the segment with end elementsp and ¢, defined by m ={l.p+(-1)q]IT [01]},

with the addition and multiplication operators defined in the universe U. If U = B, with real addition and
multiplication, a segment has the usual meaning, of a connected subset of a straight line (Figure 48).

Definition 2. Convex Hull.

Let S={po, P1, -..pn} be aset of points piT EZ. The convex hull of S, H(S) T E®isthe minimal convex set
suchthat ST H(S) (Figure 49).

Property 1. Containment for a parametric form.

Inindustrial applications it is required that parametric curves f(u) (or surfaces f(u,v) ) fit to acontrol polygon
(or polyhedron) S={ po, p1, ---p, } and to hold thatf(u) I H(S). (f(u,v) I H(S) ). This property establishesthat
the approximation to the control polygon cannot have erratical behavior (Figure 50).

Property 2. Invariance of a parametric form under inversion of the originating set.

Let aparametric curve f(u) (or surface f(u,v)) be fit to a control polygon S = { py, py, ...pn}, and a parametric

curveg(w) (or surfaceg(w,s)) befit to acontrol polygon S={ pn, pn1, ...00}. The sets g(w) 1 E®and f(u) 1 g
satisfy f(u) © g(w). This property (Figure 51) establishes that the parametric forms (used in industrial
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applications) must be invariant under inversion of the sequence of their originating point set. This propertyis
essential in applications in which the actual shape produced is independent of the direction of sampling of the
point set.

421 Parametric Curves

The following definitions sustain previous considerations and properties:
Definition 3. Parametric Curve asa Weighted Sum.

Given a sequence of npoints S = { p, Py --Pn1} @ parametric shape proposed by Bezier (BEZIER),
De Casteljeau (DeCasteljeau) and othersis:

5 Rl
puy=a B,(u)xP, with OE£Uufl aB =1
i=0 i=0

It can be easily seen that this formulation satisfies Property 1 (containment for a parametric form). The Bj(u)
are called weights, blending functions or coefficients. In Bezier the amount of blending functions is dependent
on the number of control points).

Bezier codficirts

N 7] Bouw)=(- u)® By(U) =(-u+3u*- 3u+)/6

Ve o4y B,(u) =3.1- u)’u e e B(U)= @ - 67 +4)/6
] By =3.0-u) v T BL(U) =(-3+37 +3u+)/6
TP 3()=u’ By(W) = (1)/6
g %
o . Vi
0. \ / =
. 7 \ . =
L -~ - 1]
Figure 52. Set of Bezier weight coefficients Figure 53. Set of UniformB-spline weight coefficients
(num. poins= 4). (num. points= 4).

bezier curve spline curve

Figure 54. Exampleof Bezier Curve Figure 55. Example of Spline Curve
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Property 3. Symmetry of the Weight Set.

In order to satisfy Property 2 (invariance under inversion of point sequence), the B;(u) coefficients of the
equation

n-1
[o]
pu)=a BiWR
i=0
must be symmetrical about u = 0.5 (Figure 52 and Figure 53). Therefore
B(U)=B,.(l-u), B(W=B,,@-u), .. B (W=B.,l- U
Property 4. Adherence of curve to control polygon at endpoints.

A special case of Property 1 (Containment for a parametric form), isthe onein which the Bj(u) coefficients of
the equation

n-1
pU)=Q B W) *R

i=0
hold that (condition 1):
Bo(0=1 B(0)=0, .. B,,(0)=0
Bo®=0  B®=0, .. By, (=1

In this case the calculated point equals to the control point,
pu=0=r, pu=)=R,

Which makes the curve to adhere to the initial and final points of the control polygon (Figure 54). If, in
addition one has (condition 2) t he derivative evaluated in a specific value of the parameter:

p k(P - PR) U p'|u=1 =k,P_,- P.,) for some scalars ko, ki,

the tangent of the curve adheres to the initial and final segments of the control polygon. There exist curve
formulations that do not obey these two conditions, for example Spline curves (Figure 55), while Bezier ones
do adjust to them.

(v=0) ~

Definition 4. A Polynomial formulation for the blending functions.

A common case of Property 1 (containment for a parametric form), is the one in which the B;(u) blending
functions of the equation

n-1
pu) = & B (u)xR
i=0
are polynomials.

Figure 52 and Figure 53 show sets of B(u) polynomial blending functions. Notice that (a) ul [0,1], (b) the
evaluated weight or coefficient Bi(u) T [0,1], (c) the Bezier set satisfies Property 4 (adherence of curve to
control polygon at endpoints) while the Spline set does not. Instead, Spline curves are strongly attracted by
the intermediate control points (in this case P, and P,) as the large relative size of the B; and B, coefficients
suggest. (d) The Property 3 (symmetry of the weight set around u=0.5) is evident, since By(u) = Bs(1-u) and
B, (u)= B,(1-u). The degree of each polynomial blending function in both the Bezier and Spline cases depends
on the number of points to interpolate (degree = n = num_ points-1 in C programming language. n =

num_pointsin MATLAB programming language).
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4211 Bezier Curve

4.21.1.1 Scalar form of the Bezier coefficients.

The Bezier curve approaching an nrpoint control polygon is given by:
B! 2
p(uy=a B(ur .,  ul[01]
i=0
with Bi(u) (also known as Bernstein polynomial) being the i (i=0..r) weight coefficient for the i-th control
point:
anog | .
B.n(W) =§ ' (1- u)™
. iy

with

ano n .
LE=- —=C(i,n)
ig il(n-i)
Equati on 42. Bernstein formof the Bezier coefficients

Figure 57 shows a set of Bezier coefficients for the case k = 7 control points. Observe the symmetry property,
as well as the fact that the B;j(u) coefficients are independent of thelocation of the control points. Thus, any
other Bezier curve with k=7 points will have the same B;(u) coefficients. It isalso evident (Figure 56) that the

Bezier formulation forces the curve to adhere, in position and tangency, to the extremes of the control
polyhedron.

421.1.2 Matrix form of the Bezier coefficients.

From the example discussed above ( n= 3, control points = 4) and Equation 42, the Bezier formulationfor the
curveis:

§l- u+a2- W) épyl
é u é_u
p(u) = @(3U'6U2+313)L:, &P
€ @u’-3u®) U ép,d
€ 3 u e u
é ) G épsd

Which can be expressed in matrix form as:

&1 3 -3 10 ép,

é uaé_u
€3 -6 3 oY €p!
p(U)=[u3 u> u 1]><‘? 0xeP:
&3 3 0 00ép

e ue u
él 0 0 0§ épa

pU)=U,.M, Q,
Equation 43. Matrix formulation of parametric curves.
Wheretheterms Uk, Mk and Qk in Equation 43 are characteristic for k control points. They appear in

Table 11
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Table11. Matrixformulation for Bezier Curves.

k=n+1 Uy My Q.
&1 14 6P, U
2 U, =(u 1 M,=a ' =z o
2 [ ] 2781 o Q, &p U
él -2 1y éPoll
_ _é 0 _ég
3 U, =l u 1 M,=g2 2 O Qs = gP1j
g1 0 O0f EP2f
61 3 -3 1y éPoly
é i ép U
3 -6 3 0 P1-
=3 2 M, =¢€ u =€ U
4 u, [u u ulJ +“83 3 o o Q, &P,
é 0 &
€1 0 0 o0 €p.
61 -4 6 -4 1y €Poll
4 12 -12 4 of &P
5 |U;=[u* & v u1|M=66 -12 6 0 00| Q,=éP:0
e u e, u
g4 4 0 0 0 &Pau
g1 0o o0 0 Of &

Figure 54 and Figure 55 show the results of using the two different types of interpolation coefficients (Bezier
and Spline) in fitting a curve to the same 4-point control polygon.

Observe the effect of Property 4 (adherence of curve to control polygon) of the Bezier curve, in contrast with
the Spline one. Figure56 shows that, given the adherence property for Bezier curves, achieving a C! (tangent -
continuous) closed Bezier interpolation is an over- specified problem and therefore non- solvable with arbitrary
p; and p,., points. It must be handled by controlling p; and p,, » to achieve the desired tangent. If in addition C?
(curvaturecontinuous) interpolations are required, points pz and pn3 must be manipulated.

0 1
9 09
. Do —Ttos .L\Bd(u) Bel) /
, / \ N /
S s\ /
VAL i
J ARy oy A T RE@ Z0l
DT {po Vel P B B0y By
3 03
, \ NV SN EE
I 71X 28
Ps //)\>>/&\
00 2 4 6 8 10 C0 0.1 02 03 04 05 06 07 08 0.9 1
X u
Figure56. Closed Bezier Curve
(case. k=7 control points (pO=p6). Figure57. Bezier coefficientsfar k=7 control points.
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Remarks:

Bezier formulation uses Bi(u) polynomials whose degree grows with the number of control points
(degree = n). Therefore, with large sets of control points, the orders of such polynomials become
extremely large.

. Modification of acontrol point in Bezier formulation implies the recalculation of the whole curve, since

each point P(u) of the curve is affected by al control points.

As Figure 55 suggests, Spline curves were designed to be used in subsets (stages) of a larger control
polygon. Their weakness in tracking the endpoints of the control polygon becomes strength in
accommodating tangency and curvature conditions of the previous and next stage. This quality also
facilitates the design of closed snooth shapes. Because of their design in stages, Spline ease the
disadvantages (i) and (ii) of Bezier curves.

4212 UniformB -Spline Curve

As mentioned before, the properties of parametric curves are concentrated in their coefficient setBi(u). The
matrix formfor Bezier curves has a counterpart for Spline ones. Table 12 shows the results of the derivations
for U, M, and Q, found in the literature. The equation for Spline Curves is identical to the Bezier case,
namely Equation 43, except for the content of the M, matrix.

The interested read may refer to MOR.85 and FAR.90 and many other authors in search for the derivations
leading to Table 12.

Table 12. Matri x formulation for UniformB-SplineCurves.

k Uk Mk Qxk
&1 1y éP_.u
2 U, =[u 4 M2=g = Q =8,
&1 O & a
L6t -2 éh..u
— |2 _1é ( _ u
3 U3—[u u 1] Ms_E‘?Z 2 OL} Q= i
Bl 1 ™ &b
&1 3 -3 10 gﬁ’la

e u
123 -6 3 0 P
4l U,=[u® u® u 1 | Mm==€ u =€ u
o= | | m 663 0 og | Q &
g1 4 of & 4
|

In order to use Spline curves, the overall control polygon S={po.pn} must be processed in stages. Every stage has the same number k of
points (usualy isk=2, 3,4, 5).

Table 13 presents the composition of the control polygon for each stage. The reader is invited to calculate the
number of stages (f) as function of the n (number of points —1) and k(points per stage) values.
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Table 13. Disposition of control pointsin stages for Open SplineCurves.

Po ! PL | P2} Pst opat ' ' ' ' ' ' ! Pns | Pr2 | Pra
| | | 1 | | | | | | | | | |
Open Spling,k =4
[ [ [ i i i i i i i i i i i
Stagel | Po i P P2 Psj | I i
! ] ] : ] ! ! ! ! ! ! ! ! !
Sege2 | PP iPsiPai 0 G 004 4 b b
! ! ' : ' 1 ! ! ! ! ! ! ! !
Stage 3 i 1 P2y Psy Pay s P i
i i i i i i i i i i i i i i
I R S R R S R N A R i
! ! ! ! ! ! ! ! ! ' ' ' 1 !
L b b iPeeiPas P iPeai
! ! b ! ! oo ! ! roo !
S U S N B I | e e
e IR i
Seget | F 4 b b b b b b fF jPeiPesibezpm
Open Spline,k =3
sagel [po i piipi i 4 i i b 4 b4 i
sz | Imimiw: 1 1 1 1 1 1 1 1 ]
Stage 3 I "I VA T A A A S S A
A e e T e e S
I e I e e L e
i i i i i i i i i i i i i i
P b b b b i Paa i Pea Poz i
Stage f I T A S A A R R O A ot
The stage i (i=1, 2, 3...) in a Spline curve has the following form:
¢n.: 0
e, ¢
P(u)=U,.M,.€ u
|( ) k k g . L,]
e u

with dimensions of Uk (1~

ep. +k»2|:|

k), of Mk (k ~ k) and the local control polygon (k = 3).
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42121 Continuity analysisfor Spline curves

For the Spline curves, the overlapping control points in consecutive stages allows the fulfilling of their
continuity requirements (see

Table 13). This overlap is determined by the degree of the weight coefficients Bi(u) which is dictated by the
number of pointsin the stage. For example, for stages with k = 4 points, the degree of the Bi(u) coefficientsis
3 and the overlap between stages is also 3 points. In this case, one obtains C2 (curvéure), and obviously CO
(simple) and C1 (tangent) continuities between consecutive stages.

Points Degr ee of Continuity
per stage the Stage Comment
n cl|ct c?
1 0 stagej(u) ° P, "u 1 [0,1]
(isolated points) Spline is the control points.
2 1 J Spline isthe control polygon.
(linear) Tangency is not kept.
2 .
3 (parabolic) v |V Tangency is kept.
4 3 NAN NN/ Curvature is kept
(cubic) ent.

42122 Closed Splinecurves

In order to fit closed Spline curves to a control polygon S = {p...p} additional stages are appended by
recycling theinitial points po, p1, p2, €tc. and stopping before the stage [po...p«1 is repeated. Table 14 shows
the composition of the stages for closed Spline curves. Again, the reader isinvited to calculate t he number of
stages (f).

The stage i (i=1, 2, 3...n) in a Closed Spline curve has the following form:

épo U épi. U &1

g, U g, U g, U

w=uU,M, e u, (w=U,.Mm, & U, uw=uU,M, e"°U
p.(U) K kgu p; (u) K kg. G Pn(u) K kgljl
e u g u & U

P10 FPi20 P20
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Table14.Disposition of control pointsin stagesfor Closed Spline Curves
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422 Surfaces

4221 Control point sets

The control polyhedron (polygon) or the set of control points playsavery important rolein parametric surface
generation (as in parametric curves), this is because this object is the physical support for the creation of
curves and surfaces that are used to model real world objects.

| It can be obtained specific control polyhedrae (and control polygons) in many ways. 1) To define them with
mathematical expressions such as parametric and geometric definitions, for instance a plane torus, a cone, a
sphere, a Mobius band, etc.

Figure 58. Mathematically obtained control pointsof atoroidal _. ) : ’ .
spiral. Figure 59. Curvefit onthecontrol pointsof atoroidal spiral.

Figure 60. Mathematically obtained control pointsof asphere. Figure 61. Surfacefit onthe control pointsof asphere.

Figure63. Surfacefit on the control points of a cone.

Figure64. Mathematically obtained control points of a Figure65. Surfacefit onthecontrol pointsof acylinder.
cylinder.
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Another technique, 2), is employed when such a surface or curve is not easily expressed in mathematical
terms (Figure 66), it consists of obtaining or sampling the control points directly from the surface of an
existing object. There are also many developed techniques in this class of control point set creation
(digitalization). To mention just a few most common we have (in descending order of accuracy): Laser 3D
scan, Range Imaging and tactile point capture. With the aid of these techniques together with complex surface
reconstruction algorithms, intricate shapes like the backbone in Figure 67 can be accurately reconstructed for

many scientific and engineering purposes.

Figure 66. Digitized control pointsof a backbone

Figure 67. Reconstructed Surface of a backbone
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4.22.1.1 Example of control Polyhedron generation (The M &bius Band)

When defining a control point set by mathematical means, it is advisable to design a parametric representation
in which one or several geometric parameters can be controlled in a way to generate the required points in
space.

In the following example a parametric technique of point generation isillustrated for creating the surface of a
Mobius Band.

Figure 68.Final set of control points of a Mobius Band Figure 69. Mesh of a Mébius Band

It isimportant to exercise judgement of main parameters involved in a certain shape and recognize which are
more suitable for describing the needed shape. In this particular case we conceive the control point set of the
Mobius Band as an “army” of pointson agenerative linein space which rotates about an axisin space whileit
also rotates about it's own midpoint ( Figure 70). For a M&bius Band the number of rotations of the generative
line about the midpoint is related with the revolution this line does about the axis (@ =¥z q). The sweep about
the axisis 2PI, and the rotation of the line about its midpoint will then be PI. The revolution of a generative
line of length L about an axis (q = 2PI) and about the midpoint (g = %2 are the main parameters that will be
taken into account to make a characteristic Mdbius Band.

Figure 70. Parameterization of the MobiusBand.
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The parameterization consists of controlling a point generative line (L) that rotates about an axis and at the
same time about its midpoint. As for the points in the line, the coordinates of the extreme points Py and P, are
defined as a function of the parameters mentioned above. Then a percentage or proportion expression
produces the midway points between these extremes, and hence, an adequate set of control points is obtained.

The [X, y, z] coordinates for the extreme points
R, =[(R- 4cosg){cosq), (R- +cosg)¥senq). (- +seng) |
R =[(R+4cosg)x{cosy), (R+4cosg){senq). (5seng) |
arerelated in a proportion expression for producing the rest of the points
P@)=aP +(1-a)P,
where a isthelongitudinal parameter and P is any point in the set.
An interesting variation of this example can be obtained by modifying the value of the angle (g) that theline
rotates about its midpoint. If, for example, this value is g= 1q then a shape like in Figure 71 would be

obtained, and so on. The reader isinvited to explore changing the values of the parameters for this figurein
order to obtain other forms.

NOTE: It is advisable to use an independent cycle or loop to control each main parameter involved in the
generation of the shape.

Figure 71. Band with parameter g= 0.25q Figure72. Bandwith parameterg=1q Figure 73 . Band with parameter g = 4q

See Appendix 7.2 for the MATLAB code developed for this example as well as for some of the control sets
generated for Figure 58to

Figure 64.
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4222 Parametric Surfaces

Parametric surfaces are generally defined by a vector function p():[0,1] "[0,1] ® ES:

p(uw) = ( x(uw), y(uw), Z(uw) )

The underlying structure is based on the defi nition of parametric curves. In other words, there exists no
special formulation for surfaces. Instead, the formulation for curves is replicated into two dimensions. The
general form for Bezier and Spline surfaces is therefore:

PuW) = ( Xo(U) Xx2(W), Ya(u).yo(W), z(U).zAW))

pU.w) = (X(uw), y(uw), Z(uw) )

Figure 74. Disposition of the Control Polyhedron

Figure 74 shows the disposition of a control polyhedron, formed by (m+1)” (n+1) control points, to which a
parametric surface is to be fit. A surface p(uw) is asequence of curves, each one corresponding to a value of
u with internal parameter w. Theformulationisexactly asinthe curve case, theonly differencebeing that the
control points are now function of u, Qn(u), as follows:

Pu(W) =W,.M,Q, (u)

The reasoning can be inverted to interpret the surface as a sequence of curves P,(u), where each curve adjusts
to control points determined by w, Qn(w), and has internal parameter u, as follows:

Pu(W)=U,M . Q (W)
This symmetry leads to the formulation in Equation 44:

P(uw) =U,M_ Q. .M W'

Equation 44. Formulation of surface patch with (m+ 1)x(n+ 1) control points.

4223 Bezier Surface

Asin the case of Bezier curves, the whole set of control pointsis used in oneBezier patch. As a consequence,
the degree of the interpolating polynomials Byi(u) and Bwj(w) is controlled by the number of rows and
columns of the control polyhedron. Therefore, Bezier surfaces inherit characteristics of the Bezier curves: (a)
adherence in position and tangency to the boundaries of the control polyhedron, (b) confinement within the
convex hull H(S (H(S is a polyhedron in E3) of the control polyhedron S, (c) weakness in following events
in the center of the stage Figure 75 and Figure 76), given the low weight of the central coefficients
(Figure 57).
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Asiillustration, for a control polyhedron of size 3x4 points, the equation Q(u,w) = UMuPMwTWT , applied

using the matrices M speci

fic for Bezier case (

Table 11), becomes (the procedure for the “x” coordinate is shown, the same is done for the “y” and “z”

components):

QX(U,W) :[uz u ]_]Xé— 2 2
g1

. » &1 3 -3 1
él1 -2 lﬂ gpxll Pa2  Puas pxl4g §3 6 3 Og ){ 1]T
Ouxéng Pyo2  Pyos p>Q,4[_]>§_ 33 0 0d W W w
O Of8Pc; Paz Pas Peal g'l 0 o Og

Equation45. Exampleof Bezier Patchformulationfor a3x 4 control polyhedron.

The reader is invited to verify the sizes of the matrices in Equation 45 to realize that it actually represents
three matrix equations, each one with scalar result: Qx(u,w), Q,(u,w) and Qz(%:l,W). Theindividual components
are calculated as Qx(Uw) = U.Mu.Pe.Mw". W', Qyuw) = U.Mu.P.Mw' W' |, Quw) = U.My.PMy W' .
Each matrix Py, P, P, must be the component x y and zrespectively of the matrix P in Equation 45, and
therefore it must have the same layout (rows, columns and sorting).

B »
B
S
S ,,7,"‘\“ N e
S\“::;;,’;;:*% S,
N % SR N
&t
<2 o U
s ; ‘0’:!2:‘““

rE

Figure 75. Control Polyhedronwith 21" 21 points.

4224 SplineSurface

40

3B

0

Figure 76. Bezier surface patch for a21” 21 control polyhedron.

In analogous way to curve treatment, in which each stage of size k of a control polygon is extracted to fit a
local Spline curve, alocal Spline surface is fit to a subset of k x | points of the control polyhedron (see
Figure 77). The problem is stated asto fit a parametric uniform B-Spline patch on arectangular polyhedron of
(m+1) x (n+1) points, using stages of size kout of t he (m+1) points and stages of sizel out of the (n+1) ones.

The governing equation is:

Qs (Uuw)=U, .M .P, .M. WS

Equation46. Matrix formulation for stage of a Spline surface patch.

The notation used in Equation 46 is
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(m+1)  Number of point rowsof the control polyhedron.
(n+1)  Number of point columnsof the control polyhedron.
K Points/stage and continuity control in the row direction of the control polyhedron.
| Points/stage and continuity control in the column direction of the control polyhedron.
S Index of current stagein therow direction. s1 [1: m+ 2-K]
t Index of current stagein the columndirection.t1 [1: n+ 2—1]
u Parameter of stagesintherow direction.ul [0,1]
w Parameter of stagesinthecolumndirection.w1 [0,1]
Psi  Subset of of the control polyhedron, of size (k x 1), located at coordinates(t,s).
Uk U|<=[I.Jk'1 ue . u 1]
W Wis[ww o w ]

Figure 77 also suggests that the way to achieve a closed patch in both directions (m and n) isto recycle or
reuse the control pointsin an analog manner to the one applied in closing Spline curves Observe that patches,
in general, allow independent formulations in them and n directions. This obviously affects the order of the
curves in each direction, but, more interestingly, applies to the fact that the curves in the m and n directions
could have completely different characteristics (Spline, Bezier, NURBS, etc). The reader is invited to visit
exercise 5.3.3 and 5.3.6 to analyze this aspect.

n+1 point columns

Ll St
with

¢« o o

.g--@--4  UW= patch parameters
..‘ st = stage starting indexes

: k|| = sizesof the current stage
e o ¢

‘.o

e

¢ o ¢

¢ o @

S .

§ o

Figure 77.. Variablemap for Spline patch, according to control polyhedron.

Figure 78 and Figure 79 present the Spline version of the patch fit to the 21" 21 control polyhedron in
Figure 75. A portion of the total set of stages is presented in Figure 78, while the total patch is shown in
Figure 79. Observe that the Spline formulation follows more faithfully the central spike.
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Figure 78. A quarter of the Spline stages for Figure 79.Spli nepatchfor 21" 21 control polyhedron
21" 21 control polyhedron (stageswith kxl=3x4 control points).

Figure 80 shows the control polyhedron for a torus, while Figure 81 displays the Spline patch, fitted with
stages of (k x | = 3 x 4) control points. Independent from the control polyhedron, either direction can be
declared as “open” or “closed”, thus producing the effect shown in Figure 81.

Figure 80. Control polyhedron for tor us. Figure 81. Splinepatch for toruscontrol points.
Opened in u parameter, closed inw parameter.
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43 EXERCICES - CURVES AND SURFACES -

4.3.1 Control point Generation of a Toroidal Spiral.

CONTROL POINT GENERATION (TOROIDAL SPIRAL)
OBJECTIVE

To exercise judgement of main parameters involved for mathematically describing a certain shape.
Computationally.

PROCEDURE

Y ou will generate the control point set of the spiral shown in Figure 82.

Figure 82. Control point set of asprial inatorus

1. Write afunction [pts] = toroidal_spiral(). This function should define or have as input the following
arguments: R the radius of the underlying torus, r the radius of the spiral loops, afactor k that will control
the number of loops the spiral will perform when swept around the torus axis.

2. Recognize the main parameters involved in the generation of this shape.

3. Define appropriate increasing steps for the parameters. For instance, da as an increment step for an
angular parameter.

4. Develop and Implement underlying parametric equations that control the generation of the coordinates of
each control point.

5. Thefunction should return an array of the coordinates of the control points as pts.
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432 Bezier Interpolation Function.

CURVE INTERPOLATION

OBJECTIVE

To generate an introductory environment for parametric curves.
PROCEDURE

Given 4 points in ES Po P1, P, P3 calculate their coefficients in a parametric curve, as a function of a u
parameter.

A curveis a sequence of points, calculated with the formula:

f (u) =by (u)P, +b(U) R, +b,(u)P, +by(u)R,

Where: by(u), by(u), by(u), bs(u) are scalar functions (the set of weights for the points, evaluated for each value
of parameter u). Po, P1, P2, P, are points of dimension (3x1)

T he sequence is produced as the parameter utakesvalues 0, 0.1, 0.2, 0.3,0.4, ...1.0

Thefunctions bo(u), b(u), bXu), bs(u) are:

b (u)= (- u)’
b (u)=3ut- uf
b, (u) 3uz( u)
b,(u) =1

ACTIVITIES

1. Write the 4 functions, bo(u), bi(u), bp(u), ba(u) which calculate bi(u) for a given value of u.

2. Calculate the history of the coefficientsby=bg(u), b;=b;(u), b,=bxu), bs=bs(u) for uvaryingfrom0t01.0
with increments of du=0.1 Store the history of u in U (upper case) and the b;(u) histories in Bi (upper
case).

3. Plot the functions by=bg (u), bi=b; (u), b,=b, (u), ky=bs (u) against u (in the same window). Should you
use a 2D or 3D plot? How many and which values does the independent variable u take?

4. Complete the code written in (2) as follows: for each element in the sequence of parameter u, u = [0.1,
0.2, 0.3, 0.4...1.0] calculate f(u) (see formula above) and extract its components fx, fy, fz (f(u) = [fx, fy,
fz]T). Y ou should progressively fill up the row vectors X, Y, Z with fx(u), fy(u), fz(u) respectively. Usethe
code writtenin (2).

X =[x(0.0), &(0.1), %(0.2), x(0.3).... & (1.0)]
Y =[4(0.0), fy(0.1), fy(0.2), fy(0.3),...fy(1.0)]
z =[2(0.0), 2(0.1), 2(0.2), 2(0.3).... fz(.0)]

5. From your work from (1) to (4), write a function [X,Y,Z] = my_bzr(Py,P,,P,, P3) which interpolates the 4
points using the formula given above ( f(u) ). The arrays X, Y, Z are described in the previous numeral.
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6. Write amain routine which:

i. Initidlize the required variables ( du, number of interpolated points, etc.).
ii. Initidlizethe points Py, P;, P, P3 as you wish.

iii. Call thefunction my_bzr ( )to calculate the interpolation X, Y, Z

iv. Open awindow and draw the control polygon Pq, P;, P, Psin E°.

v. Draw theinterpolation of the points Py, P;, P, Ps, contained in X, Y, Z. Do not change window nor
allow the previous one to be erased.

QUESTIONS:

1. Which are the dimensions of bi(u)?

2. Which are the dimensions of X, Y, or Z as function of du?

3. Which are the dimensions of U as function of du?

4. Which MATLAB function is used to draw a scalar function of one variable (i.e. y = h(x) )?

You have written the MATLAB code to draw a Bezier curve in E
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4.3.3 Sdf-Defined Interpolation Function.

CONCEPTUAL EXERCISE. PARAMETRIC CURVES.

OBJECTIVE

To apply the concepts that govern parametric curves by defining an interpolation defined by the student.
PROCEDURE

1. Develop aset of interpolation functions Bo, Bi, B, B, different from Bezier or Spline ones, for points
Po, P, P2, P3, with the following conditions:

11 0 £B(U)E1(i=0,..3) foreachul [0,]

oI’
w

12. B(u)=1 foreach ul [0,1].
i=0

13. B(u)=B,,(1- u), i=0.3 (Bo vs. Bs, By vs. By should be symmetrical about
u=0.5).

2. Use the coefficients developed, B; (i = 0..3), to interpolate the group of points Py Py, P, , P 1 E®
defined arbitrarily.

3. Plot:
3.1. Bi(u) fori=0.3and ul [0,1]. (the history of coefficients Bi(u) as function of u).
i83

32 a B (u)xPl = f(u) for ul [0,1]. (your own interpolation).
i=0
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4.3.4 General Curve Interpolation Function.

EXERCICES CURVES SALINE / BEZIER
OBJECTIVE

To develop a generic code for the interpolation of Spline or Bezier curves.

PROCEDURE
Given:
1. Thetype of curve: Spline (‘s') vs. Bezier (‘b’).
2. The control polygon as an array of npoints(size 3" n).
3. Theincrementdu: 0.1, 0.05or 0.2
4. The number of points per stage k (only for Spline curves). Possible values: 2, 3, 4.

Goal

To calculate the curve Spline or Bezier according to the parameters given by the user.

Observations:

1. Spline curves have severa stages.

2. For Bezier curves, you may choose between (@) to use the whole set of control pointsin one
stage, (b) to define several stages, with overlaps of exactly one control point between
consecutive stages.

Draw the control polygon in the same window as the interpolated curve.

4. Your program must work for different combinations of the input variables (type of curve,
control polygon, increment du, number of points per stage).
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435 Control Point Generation of a Toroidal Surface.

CONTROL POINT GENERATION (TORUS)
OBJECTIVE

To exercise judgement of main parameters involved for mathematically describing a certain shape.
Computationally, a cycle or loop should always be used to control each main parameter involved in the

generation of the shape.
PROCEDURE

You will calculate a set of rectangular arrays of the coordinates of the control points (xy,2) in E, stored in
variables Px, Py, Pz that describe the shape of a torus. The revolution axis will be the world coordinate Z
axis.

1. Write a function [Px, Py, PZ = torus z(). This function should define or have as input the following
arguments: R the big radiusand r the small radius of the underlying torus, and other parameters you may
consider necessary for the following tasks.

2. Define appropriate increasing steps for the parameters. For instance, da as an increment step for an
angular parameter.

3. Develop and Implement underlying parametric equations that control the generation of the coordinates of
each control point.

This function must be able to control the amount of revolution in either senses or angular parameters,Thisis"/_{ gﬁgefrg;:;am: Sin vifietasni l

to say, an open torus may be generated with a slight modification in the parameters of this function, as shown
in_Figure 85 and in Figure 86,

Eliminado: ]

Eliminado: T

<#>Figure 85.Control point set of
atoruswith anaxial sweep of
1.5PIT

1

i

Eliminado: T
Figure 86.

&

Figure83. Mathematically obtained control points of atorus Figure 84. Surfaceof atorus

° o 0

Figure85. Control point set of atoruswithan axial sweepof 1.5P1  Figure 86. Surface of a toruswith sweep of 1.5P1 in both angular
parameters
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4.3.6 Control Point Generation of a Conical Sgral Band.

CONTROL POINT GENERATION (CONICAL SPIRAL BAND)
OBJECTIVE
To exercise judgement of main parameters involved for mathematically describing a certain shape.

Computationally, a cycle or loop should always be used to control each main parameter involved in the
generation of the shape.

PROCEDURE

Y ou will calculate a set of rectangular arrays of control points (xy,z) in E3, stored in variables Px, Py, Pzthat
describe the shape of aband spread over a coneFigure 87. Therevolution axis will be the world coordinate Z-
axis.

Figure 87. Mathematically obtained control points of a band on

acone Figure 88. Mesh of a band on a cone

1. Writeafunction[Px,Py,Pz = cone_band_z(H,alfa,L,sping. This function should define or have as input
the following arguments: H the height of the underlying cone, alfa the aphex angle, L the size of the

width of the band (length of generative line) and spins as the number of spins the band must accomplish
from the base of the coneto it’s aphex.

2. Recognize the main parameters involved in the generation of this shape.
3. Define appropriate increasing steps for the parameters. For instance, da as an increment step for an
angular parameter.

4. Develop and Implement underlying parametric equations that control the generation of the coordinates of
each control point.

96
Thismaterial isproperty of theAmerican society of mechanica engineers (ASME). All copy or reproduction isforbidden. Personal
Copy of Prof. C. U. XoanLeiceagaBaltar.



UNDERLYING ToPICSIN CAD /CAM/ CG Dr. Oscar E. Ruiz S.
CAD/CAM/CG Laboratory- EAFIT University- Medellin, Colombia
Copyright A.S.M.E. (American Society of Mechanical Engineers)

5.  An important expression that can be used for this problem is a length proportion expression as used to

create the Mdbius Band. See the solved example for the generation of the control points of the cone
(Appendix 7.2).

4.3.7 Bezier Surfacel.

BEZIER SURFACE |

OBJECTIVE

To use Bezier surfaces to prepare the student for future work with Spline surfaces.

PROCEDURE

You will calculate a Bezier surface for a rectangular array of control points (x,y,2) in E5, stored in variables
cpt_x, got_y, cpt_zdescribed below. The Bezier surface that you will produce must be stored in 3 rectangular
matrices BZR_X, BXR_Y, BZR_Z. Therefore, your goal is to correctly fill BZR_X, BXR_Y, BZR_Z and to
plot the resulting surface. SeeFigure 89.

Each point of the Bezier surfaceis calculated as afunction of two parameters: u, v (u= 0, du, 2du, 3du,....1.0;
v = 0, dv, 2dv, 3dv....1.0). Note that du y dv are indicators of the mesh refinement. Typical valuesfor du or dv
are0.05, 0.1, 0.2 The algorithm should prompt the user or explicitly set values for duand dv.

1. Writeafunction contrl_pt( ), which produce 3 matrices containing the control points for the surface.

@ 0 0 0y 0 12 30 g 0 0 1
1 1Y 01 2 3 0 15 15 oY

cpt_x=¢§ u cpt_y=¢ u cpt_z=¢ u
& 2 2 20 & 1 2 34 @ 15 15 0U

&3 3 3 3f 0 1 2 34 g 0 o0 1f

2. Cadlculate, as function of du, the number of values of u that must be considered (N_cells u).

N_cells u=

3. Cadlculate, as function of dv, the number of values of vthat must be considered (N_cells_v).

N_cells v =
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| [BZR_X(u,v), BZR_Y(u,v), BZR_Z(u,v)] = BZR(u, v, cpt_x ,cpt_y ,cpt_z) |

N_cells u

v=1 . .
% / BZR_X(ij)
v
N_cells v
v=0
'Y
_ |4
u=0 du u=1 BZR Y

Figure 89. Three matrices which store the cal culated surface.

4. Write the instructions (in MATLAB code) which alocate the exact amount of memory for matrices
BZR_X, BXR_Y, BZR_Z and initialize it with zeros.

5. Specify the range of values that i and j should take the variable i is an index for elementsin the u
direction and the variable jis an index for elementsin the v direction.

6. Write the instructions (in MATLAB code) which calculate the surface points (BZR_X(u,v),BZR_Y(u,v),
BZR_Z(u,v)) for agiven combination of (u, \) and a control polyhedral cpt_x, cpt_y, cpt_z

7. Write theinstructions (in MATLAB code) which draw the mesh of the control points cpt_x, cpt_y, cpt_z
8. Writethe instructions (in MATLAB code) which draw the Bezier surface BZR_X, BXR_Y, BZR_Z.
9. Writetheinstructions (in MATLAB code) in a script main.m to (a) fill the necessary data structures, (b)

call the function to calculate the Bezier patch, and (c) plot both, the control polyhedral and its Bezier
surface.
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4.3.8 Bezier Surfacell.

BEZIER SURFACE 11
OBJECTIVE
To prepare the concept of local patch within a larger control polyhedron. To calculate a Bezier patch, for a
local control polyhedron of size | x k, extracted from position (b,a) of alarger control polyhedron, generated
with an analytic form. The local Bezier patch will have maximal size 4x4.
PROCEDURE
1. Create the control polyhedron:

Px , Py are square matrices of integer contents [0,10]x[0,10] (meshgrid ).

Pzis amatrix generated with the following formula:

By o g%os(x- 5) ﬁé Q)g&:os(y- 5) ﬁAQ

5 ¢ 5
e ge g

Those matrices are to be created within a function [Px, Py, PA=contrl_p().

N

Prompt the user for, or initialize in the code, the following variables:

du: valueof increment for parameter u.
dv: value of increment for parameter v.

k: number of control pointsin direction u.

| : number of control pointsin direction v.

a: column origin of the local control polyhedron within the global control polyhedron.
b: row origin of the local control polyhedron within the global control polyhedron.

3. Create afunction M=calc_M( k), which returns the Bezier coefficient matrix for k control points. k=2, 3
or 4.

4, Extract the local control polyhedron from the global one, starting in column a, row b, with size kx |
respectively, by using the following instructions

pt x = Px(b:b+I-1, a:at+k-1)
pt y = Py(b:b+l-1, a:atk-1)
pt_z= Pzb:b+l-1, a:at+k-1)

5. Create afunction U = calc_uv(k, u), such that U=[u**u*? ... u1],fork T N, ul [1,0].

6. Create afunction [bezX, bezY, bezZ]=Bezier (U,V, Mu, My, pt_x, pt_y, pt_2), to calculate a point of the
local Bezier patch. U =[u** u2....u1] and V=[v" 12 ... vi]. Muisthe matrix of Bezier coefficients of
size k x k Similarly, Mv isamatrix | x I. pt_x, pt_y, pt_z isthe local control polyhedron, extracted at

position (b,a) from the global polyhedron. bezX, bezY, bezZ are the coordinates of the calculated Bezier
point.
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7. To create the control loops (for) required to calculate and store all points [bezX, bezY, bezZ] from the
surface. Each Bezier point is calculated for a combination of parameters (u, v). The sizesof thevariables
bezX,bezY, bezZ, required to store the local Bezier patch are dictated by duand dv.

8. To create afunction which plots the calculated local Bezier surface (bezX, bezY, bezZ). Titletheresulting
figure and name its axes. In another window, plot the global control polyhedral.
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4.3.9 Generic Surface Interpolation Function.

HYBRID SPLINE / BEZIER SURFACES
OBJECTIVE

To develop a generic program, able to generate Spline, Bezier or Spline — Bezier_surfaces (different
interpolations in rows and columns).

Given:

surface type: Spline, Bezier, Spline-Bezier (‘s’, ‘b’, ‘sb’, ‘bs'). ‘sb’ means interpolation Spline in rows
and Bezier in the columns of the control polyhedral (similarly with ‘bs’).
X, Y, Z: control polyhedral . Gridin X, Y . Zrandomly generated.

du : increment in value of parameter u (du =0.1, 0.05, 0.2).

dv : increment in value of parameter v(dv = 0.1, 0.05, 0.2).

k : number of control pointsin the u direction (columns) (k=2,3,4) to be taken per stage.

| number of control pointsin the v direction (rows) (I1=2,3,4) to be taken per stage.

Observations:
1. Two windows must be used. The first one displays control polyhedron. The second shows the
interpolated surface.

2. The program must work correctly with all possible combinations of the input data.
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4.3.10 Bezier and Spline Surface Interpolation.

BEZIER AND SPLINE SURFACES
OBJECTIVE

To fit a parametric Spline surface on a generated control polyhedron. (CONICAL SPIRAL BAND)

PROCEDURE

You will develop a set of functions in order to define essential parameters and variables needed to create the
Bezier and Spline surfaces of a conical band according to the given specifications.

e

=

Figure 90. Bezier surfaceof a conical band

=

— B

/-

Figure91. Sline surface of aconical band

NOTE: Unlike the Bezier surface interpolation, the Spline does not cover the whole range of points in width
and length of the band. Notice that the Spline surface is thinner than the Bezier surface as well as shorter.

1. Write a MATLAB function [Px, Py, PZ = gen_conical_band( H, R, L ) which generates the control
points of aconical band in MESH format, given the heightH, a radius R, and awidth for the band L. The
variables Px, Py, Pzobtainedin 4.3.6 can be used here.

2. Develop a set of generic surface creation functions, both Bezier and Spline. The advantage of these
functions is that they are useful for quickly building practically any surface given the control polyhedron
in MESH format. Examine the scheme of Figure 77 in order to use the notation specified there in your

code.

[Bx,By,BZ] = surface_bezier(Px,Py,PzK,L,du,dv)

[PXs,PYs,PZs] = surface_spline(Px,Py,PzK,L,du,dv)

U= u_bezer(k,du)

U = u_spline(k,du)

M= m bezier(K)

M= m_spline(k)

3.  Writeascript MAIN.m in which the polyhedron generation routineis called and the surface functions are

caled and drawn in separate figure windows.
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5. GEOMETRIC MODELING

The geometric modeling aided by computer implies the usage of mathematical representations and data to
approximate virtual models to real objects, according to certain characteristics of the latter. The formalisms to
represent objects are denominated representation schemes (or simply schemes). An instance of data and
relations affixed to a scheme (obviously with the purpose of representing a real object) are denominated a
(computational) model. Typical schemes are Constructive Solid Geometry (CSG) and Boundary
Representation (B-Rep).

Some relevant issues to these representation schemes are the following ones:

a) Given areal objectR and arepresentation scheme f (for exampleB-rep, CSG or other) it isasked if Rcan
be represented by more than a computational model fy, f2, ... following this scheme. The answer is usually
positive. For example, an object R can have different CSG images that represent it.

b) Given two representation schemes, f( ) and g( ), and the computational models of an object Rin such
schemes, f1 and g1, it is asked if f1 can be translated to g1 and vice versa. The answer is usually negative.
For example once a model has been translated from scheme CSG to B-Rep, the inverse procedure is not
possible.

¢) Given acomputational model fi in a given representation scheme f( ), it is asked if this model represents
one and only one object of the real world. The answer is usually positive for representations which allow
the manufacturing of the object, while in those which imply only the graphic display the answer can be
negative. For example in the “wireframe” scheme a single model may correspond to several real objects
which are completely different. Of course, in engineering applications it is expected that the model f1 does
not imply a non existent object (Escher type).

This chapter examines briefly some representation schemes and applies notions such as Geometric
Transformations, Curves and Surfaces and Topology to define consistent and non ambiguous representations.

In Computer Aided Geometric Design (CAGD) the term geometry refersto the position and shape of an entity
in gace, while the term topology refers to the relations of vicinity, collective relations, number of holes, etc,
which are in such entity. Therefore, points, lines, planes, curves, surfaces, coordinate systems are elements
with geometric information, while £gments, faces, facets, loops, shells, bodies etc. are topologic objects.
Basically topology is abranch of mathematicsin charge of studying the continuity and connectivity aswell as
preserving them when the figures are deformed.

In topology, properties like areas, lengths, volumes or angles are not considered. Topology is not interested in
the metric properties of the geometric entities. Instead, it interested in the properties that remain unchanged
among transformations that scale, twist or compress the figure without breaking, perforating or creating self -
intersections.

Two figures can be geometrically different and topologically equivalent. It is said that two geometric entities
are topologically equivalent when one of them can be transformed into the other one by means of a
continuous mapping, one-to-one and onto (Table 15).
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Table 15. Example of topol ogi c equival enceand non equivalence

OBJECT 1 OBJECT 2 RELATION

Topologically Equivalent

Topologically non-equivalent

The following schemes will be examined in this chapter: a) Decompositions, b) Constructive Solid Geometry
and c) Boundary Representation. Although many other variations exist, it is considered that those mentioned
cover a conceptual range enough to understand any other.

51 Consgructive Solid Geometry (CSG)

SPHERE

@

INTERIORROUND

CYLINDER

Figure 92. Primitive Entities

The Constructive Solid Geometry uses boolean operations to build a model of an object with a complex
shape. The information obtained from this method which describes the model is stored in a structure called
tree, as in Figure 93 in which the leaf Nodes (those with no descendants) representpredefined lumps of the
space E3, called primitives (Figure 92). Some basic primitives are Box(Dx, Dy, Dz2), Wedge(Dx, Dy, D2),
Sphere( R), Cylinder( Dz, R), Coneg( Dz, R, R¢), Torus ( R, Ry , €tc.

Each node that is not aleaf represents an operation that is executed on its descendants forming a new body.
This result is a compact subset of E® which generaly is no longer expressible as a primitive. The so-called
boolean operations (Union, substraction, Intersection) (Figure 94) are binary since they require two
arguments, while the geometric transformations are unitary operations since they operate on a single

argument.
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o
Lt
| Solid = (T1B1 E T2By) - T2C |

i}
0

TLB1 ET2.B2

Bi=Box(dxldyldzl) | [ Bz=Box(dx2dy2dz2) | [ Ci=Cylinde®Rh) |

[ Ti= Applied geometric transformation |

Figure 93. Exampleof CSGtree

c
C=BEA
A 3
R C:BCA !.'.,....k.
8 :
C=B-A a_——

Figure94. Boolean Operations
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52 Boundary Representation (B -Rep)

A “surface” (Figure 95) is mathematically defined as a 2-manifold M embedded in E°. Informally, thismeans
that every ball B(p,r) of radius r, centered in p (p being a point of set M) intersects M in a set Dwhichis
isomorphic with a planar disc.

border = Tm

B(pr)
p

half disk

Figure 95. Definition of 2Manifoldin E® Figure 96. Definition of 2 Manifold with boundary, in E3

When M is not completely closed, there are points (called boundary or border points) at the “edge” of M for
which the disc D mentioned above is transformed into a semi-disc. In such case it is said that M isa 2-
manifold with border, embedded in ES.

The boundary representation (B-rep) uses the convention that a body is uniquely expressed by its boundary
M, which is a 2manifold in E° (Figure 97). For that, it is necessary to specify what is the “interior” of M,
with the help of basic concepts of vector calculus. Notice that if M has borders, it is impossible to define
interior vs. exterior. The 2manifolds with boundary are essential to define non closed “shell s”, of vital
importance in applications of machining CNC, stereolitography, visuaization, etc. Additionaly, Finite
Element Analysis software (FEA) usually requires “shell” data rather than a solid object (defined further on).

In some applications (for example the Marching Cubes algorithm) the decision about if a point in Eis on,
inside or outside M, is executed if there is a scalar function f(xy,2). If f(x,y,2 = O the point is on M, if

f(x,y,2) > 0 the point isinside M and if f(x,y,zZ) < Othe point is outside M. Such a function f( ) isnot always
available for the designer, but the B-rep or boundary of the solid plays such arole.

)’ L
Ve (flag ol
=7

Figure 97. Boundary Representation
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The B-rep schemes require a strict hierarchy of geometric and topologic entities. Although every geometric
modeler (ACIS, ParaSolids, IDEAS, CATIA, etc.) uses different names, a typical hierarchy is shown in
Table 16.

Tablel6. Reationsand hierarchy of topologic and geometric elementsin B- rep

TOPOLOGIES GEOMETRIES
Set of possibly disconnected solid regions
BODY or LUMPs
A solid connected region, bounded by a
LUMP SHELL
The boundary of a LUMP region.
SHELL A 2-manifold in general without border.
A connected subset of points belonging to Analytic wrf{ac():r?,nm parametric
one SURFACE. The subset is bounded by
FACE closed contours (loop) formed by EDGES SURFACE [X(l;’rvgr’;((:';gg f'cz,r(#{v)]
(edge) contained in the SURFACE. f (xpy 2)=c

Closed non-autointersecting path, formed
LOOP by EDGES and fully contained in a
SURFACE carrier.

Analytic curve, in parametric

A connected subset of points belonging to form
EDGE a CURVE. Two VERTEX, contained in CURVE [X(u),Y (u),Z(u)]
the CURVE bound the subset. or implicit form
f(x,y,z)=c.

A connected subset of points belonging to
VERTEX aPOINT. Obviously there is only one POINT (x,y,2) in =
POINT in such subset.

Notes,
1. A BODY is composed by several LUMPs or disconnected solid portions.

2. A LUMP s a compact, connected, bounded set of pointsp in E3. A LUMP is bounded by SHELLSs. If the
LUMP has inner cavitiesit is bounded by more than one SHELL.

3. A SHELL isaconnected portion of aLUMP' sboundary. It isformed by points p ofthe LUMP such that a
ball of radius r>0 centered in p has points inside and outside the LUMP.

4. A SHELL isaconnected subset of a LUMP boundary. A SHELL is composed by several FACEs.

5. A FACE is a connected portion of a SHELL. A FACE is bounded by LOOPs. If the FACE has holes, it is
bounded by several LOOPs. Otherwise, it is bounded by one LOOP.

6. A LOOP is composed by a set of EDGEs.

7. AnEDGE js bounded by 2 VERTEX.
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8. Figure 95An EDGE limits exactly two FACEs. Additionally, an EDGE e= (vy,\%) in FACE f istraveled
ase* = (4,V) in FACE f* (the neighbor to f by €). The EDGE e* is denominated (in some texts) as the
partner of e, and vice versa. If eis part of the border of M (that isto say M is a manifold with border
Figure 96), it appears only in one FACE.

9. The EDGE s of the most external LOOP of a FACE are traversed in counterclockwise direction (CCW), in
accordance with the external normal of the FACE. The edges of internal LOOPs, corresponding to holes
of the FACE are traversed in the clockwise direction (CW).

Explanatory notes about Topology

In the following definitions and observations the universal set isU (Ui E9).

1. BALL ( B(r,p) ).isasphere centered in p of radius r to the set
Brp)={ql Uldpa)£r}
All the points belonging to the space U that are inside a sphere of radiusr centered in p.

2. Boundary (YA) of aset Ain U.
JA={pT U|"r>0(B(pr)CA*F)U(BPrC A B(pr )}
Those points on which every Ball centered falls partialy outside and partially inside A.
3. Closed set A inU.

Al Uisdosedif JAl A IfJAT A (the complement of A) then Ais open. Some sets are not strictly
open (or closed) since they contain only part of their boundary.

4. Boundd set inU
Al Uisbounded if thereexist ar > 0and apoint pT Usuch that Al B(p,r).
In other words, some ball centered in some point of U completely contains A.
5. Disconnected setsA, B in U.
Al Uand Bi1 U aredisconnectedif " al A," bi B,abC(AEB)'* F.
All the segments that join points of A with points of B have a portion outside Ay and B.
6. Com| Set .
Al Uiscompact if it is closed and bounded.
7. BODY.
A BODY Bisacompact (possibly disconnected) set in U.
8. LUMP.
A LUMP L is a compact connected set in U.
9. SHELL.
A SHELL SH istheboundary of aLUMP (SH = qL)
10.FACE.

A FACE F is a connected subset of a SHELL S ( F i SH ). Therefore a SHELL is the union of
FACEs. A FACE must be a connected set, however it may have holes. In this case the boundary of the
FACE, YF, will have several disconnected elements (called LOOPs). To calculate the boundary of a
FACE F it is necessary to understand that F is embedded in a geometry S(u,v) (that is called “the
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carrier surface” of F). Itisestablishedthat U = S(u,v) and F’ = S(u,v) —F. In other words, S(u,v) isthe
universal set where the complement of F is calculated from. Notice that IF 1 S(u,v).

11. LOOP.

A LOOPL is aconnected component of the boundary of a FACE. The boundary of a FACE is formed

with several closed LOOPs LO, L1, ...Ln, where LOE L1 E ..Ln° {F. The LOOP LO will be the
external boundary and L1, L2, etc will be the internal boundaries (i.e. the holes) of F.

12. EDGE

An EDGE E is a connected subset of a LOOP L. Therefore a LOOP can be found as the union of
EDGEs. A LOOP must be connected and cannot have gaps (interruptions of the LOOP). To calculate
the boundary of an EDGE E it is necessary to understand that E is embedded in a geometry C(u) (that
is denominated “the carrier curve” of E). Therefore U = C(u) and E’ = C(u) — E. In other words, C(u)
is the universal set where the complement of E is calculated from. Notice that fE 1 C(u).

13. VERTEX.

A VERTEX V is part of the boundary of an EDGE. Each EDGE E has exactly two VERTICES such
that {vO} E {V1} © E. Notice that {VO, V1} 1 C(v). The carrier geometry of a VERTEX V isa
POINT (x,y,2) T E3. Notice that two VERTICES can be carried by the same POINT (xy,2).An
example of that would happen in an EDGE E that starts and ends at the same POINT (x,y,2) of E.
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Figure98. BODY with two LUMPs

Figure 100. SHELL (manifold) without border

/ SURFACE
Loop

L oop

Edge
i Edge

Face

Figure 102. FACE with hole, its surface (LOOPs formed by

EDGES) anditscarrier surface (SURFACE).

\z

X(u,v) = R.cos(u).sin(v)
Y (u,v) = R.cos(u).cos (v)
Z (uv) = R.sin(u)
u=0.2p

v=0.p

Figure 104. Example of a parametric surface (SURFACE)

Figure 101. SHELLs(Manifolds) with border

Edge ? (Point)
Vertex (Point) Curve

Figure 103.EDGE, itsboundary (VERTICES) and itscarrier curve

(CURVE)

Cylindric Surface:
X(u,v) = Ran(v)
Y(u,v) = R.cos(v)
Z(uv)=u
u=-h.h

v=0. 2p

5

v Circular Curves
L —  X(v) = Rsin(v)

Y (v)=R. cos (V)
Z(v)=%h
v=0..2p

Figure105. Example of a surface (SURFACE) and parametric

curves(CURVE)
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521 Example. Relationship between Topology and Geometry

The following example shows two bod es with same topology and different geometry

Solid 1

Figure106. Topol ogic Equivalency under Geometric difference

Observation: The EDGE AC appears exactly in two FACES (F1 and F6). In Flitistraveled as AC whilein
F6 itistraveled as CA. The same thing is certain for each EDGE of amanifold M without border.

Table 17. Specification of topol ogiesand geometriesin abody

TOPOLOGY GEOMETRY
Solid 1 Solid2
Body: Bl
Lump: L1
Face: F1 F2 F3 4 F5 F6 Planes Sphere
L oop: L1 L2 L3 L4 L5 L6

AC EF GA DC EH AG
CD FB AB CH HG GH

Edge: DB | BD | BF | HE | & | HC Lines Curves
BA | DE | F6 | DE | FE | ca
A E | G D E A
c F | a c | H G ‘
Vertex: Points
D B B H| o H
B D F E F c
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53 Examplel. Definition of Boundary Representation

Next, the boundary representation is developed (Table 18) as well as the development of the construction

L
ik

e = N

F15

n

msmssasssssses ()

\,

Figure 107. Example 1 Nomenclature of entities for the B-Rep topologic analysis of a body

through CSG (Figure 108), for the body shown in Figure 107.

531 Boundary Representation

In order to understand the development of the example; foll ow the notation used in Figure 107. A FACE (F)
is a closed contour or LOOP (L) conformed by points VERTEX (V).

Table 18.Example 1. Table of Boundary Representation of arigid body

Body | Bl
Lup | L1
Shell | SL
Face |FL| R | FRB| F| B | Fe F7 | F8 | P | FI0 | F11 | F12 | F13 | F14 F15
Loop |L1|it2ft3|tafi5 6|61 L7 | L8 | L9 |L10 | L1l |12 [L13 | L14 Li5
Vertex | VL1 | V1| V6| V8 |Vl| V6| V10 V17 | V17 | VI8 | V19 | V20 | V2L | v23 | V23 V19
v2 |vs|vr|va|va|vs|vilt wvo [vis|vio | v20 |v21|v22|vis|v24 vis
va|ve|va|v3|ve|vs|viz vie|vio|vi1|viz2|vi3|via|vid|vie Vi7
va|v2|v2|vz|vs|vr|vis v24| vo |vio | vil|viz2|vi3|v22|vi5s v24
V14 V23
V15 V22
V16 V21
V9 V20

For this example, the geometric carriers of the FACEs are planes formed by straight lines.
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532 CSG Representation

It was implemented, in the CSG construction of the body in Figure 107, only one type of primitive: Box In
order to achievea correct construction of the solid (S), it is necessary to apply certain transformations (Ti) on

every primitive for proper placing of each with respect to existing entities.

7~
XX
Y

S2=S1-T3.Box3

S1=T1Boxl E T2.Box2 \

?,‘s

<
§§

/)

T3.Box3

N

'\
T2.Box2

T1.Boxl

Figure 108. Example 1. CSG Representation
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54 Example 2. Definition of Boundary Representation

The following is an example of a non - manifold. It isanon - manifold because there is an edge (V3-V4) that
is shared by more than two faces (namely four). Thefinal representation is based on two LUMPs belonging to
the same BODY .

r==1

[

—— L |
——a

B,
&

Figure 109. Example 2. Rigid Body (Non manifold)

Next the Boundary Representation is developed (Table 19) and the development of the construction through
CSG (Figure 111), for the body shown in Figure 109.
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54.1 Nomenclature of entities

F1 F8

F17

F11

F13

[=v4

F15

F18

F14

F21  F22

F23

Figure 110. Example 2 Nomenclature of entitiesfor the B-Rep topologic analysis of a body.

54.2 Boundary Representation

F20

As in the previous example, in order to understand the development of this one; follow the notation used

Figure 110. A FACE (F) is aclosed contour or LOOP (L) conformed by points VERTEX (V).

Table 19. Example 2. Tables of Boundary Representation of arigid body
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Body | Bl
Lump | L1
Shel | sL
Face F1 P =] FA | B | F6 | F7 | F8  F9 | FI0
Loop |LI|LL1| L2 |L3|L31| L4 | L6 | L6 | L7 | L8 L9 | L10
Vertex | VI | V15 | V5 | V5 | VI3 | VO | VIO | Vi1 | VIl | V8 V13| Vi3
v2|vie | ve |va|via| ve | vo| v3|viz|vs vis|vi4
V3 vo | v7 vz | viz| v2 | vz |vi vie| vie
va vi0 | ve viz | vii|vio| v8 | va via|vis
V2 va
V1 V3
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Body Bl
Lump L2
Shell SL 2
Face | F11 | F12 | F13 | F14 F15 | F16 | F17 | F18 | F19 | F20 F21 | F22 | F23 | F24
Loop [ L11 | L12 | L13 | L14 L15 | L16 [ L17 [ L18 | L19 | L20 L21 | L22 [ L23 | L24
Vertex | V4 | V3 | V24| V20 V19| V26 | V26 | V19 | V29 [ V29 V30 | V27 | V28 | V29
V17| V18 | V23| V25 V26| V19| V3 | V20 (V28 | V30 V31 |V32| V33| V34
V22 | V17 | V22 | V24 V25| V18| V4 | V21 | V27 | V33 V32 |V3l | V32| V3l
V23| V4 | V21| V2l V20| V3 | V23 | V22 (V34 | V28 V33 |V34 | V27| V30
V24 | V17
V25 | V18

In this example the geometric carriers of the FACEs are planes formed by straight lines except for the cases
of F9 and F10, where the EDGEs V13-V14 and V15- V16 carry curved lines. Hence, the faces bounded by

these edges are non-planar surfaces.
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54.3 CSG Representation

The CSG construction of this body is shown in Figure 111; The following primitives were used: Box,
Cylinder and Wedge. In order to achieve a correct construction of the solid (S), it is necessary to apply certain
transformations (Ti) on every primitive for proper placing of each with respect to existing entities.

Final Body (Non manifold)

S5=(S1-T6.Wedge) - T6.Cyl SA=(S2-T5.Wedge) - T7.Box3

D

T6Cyl
T7.Box3
S1=(T1.Box1)—(T2.Box2) (T3.Box1) - (T4.Box2)

A

R B

T1.Boxl T4Box2
T3.Boxl

Figure 111. Example 2. CSG Representation

Noticethat sincethisisanon manifold, afinal unionisnot performed and so, for the sake of thisexamplethe
tree is left as shown treating the object as two different LUMPs placed together. The fact of being a non
manifold also indicates that this object cannot be achieved in redlity exactly as is being represented here.
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55 Example 3. Geometric M odeling

For the body in Figure 112, which is also a non - manifold, represent the geometric model in the CSG and B-
Rep schemes. The curved features are formed by straight circular cylinders. The cavity involving faces F13
and F14 is completely contained in the interior of the solid.

.
2

]
\
1
|
'
F3 F7

Oy =m———— A= -

1 s

1 \

\ 1

| )

F2  Fl11 F10 F

Figure112. Example 3. Nomenclature of entitiesfor the B-Rep topol ogic analysis of a body.
Procedure:

1.1 Mark in the figure, and clealy write the information of all additional topologies that you consider needed
for the B-Rep of the solid body. Explain them here.

Solution:

The additional topologies are underlined. They are: F15, F16, F17, V17, V18, V19, V20, organized in this
way:
a) Two additional edges are defined in theinternal cavity: V17-V18 and V19-V20
b) Two additional FACEs are defined in the interna cavity: F15 and F16.
c) One FACE F17 is marked in the feature V12-V13-V14-V11.
In order to have manifold topology one defines two LUMPs : LMP1 and LMP2
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1.2 Assign values to the geometries of Figure 112. You must specify the POINTs and analytic forms for all
curved geometry present. The curves and/or surfaces must be written in the form F(x,y,z) = ¢, with the

ranges for x,y and z clearly defined. Give names to all curved geometries.

Solution:

V1=[A,0,C, 1]

V12=[H*REC,1]

G15: Cylinder:
(xHyPHy-1)’=R

G<=z<=F

v2=[0,0,C, 1]

V13=[}*RED,1]

G16: Cylinder:
(cHY +y-1)’=R

G<=z<=F

V3=[A,0,0,1]

V14=[}RED, 1]

G17: Cylinder:
(xJ*+(y-Ef =R
D<=z<=C

V4=[0,E,C, 1]

V15=[A,E,C,1]

G18-v19:
Circumference:
(eHY Hy-1)=R
z=F

V5=[0,E,0,1]

V16=[0,0,0,1]

G17 v20:
Circumference:
(xHyPHy-1)’=R
z=G

V6=[A,E0,1]

VI7=[H+R 1, G, 1]

G18v19:
Circumference:
(HPHy-1)>=R
z=F

V7=[0,B,0,1]

V18=[H+R,I,F,1]

G17 v20:
Circumference:
(OcHP Hy-1=R
z=G

V8=[A,B,0,1]

V19=[HR,I,F,1]

G11vi12:
Circumference:
(e Y*+(y-EF=R°
z=C

V9=[A,B, K 1]

V20=[H-R,1,G, 1]

G13v14:
Circumference:
(¢ I*+(y-Ef =R
z=D

V10=[0,B,K, 1]

V11=[3REC, 1]

Write the Topological structure for the solid of Figure 112.
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1.3 For topologies carried by curved geometries (surfaces and / or lines) indicate the name that you assigned
in the previous point to such geometries.

Solution:

Curved carrier geometries appear in bold in the cells (Table 20) corresponding to the initial or final vertex of
thecurved EDGE, or in the curved FACE, that they carry. Two LUMPS are defined in order to have manifold
topology.

Table 20. Example 3. Table of Boundary Representation of arigid body

BODY
tume | L1
SHELL | sh1 sh2
FacE | m P2 5 F8 I TR ST v T O I SR A A
toor | 1 | 2| 5 e | Lo |tm | L2 | | wts | L | s | L
VERTEX| vi | vi | vis  v2 | v2 | w3 | v | w2 G;’éig 6‘1’71_720 61’81_819 Gi’71_720
vis | V3 ve va | v | vis oS vis | oia%o | civgo| cireo | cibae
vi2 | ve V5 v v3 v5 vi4 2% | crado
vit | vis | va  vie | vi | ve oo o | 29
v4 v1l
v2 vi4
v13
v12
LUMPL2=
SHELL | sh3
FacE | R F4 B F7 | F10
toor | L3 | w4 | L6 L7 | L0
VERTEX| v6 v7 v6 v9 v5
v8 v5 v9 v8 v7
v9 v10 v10 v7 v8
v5 v10 v6

1.4 Write the CSG tree of the solid in Figure 112. Y ou must give the necessary dimensions for the primitives
BLOCK(DX,DY,DZ) and CYLINDER(R, DZ) (created with center of gravity in the origin (0,0,0), Figure
113)_and WEDGE(DX,DY,DZ;_Likewise, you must specify the geometric transformations required to
position such primitivesin the right placesin order to participate in the boolean operations.
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1.4.1 List of primitives and names.

X Y
Figure113.Cilinder .
Solution:
Bl = BLOCK(A, E, C) /I large block
B2 = WEDGE(A, B-E, K) /I wedge
C1 = CYLINDER(R, (C-D)) /I cylinder for the seat. Any height larger than (C-D) works fine,
but it will affect the geometric transformation required to position
the primitive!!!.
C2 = CYLINDER(R, (F-G)) /l internal cylinder
1.4.2 List of Geometric transformations and their names.
Solution:
M1 =trans(A/2 , E/2, C/2) /I apply M1 to B1

M2 = trans(A/2, B, 0)*rot( Z,180) /I apply M2 to B2
M3 = trans( A/2, E, [D+(GD)/2] ) I/ apply M3 to C1
M4 =trans( H, |, [GH(F-G)/2] ) /I apply M4 to C2
1.43 CSG Tree
Solution:

@/@
/ N\

<
P~
<
w
<
>
<
N

Figure114.Example3.CSG Tree
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1.5 Definewith equations the curved surface that you consider, is the basis to represent the curve surfaces
of the model. Define the basic surface in thelocal space of size 1x1x1 units of Figure 115,

Yw

Xw

Figure 115. Local Space of coordinatesfor definition of curved surface.

Y our equations must have the form:

X=X(11, 12)
Y=Y(11, 12)
z=2(11, 12)

Choose, explain and draw the parameters |1 1, | 2, in similar way as the used to define the Mobius Band, the
Torus and the surface sin(R)/R

Solution:
X(14,15)=R.cos(l),
¥(I 1.12)=Rsin(l ),
z(14.05)=1,,
0£1,£p, 0£l, £1
or (since the cylinder is displaced in X direction),

X(l1,12)=Rcox(l)-1,
y(l4,1 2)=Rsin(l ),
Al .1 5)=15,
0E£l,£p, OEf£l,£1

1.6 Define the chain of required transformations to place the primitive surface in the correct places,
positions and with correct dimensions within the Brep described previously. Write your answers in

this way:
M = rot(....) * trans( )* ...* scale() etc.
Solution:
M_face 17 = trans( A/2, E, (GD) )*rot(Z,180)*scale( 1,1,(C-D) )
M_face 15 =trans(H, |, G)*rot( Z,180)*scale( 1,1,(FG) )
M_face 16 =trans(H, I, G)*scale( 1,1,(F-G) )

551 Programmingin MATLAB

(See Appendix, section 7.3 to find the MATLAB code exposed here)

Write the necessary code to computationally produce the B-rep of the object in point (1).
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Functions to write (if you feel that you may need additional functions, propose and implement them):
main.m

Initializes the variables, calls the sub-ordinate routines, creates the curved surfaces, positions the surfaces
correctly, draws the solid with the curved surfaces in the right places, etc. The curved surfaces may be plotted
with theinstructionmesh( ). YOU DO NOT HAVE TO DRAW PARAMETRIC SURFACES.

[ solid, dims_of_loops] = gen_solid( )

Creates a solid whose loops are packed in solid and whose dimensions are contained in dims_of _loops.

Ignore here curved FACEs or EDGEs. For the purposes of this point, curves entities may be assumed as
straight lines or plane surfaces.

[ PX, PY, PZ]=gen_surf()
Generate the basic surface in unit space 1x1x1.
[ P1X, P1Y, P1Z]=transf_1(PX, PY, PZ)

Transform the basic surface defined in 1x1x1 to the required size and position. You will cal it as
configuration 1 Use the transformations that you proposed in point 1.6.

[ P2X, P2Y, P2Z]=transf_2(PX, PY, PZ)

Transform the basic surface defined in 1x1x1 to the required size and position. You will cal it &
configuration 2 Use the transformations that you proposed in point 1.6.

[ P3X, P3Y, P3Z]=transf_3(PX, PY, PZ)
Transform the basic surface defined in 1x1x1 to the required size and position. You will cal it as
configuration 3 Use the transformations that you proposed in point 1.6.
If you consider it necessary, define as many functions transf_i (PX, PY, PZ ) asyou wish.
draw_solid( solid, dims_of |oops)

Draws the solid whose loops are packed in solid, and whose loop dimensions are contained in dims_of_|loops.
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56 Cél decomposition and spatial occupancy enumer ation

The spatial enumeration is based on the decomposition of the form in simple constituent elements. Such basic
elements can be denominated in general cells, which are parallelepipeds in 2D and 3D. The capacity of such
scheme is based on the clustering of these cells for representation of complex objects, such clustering being
usually intensivein its amount of data. Given that an abstraction of the figure is made by representing only up
to certain level of detail , the representations improves in quality as the level of detail to represent is smaller.
Likewise the quantity of required data grows, being this growth of polynomial order ( O((1/d)?) or O((1/d)? ),
where d is the level of detail represented). When the constituent cells are identical in size and semantic
capacity, there are exhaustive enumeration schemes, with Pixels, and Voxels (volumetric pixels). When the
shape and semantic capacity of the cells agree with thelocality of the shapein which thecell isplaced, certain
schemes are used, such as Quadtrees / Octrees Given the low level of complexity of the exhaustive schemes,
this section will focus on the Quadtrees. The Octrees are a natural extension in 3D of this principle.

5.6.1 Quadtrees

The quadtree representation Q (Figure 116) of a Lump B in 2D (possibly disconnected) is executed through
the following steps:

1 A dimension D is set, it establishes a measure of the universe that will be possible to represent. It wi ll be
representable everything that, inside the plane R~ R remains inside the minmax [(-D,-D),(D,D)]. Every
part of Bthat falls outside this square, will disappear from the representation.

2 For the universe, [(-D, -D),(D,D)] is evaluated if, B occupies it completely, is totally disjointed from it or
occupies it partidly. If Boccupiesthe universe totally, Q is marked as “full” or “black”. If Bisoutsidethe
universe Q is marked as “empty” or “white”. In these two cases the representation is concluded. But, if B
occupies the universe partially (“partia” or “gray”), the following steps are to be taken.

3 The universe is divided in 4 quadrantsQq = [(-D,-D),(0,0)] , Q = [(0,-D),(D,0)], Q = [(0,0),(D,D)],
Q3= [(-D,0),(0,D)]. They are enumerated in CCW direction.

4 For each Q; (Qo Q1, @, @) their dimensions are evaluated. In case that the level of detail that a cell
represents is smaller than the minimum resolution of the scheme, it is approximated by “full” or “empty”.
If the size is still inside the resdution of the scheme, then step (2) is redone for each Q.
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Region B Universe

S WL 1Y s oD
-3-3 I I 2
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= Ni20
: m

/ OI - J1-0

(-D,-D) (-D,-D) it
Not represented portions

Figure 116. Quadtree Spatial Representation

The conclusions of steps 1 ~ 4 are consigned in a“tree”, data structure, as seen in (Figure 117). The quadtree
Q has as many levels as wanted. However, its depth n (n = 0,1,..) is constrained by setting a maximum
resolution d. Given that d » D/2"then n » log,(D/d).

The analysis is made by levels in the following way:

B-lR Bl Evwlw] Eelele] el ]

Figure 117. Treestructurerepresentation for the quadtreestructure.

5.6.1.1 Observations

i. Each cell of the Quadtree can be named according to its position inside the quadrants and subquadrants
(Figure 116), the cell 1-2-3 is the one that is in a third subdivision level. In the first division it was
classified in the quadrant 1, in the second division it was in the quadrant 2 and in the third division in the
quadrant 3.

ii. Thelength of the “word” that denotes the position of a cell also indicatesits size. In the case of cell “3-1-
1" (word length = 3) its size will be D/4 = D/(2%Y). Cell “1-0” (length = 2) will have size D/2 = D/(2%9),
etc.

iii. A sequence of geometric transformations M and M™! applied on Q will not result in Q. That is
Q1 M1.M.Q (thereader is hereby encouraged to determine the cause).
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iv. The Quadtree / Octree representation does not show changes below certain resolution. T herefore,
translations of arbitrary distances are not realizable in this scheme. The recognizable distance d of any
translation applied to Q must be approximated this way:

d »D+%+E +2+....+R+...

4 8 2"

v. For a 3dimensional figure the same previous analysis is made, but dividing the universe in octants.
vi. When the desired level is reached, the programmer must convert gray boxes into white or black.
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57 EXERCISES— GEOMETRIC MODELING -

571 CSGandB-REPI.

CSG AND BOUNDARY REPRESENTATION. TRANSFORMATIONS
OBJECTIVE

To practice boundary representation and CGS (Constructive Solid Geometry) concepts .
PROCEDURE

For the body in Figure 118, write the topologic structure using boundary representation and CGS
construction. Follow the figure notation.

F7

Figure 118. Exercise5.7.1

127
Thismaterial isproperty of theAmerican society of mechanica engineers (ASME). All copy or reproduction isforbidden. Personal
Copy of Prof. C. U. XoanLeiceagaBaltar.



UNDERLYING ToPICSIN CAD /CAM/ CG Dr. Oscar E. Ruiz S.
CAD/CAM/CG Laboratory- EAFIT University- Medellin, Colombia
Copyright A.S.M.E. (American Society of Mechanical Engineers)

Figure 119. Coordinate plane

1. Assign numerical valuesto al the vertices of Figure 118 usingthe coordinate system of Figure119.
2. Write the topology structure using Boundary Representation. Follow the figure notation of Figure 118.

3. Drawthe CSG tree for the body of of Figure 118. Use the following primitives: block{ DX, DY, DZ),
pyramid (DX, DY, DZ) and wedge(DX, DY, DZ) whose local coordinate frames are asper Figure 120.

Figure 120. Local Coordinate Frames for\Wedge, Block and Pyramid.
4. Make aprogram to build the Brep the solid model of Figure 118. Required functions are:

4.1. exercise 5 7_1.m. Main program, which initializes variables and calls sub-functions to buildthe
solid.

4.2. [solid, dims_of_loops ]=gen_solid_001( ). Thisfunction createsthe datafor the solid. The output
variables are solid (an array containing the loops for all faces) and dims of loops (an aray
containing the number of verticesin each loop).

4.3. draw_solid( solid, dims_of_loops ). This function draws the solid whose |oops are packed in solid,
and whose loop dimensions are contained in dims_of_loops.
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572 CSGandB-REPII.

CSG AND BOUNDARY REPRESENTATION

OBJECTIVE

To practice boundary representation and CGS (Constructive Solid Geometry) concepts .
PROCEDURE

For the body in Figure 121, write the topologic structure using boundary representation and CGS
construction. Follow the figure notation.

F6  F10 Fl14 F11 F15 F13 F12 F9

e 1

'n___________//

N

F5 F16 F1 F4 F3

Figure121. Exercise5.7.2.

1. Assign numerical values to al the vertices of Figure 121, take the coordinate plane of Figure 122 as
reference.
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Con formato: Fuente: 8 pt,
a Cursiva,Espafiol (Colombia)
10
AN .
6
P ><
N Con formato: Fuente: 8 pt,
N — Cursiva,Espafiol (Colombia)
0
5
Con formato: Fuente: 8 pt,
10 6 4 2 a Cursiva,Espafiol (Colombia)

12 10

Figure 122. Coordinateplane
2. Write the topologic structure using boundary representation. Follow the figure notation Figure 121.
3. Implement the CSG construction for the body Figure121. Use the following primitives: BLOCK(DX,
DY, DZ) (created with mass center on the origin (0,0,0)) and WEDGE(DX, DY, Dz)(Figure 123). In

order to achieve a correct construction of the solid, it is necessary to use certain transformations on
every primitive to realize the Boolean operations.

z

Figure 123. Wedge
4. Make a program to buil d the solid model of Figure 121; The required functions are:
4.1. Exercise 5 7 _2.m.Main program, initialize variables and call sub-functionsto build the solid.
4.2. [solid, loop_dims]=gen_solid_003( ). This function creates the solid matrix. The output
variables are solid that is an array containing the solid and loop_dims that is an array

containing the number of vertices on each face.

4.3. draw_solid( solid, loop_dimsg. This function draws the solid whose loops are packed in solid,
and whose loop dimensions are contained in loop_dims.
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573 CSG and B-REP II.

CSG AND BOUNDARY REPRESENTATION, TRANSFORMATIONS
OBJECTIVE

To practice boundary representation and CGS (Constructive Solid Geometry) concepts .
PROCEDURE

For the body in Figure 124, write the topologic structure using boundary representation and CGS
construction. Follow the figure notation.

Figure 124. Exercise5.7.3

1. Assign numerical values to al the vertices of Figure 124, take the coordinate plane of Figure 125 as
reference.
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A\
\
AN

Figure 125. Coordinate plane

2. Write the topologic structure using boundary representation. Follow the figure notation Figure 124,

3. Implement the CSG construction for the body of Figure 124. Use the following primitives: BLOCK(DX,
Dy, DZ) and CYLINDER(R, h) (created whit mass center on the origin (0,0,0)). In order to achieve a
correct construction of the solid, it is necessary to use certain transformations on every primitive to
realize the Boolean operations.

4. Make aprogram to build the solid model Figure 124. Required functions are:

4.1.

4.2.

4.3.

4.4,

4.5.

Exercise 5 7 _3.m. Main program, initialize variables and call sub-functions to built the solid.

[solid, loop_dims ]=gen_solid_002( ). This function creates the solid matrix. The input variables
aresolid that is an array containing the solid and loop_dims that is an array containing the number
of vertices in each face.

draw_solid( solid, loop_dims ). This function draws the solid whose loops are packed in solid and
whose loop dimensions are contained in loop_dims

[BZRX, BZRY, BZRZ]=gen_mesh( ).This function generates a bezier surface to show the curved
part of the solid. The original surface has as base the XY plane in a space of 1 x 1 x 0.5 (Figure 126)

Realize the all functions to make the indispensable transformations in order to place the surface on
the final position. (Rotation, translation and scale).
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Figure126. Control Surface
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5.7.4 2D Spatial Decomposition.

SPATIAL DECOMPOSITION
OBJECTIVE

To practice spatial decomposition concepts.
PROCEDURE

Make the spatial decomposition of the following figures (Figure 127) up to the fourth level, taking into
account that the first quadrant is defined by the minmax of the figure:

Figurel27.Exercise4.4
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6. FINAL EXERCISES

61 EXERCISEI

OBJECTIVE:
To practice with the combination of rigid and non-rigid transformations in order to gain agility with the
manipulation of matrices and objects.

PROCEDURE

The figure shows and five-sided object, a of its faces are planar except for the one that involves vertices
{E, F, C, D}. Thisfaceis not planar.

4

Y axis

Figure 128.Final Exercise#1
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1. Assign coordinatest o the verticesA, B, C, Dand E.

2. Assign coordinates to the face of vertices{ E, F, C, D } in order to be drawn with the instruction mesh.
The mesh should contain a minimum of 4x4 vertices. Name the variables you use as MESHX, MESHY,
MESHZ.

3.  Writethe routine or code named draw_solid( body, dims ) that draws all the loopsor faces of the body.
The arguments for this function should be:

BODY: A matrix of size (4 M) that contains the vertices of the body packed by faces (i.e. ABCDA,
EFBAE, etc.)

DIMS: A matrix of size (1 N) that says how many real vertices has each face. See Figure 129.

BODY

x/’/

DIMS |4 |3 |3 |
4

o
«

v

Figure129. lllustration of the arguments for draw_solid( body, dims)

Wherethe elements of t he array DIM S do not take into account theinitial vertex repeated at the end of the
vertex list of aface, only real vertices per face are considered.

4. Formulate yourself aproblem in which the solid given in (1) is to be transformed to another position wi th
at least one rotation and one translation. Draw a complete specification of the problem that you have
planned.

5. Write a detailed chart with the necessary transformations in order to achieve the proposed objective.
Apply the transformations only to an auxiliary coordinate system attached to the body in the initial
position. Draw the evolution of this reference object.

6. Write a function named: [ NEW_X, NEW_Y, NEW_Z ] = transform_mesh( MESHX, MESHY ,
MESHZ , M ) with the necessary instructions to apply any transformation M to a mesh contained in
MESHX, MESHY, MESHZ and that will produce as result another mesh contained in the variables
NEW_X, NEW_Y, NEW_Z.

7. Theinitial and the final body including their respective non-planar faces and auxiliary coordinate systems
must appear in a single fully labeled MATLAB figure window.
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62 EXERCISEII.

OBJECTIVE:

To practice with the combination of rigid and nontrigid transformations in order to gain agility with the
manipulation of matrices and objects.

To review the topologic description methods learned for analytically describing and building computational
models of objects.

PROCEDURE
The body shown in Figure 130 has the following characteristics.

(a) A hollow space that involves the vertices { v5,v6,v7,v8,v9,v10,v11,v12}.
(b) A ramp that involves the vertices {v13,v14,v15v16,v17,v18}.

(c) A rounded edge resembling a circular prism.

w

Figure 130.Final Exercise #2

1. Complete the nomenclature for the body according to your requirements for making a boundary
| representation (B-Rep). Label in Figure 130 the faces, the vertices, etc, as needed.

2. Give coordinates to the vertices. (the arcs v23-v22 y v21-v24 are a quarter of a circle).

| 3. Label in Figure 130_the SHELLs, LUMPs, etc. Write the B_rep of the body, and in this representation,
clearly mark those topologies which their geometry carriers are not straight or planar. Say which
geometry carriers should they posses (there is no need to give the mathematical equations for these
geometries).
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4. Inthe coordinated space shown inFigure 131, define an approximated surface as you consider would fit to
the rounded edge. Y ou must define the mesh contained in a coordinated space given by (1.0, 1.0, 1.0),
and positioned as shown in the figure.

1.0

1.0

1.0

Figure 131. Coordinated spacefor definingamesh

MESHX =
MESHY =
MESHZ =

5. Define the transformation sequence that places the mesh in the position and size needed to fit the body in
Figure 130.

The coordinates in (2) should be such that the identification of the transformations (you propose) are as
simple as possible. Y ou must make suppositons when creating the transformations, explain them.

6. Attach an auxiliary reference frame Xf,Yf,Zf,Of to the mesh in its final position. Draw the evolution of this
reference object produced by the transformation sequence you developed in (5), form itsinitial position to
Xf,Yf,Zf,Of . Is this arigid transformation sequence?.Prove it andgive a proper argument.

7. Draw a CSG tree that produces the body shown in Figure 130. You may use the following primitives:

- Box(Dx, Dy, Dz), centered at the origin
- Wedge( Dx, Dy, Dz), placed on the planes XY, XZy YZ
- Cylinder (Radius, Height) centered at the origin

Dz
Dx

N

Figure 132.Wedgg Dx, Dy, D2)
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Boolean operations
- Intersection
- Union
- Difference

Trandormations: The ones you may need.

Use dimensions consistent with the given coordinates in (2) to define the primitives. You do not need to
exactly define the transformations, but you do need to clearly its position in the CSG tree, its type and
function.

8. Draw the complete body in a MATLAB figure window using the functions draw_solid(body , dims ),
transform_mesh( MESHX, MESHY, MESHZ , M ), plt_axes(), etc. Develop before as well as any other
routine that you may need. Additionally draw the in another figure window, the evolution of the mesh
MESHX, MESHY, MESHZ with its respective auxiliary reference frame.
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63 EXERCISEIII.

In this exercise, it is required a surface interpolation of atorus in two different positions and with closure of
the surfacesin different directions.

OBJECTIVES
i. Create the control point set or control polyhedron of a torus based on the parameters shown in Figure
133 (Control points generated in exercise 4.3.5 can be used).
ii. Create a Spline surface interpolation form the previous control set.
iii. Perform ageometrical transformation on the set of control points.

iv. Create a new interpolated Spline surface from the transformed point set of (3).

Zw
Zo [ 3
r=1 -
Yo f 1 - \ ¥
Yw
Xao R=4 g B
Xw 3 P
Figure 133. Main parametersof theinitial position of thetorus Figure 134. MESH of thecontrol polyhedron of atorus

PROCEDURE
1. WriteaMATLAB function[PX, PY, PZ] = gen_torus( R, r ) which generatesthe control points of a

torus in MESH format, given a primary Rand secondary r radius.

2. Write in MATLAB the necessary functions to generate, from a set MxN of control points, a Spline
surface with the following input arguments:

draw_spling( PX, PY, PZ, k, |, close_row, open_col )

Where:
PX, PY, PZ: Are MESH format matrices of the coordinates of the control points.
N: Columns of control points (N = n+1).
M: Rows of control points (M = m+1).
k: Size of the stage in the row direction.

I: Size of the stage inthe columndirection

close_row (0/1): Flag for closure in row direction of the control points

close_col (0/1): Flag for closure in column direction of the control points.
Examine the scheme of Figure 77 in order to use the notation specified there in your code.

Other functions as specified below must be implemented in order to achieve the objectives.
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2.1 [CPX,CPY,CPZ] = complete_control( PX, PY, PZ, k, |, close_row, open_col )

{pre: PX, PY, PZ: matrices MxN of real numbers.
N: Columns of control points (N = n+1).
M: Rows of control points (M = m+1).
k: Size of the stage in the row direction.
I: Size of the stage in the column direction
close_row (0/1): Flag for closure in row direction of the control points
close_col (0/1): Flag for closure in column direction of the control points.

}
{post:
(close_row U (CPX,CPY,CPZ are PX, PY, PZ extended in the row direction)) OR
(close_col U(CPX,CPY,CPZ are PX, PY, PZ extended in the column direction))
}

This routine completes PX, PY, PZ in the direction of rowsand/or columnsin order to satisfy the
closure of the surface in either direction

2.2. M = spline_matrix( k)

{pre: k=2, 3,4}
{post: M = Coefficient matrix for Spline interpolation Mk (k= 2,3,4)}

2.3. U=calc U(u,k)

{pre: ul [04], kT {234}}
{ post: U=[ut, u? ., d 1]}

2.4.  [QX, QY, QZ] = local_patch(PX,PY,PZ,du,dw,Mu,Mw)

{pre: QX,QY,QZ arek x | matrices of real numbers.
du [01]
dwi [01]
M = M,: Coefficient matrix of the patch. (kx K).
M, = M;: Coefficient matrix of the patch (I x I)

}
{post: QX,QY,QZcontain
Qu(uwW)=U .M. P MT W,
Q (uw =U, .M, .R. .M W,
Quw)=U,.M.P.MWT
for (u=0, du, 2du, 3du,....,1.0) x (w=0, dw, 2dw, 3dw,...,1.0)
}
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3. In a second figure window, generate the Spline interpolation for the points of the torus. The surface
must be opened in g direction and closed in fdirection. Take two points per stage in q sense and four

points per stage in f sense.
4, In Figure 135, associate and draw an auxiliar reference frame to the torus S = [Xo, Y0,Z0,0g] . Draw

in the figure the auxiliar reference frame & = [X;, Y;,Z;,0¢]. Write here the two reference framesin
numeric form:

w

Zo ’
AN

Xo

Figure 135.Principal axesof torusininitial and final position

5. Calculate in numeric form the matrix Mt that transforms S into S;. Write clearly which equations
were used and the result. A table of intermediate transformation steps is NOT needed.

6. Write in MATLAB the following function:

[QX, QY, QZ] = transform_mesh(PX,PY,PZ,M)

{pre:  PX,PY,PZ are matrices of real numbers that form pointsin E®
M: Transformation matrix in homogeneous coordinates.

}
{post: QX,QY,QZ are new points, previously PX,PY,PZ transformed by M.

7. Write in a script MAIN.m the instructions and the necessary function calls in order to obtain the
Spline surface interpolations of the two positions of the torus in the second figure window. The
second position must correspond to a torus closed in the direction of g and opened in the direction of
f. For the second torus take two points per stage in the f direction and four points per stagein the g.
Y our work done must permit you obtain this second torusjust by changing the input argumentsto the
functiondraw_spline( PX, PY, PZ, k, I, close_row, open_col ).
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Spline surface of a tarus

Figure 136. Spline Surface of an original horizontal torusand a transformed vertical torus.
Different closuredirectionsareshown.
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7. APPENDIX

71 CHAPTER 3 —Solutions for Proposed Exercises on Geometric Transformations-

7.1.1 Example. Rigid transformations (section 3.2.6. Example. Rigid transformations. ) -
MATLAB code

The following are the MATLAB code blocks for the example in section 3.2.6 (Chapter 3 — Geometric
Transformations).

& MATLAB MAI N SCRI PT
% Exanple section 3.2.6
%
% OBJECTIVE: To create a boundary representation of a solid

% and performrigid transfornations on it in order to
% take froman initial position and orientation to a final
% sate.

%

%  FUNCTI ONS USED: << rotation_natrix.m translation_nmatrix.m p_plot. m
% transformation.m plt_axes. m>>

%

uscreen and nenory cl eanup

cl ear

close all

clc

R %
%reation of the solid body by defining vertices and | oops (faces)
Wertices

pa=[8501]";

pb =[880 1]";

pc =[5521]";

pd = [5821]";

pe =[5501]";

pf =[580 1]";

% oops

L1 = [pa pe pf pb pa];

L2 = [pb pd pf pb];

L3 = [pa pc pe pa];

L4 = [pc pd pf pe pc];

L5 = [pa pc pd pb pa];

R e e L %
98ui | ding the auxiliary axes at the
%nitial position

x =[0 -1 00]";

y =[1000]";

z =[0010]";

o=[5801]";

So = [x,y,z,0];

d=2;

plt _axes(So, d);

R e LR L %
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%Plotting the initial figure

hold on

grid on

axis([0 10 0 10 0 10])
vi ew( 132, 28)

p_plot(L1, L2, L3, L4, L5 " k')

%> aph | egends definition

title("Rigid transformati on of a Body');
x|l abel (' X axis')

ylabel ('Y axis')

zl abel (' Z axis")

% - - --%
9Bui | ding the Transformation natrices
[transl] = translation_matrix(-5,-8,0);
[rot] = rotation_matrix('y',90);

[trans2] = translation_matrix(0,3,3);
R e %

%Cal | of the function responsible of transformng the solid s |oops
% and that gives the resulting rotation paranmeters after all transformati on have been
% executed (axis and angle).

[nL1, nL2, nL3, nL4, nL5,V, D = transformation(transl, rot,trans2,L1,L2,L3,L4,L5);
L R R %
%ransformng the auxiliary axes

S1 = transl*So;

S2 = rot*Sl;

S3 = trans2*S2;

L R R R %
L R R %

%l otting the transfor ned body
p_pl ot (nL1, nL2, nL3, nL4, nL5,"'b")

9%l otting the transforned auxilary axes

%in each transfomation stage.

plt_axes(S1,d);

plt _axes(S2,d);

plt_axes(S3,d);

R %

% he programwill informthe resultant angle and axis as the paraneters for a possible
% rotation by quaternion. These paraneters are obtained in "transformn by eval uating the
% ei gen val ue and eigen vector of the resultant transformation matrix.

disp(' The resulting angle of rotation for the transformati ons made is: ')

a =real (D1,1));

angul o = acos(a)*180/ pi

disp(' The resulting rotation axis for the transformati ons made is: ')

rotation_axis = V(1:3,3)
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7.1.11 Auxiliary functions

function [ ] = p_plot(L1,L2,L3,L4,L5,d)

%-unction t hat plots the specific body used in this exercise

%the | oop (FACEs storing the vertices) are given as input

O = = = m e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e mmmmmmmmeeean
plot3(L1(1,:),L1(2,:),LL(3,:),d)

plot3(L2(1,:),L2(2,:),L2(3,:),d)

plot3(L3(1,:),L3(2,:),L3(3,:),d)

plot3(L4(1,:),L4(2,:),L4(3,:),d)

plot3(L5(1,:),L5(2,:),L5(3,:)

function [trans] = translation_matrix(dx, dy, dz)
%-unction that generates a translation matrix (trans) based on input displacenents relating
%to each coordinate dx,dy, dz

7
A= eye(4 4)

Al,4=d

A(2,4)= dy,

A(3, 4)= dz;

trans = A

function [nr] = rotation_matrix(ax, ang)
% This function calculates a natrix of rotation (nr) to be used in a

% georetric transformation procedure, based on

% an angle and an axis of rotation that are input.

Y U S
% Input: "ang" Is the rotation angle in degrees.

% "ax" Axis of rotation.

% CQutput: "M" is the rotation matrix 4x4

O/ = = = = mm e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e m o — -

ang = ang*pi/ 180;

if (ax == x")
m=[[10 0 0]
[0 cos(ang) -sin(ang) O
[0 sin(ang) cos(ang) O]

[00 0 1773
elseif (ax =='y")
nr=[[cos(ang) 0 sin(ang) O]
0 1 0 0]
[-sin(ang)0 cos(ang) 0]
[0 00 1113
elseif (ax =='z")
nr=[[cos(ang) -sin(ang) 0 O]
[sin(ang) cos(ang) 0 0]
[O 0 1 0]
[o 0 0 1]1;

end

function [nL1, nL2, nL3, nL4,nL5,V,D = transformation(transi, rot,trans2,L1,L2, L3, L4, L5)
%-unction that applies a resulting transfornmation nmatrix to each loop (face) of the solid
%he function also returns the eigen value and eigen vector of the resultant transformation
%ratri x.

O/ = = = m = m o m e e m e m e e e m e e m e e e m o m e m o mm o m e m o m e e e m o m o m e m m o m o m e m o mmmmm m i mm e =
m= trans2*rot*transi;

nLl = nfL1;

nL2 = nrL2;

nL3 = nrL3;

nL4 = ntL4;

nL5 = nrL5;

[V, Dl =eig(m;
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function plt_axes(S,d)

% This function plots an auxiliary coordinate system (X Y,2). It is useful to have all the
% information concerning the auxiliary axes packed in one matrix S, in order to perform
% transformations on it.

% Input: S =1[X,y,2,0];

% "x","y","z" are colum vectors for the axes
% (i.e. X=[1000]", Y=[0100]", Z=[0010]")
% "0" the honbgeneous- coordi nate-point origin from
% which the three axes are going
% to start. (colum-w se)
% "d" is an optional input, it represents a scaling factor
% for the axes when it is
% di nensional | y necessary.
7
if (nargin == 1)
dim=1;
el se
dim=d;
end
x = 5(1:3,1)";
y =5(1:3,2)";
z =5(1:3,3)";
o=95(1:3,4)";
x = ( x/norm(x) )*dim
y = ( y/norn(y) )*dim
z = ( z/norn(z) )*dim
ox = [0, (0o+x)'];
oy = [0, (o+y)"];
oz = [0, (0+z)"];

plot3(ox(1,:),0x(2,:),0x(3,:),"'r x --")

hold on
plot3(oy(1,:),0y(2,:),0y(3,:),'ms --")
hol d on
lot3(oz(1,:),0z(2,:),0z(3,:),'b* --")
ol d on
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7.1.2 Rigid Transformations- Demonstrations and proofs

1. Given aset of rigid transformatio ns (arbitrarily mixed rotations and translations):

Rigid transformation of a Body

Z axis

10 10 X axis

Y axis

Figure 137. Rigid Transformations.

a) Show that theorientation of abody transformed by Mt depends only on the rotationsR;,R;,R4 Rs....... Ry..
(translations may be ignored for purposes of orientation).

_EeR Ta
g u
& 14
c) Develop an example implemented in MATLAB, with two translations and two rotations, and verify what
you proved in (&) and (b).

b) Show that Rs. R4. R>. Ry = Ris therotationa part of M+ M

Solution

a) Vectors, wlike points, store the information regarding to direction. When applying a rotation R and a
translation T to a vector v, it can be seen that the orientation of the vector isimmune to the translation. It
is not important where the vector is in space.

M, My, =8 TUER Ougr 8 XRA+TAON_&Rw
VI RTH T U'g Uel™ € u—e u
O 14 &0 lu%oue 0 a é0q

Hence, when avector is transformed by a sequence of rotations and translations, it will only be affected by the

rotations. The translations may be neglected.

b) Assume that a chain of transformations is applied:
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=M; ¥V, =M MM, M, M, M, v,.=
el Tou &R ouéR4 Oud T d?z Ol‘JéRl Ou &/ e‘?sxR >‘Rz>‘Rl| f(Te To RL R, Ry R év

"% 1080 10%o 1uy§) 1080 0% WHETE " 1

From the first proof above, only the rotational part prevails, and can be decomposed as:

ER R, R, xR, | 00 & Rs 00 eR, Ou€éR, Oud?1 Ou évu

- MsM, M, M, v, =M v,
§o T80 W80 100 1080 1RE” om Tt

This confirms that avector is only affected by rotations and not by translations. If we apply M+ (thetotal) and
M;, (the reduced, rotational) transformations to an object we will get two different final positionsbut the same
orientation.
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b) Developmentin MATLAB

G MATLAB MAI N SCRI PT

%

% OBJECTIVE To proof the invariability of orientation anong translations.

% To proof de dependence of orientation anong rotations.

%

%  FUNCTI ONS USED: << rotation_matrix.m translation_matrix.m plt_axes. m>>
% See appendi x section 7.1.1.1 for details of these functions.

%screen and nenory cl eanup
cl ear

close all

clc

9Bui | ding the auxiliary axes at the
%nitial position (origin)

x =[1000]";
y =[0100]";
z=[0010]";
o=[0001]";

So =[xy z o]
subpl ot (1, 2, 1)
pl t _axes(So, 3)
R T %
%> aph | egends definition
title('Initial coordinate systeni)

x|l abel (' X axis')

ylabel ('Y axis')

zl abel (' Z axis")

grid on

axis([-33 -33-33]);

axi s equal

subpl ot (1, 2, 2)

hol d on

grid on

vi ew( 120, 30)

U - mmmm o mmm oo %
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98ui | ding the transformation matrices

[rotl] = rotation_matrix('x",30);

[transl] = translation_matrix(2,3,5);

[rot2] =rotation_matrix ('y',60);

[trans2] = translation_matrix (3,1, -4);

98ui | ding the resulting transformation matrices
Ml = trans2 * rot2 * transl * rotl;

MR = rot2 * rotl;

%Application of translations and rotations
Slt = Ml * So;
plt _axes(Slt, 3)

%\pplication of the rotations only

S2r = MIR * So;

plt _axes(S2r, 3)

R L T %

%> aph | egends definition

x|l abel (' X axis")

ylabel ('Y axis')

zl abel (' Z axi s")

n = sprintf(' The orientation of the vectors hold anong translations, but it varies anong
rotations')

title(n)
axi s equal
Initial coordinate system The orientation of the vectors hold among
translations, but it varies among rotations
35
2 ] N
L / \
2 ™~
% 0
N 1 / ™~ )
T . R
2 N
N NG -

X axis

Y axis X axis

Figure 138. Showing that transl ations do not affect orientation of the object. Only rotationsdo so
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7.1.3 Additional casesof mirror transfor mations

7.1.3.1 Mirror about XZ plane

(Inversion of Y)

4 XXz,

~

z4q X

(X2, Y2.22)

Figure 139. Mirror about the XZ plane.

Let a point with coordinates Py(X;,Y1,Zy). To take it to another position in space of coordinates (X% ,Y>,Z5)
such as

aX2=X1 0

&va=-vii

§22=71 4
its mirror image about the XZ plane is calculated. This procedure isillustrated in matrix form in Equation 47.
The transformation matrix is shown in Equation 48.

o € 0 0 Oy 6y o
&Y % -1 0 of &Y %y Y
& u=é Ux€ “U=mirror(planeXz)>€_"U
€°u & 0 1 0uezu eziu
é. u é Ggé. u é u
éloa & 0 0 1gélq éla

Equation47. Mirror transformation about the XZ plane

él 0 0 Ou
é 1]
0 -1 0 Oy
mirror@lanexz)=¢ u
@ 0 1 ou
@ 0 0 14

Equation 48. Mirror transformation matrix about the XZ plane.
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7.1.3.2 Mirror about aplaneX =Y

(Interchanges Xwith Y)

X %

Figure 140. Mirror about aplane X=Y

Let a point with coordinates Py(X;,Y:,Z;). To take it to another position in space of coordinates (X, ,Y5,Z,)
such as

aX2= Ylg

ng = X1%

=2
its mirror image about the X =Y plane is calculated. This procedure is illustrated in matrix form in Equation
49. The transformation matrix used is shown in Equation 48.

& @ 10 oue o0

u (] u u
&gt 00 OGai_ v
&:0- @ 0 1 o0ezi” MITHPEEX=Y)"G
e _u e ue_u e_u
ela & 00 1gelq ela

Equation49. Mirror transformation about theplane X='Y.

é0 1 0 Ou
é (
1 0 0 O
mirrorplaneX =Y)=¢€ u
€0 0 1
& 0 0 1

Equation 50. Mirror transformation matrix about the X =Y plane

Noticethat mirror (plane X=Y)is not arigid tranformation since it doesn’t satisfy U; x U, = Ua.
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7.1.32.1 Example. Application of the Householder transformation. to perform a mirror
about the planeX =Y

For a mirror about the plane X =Y, the corresponding normal (unitary) vector and the Householder
transformation matrix areillustrated in Figure 141.

n=fL L o
7 2 i
é1 O] ¢ - U
é a é a ¢ 1 1 U
H, =20 0- 2xe- jz-ﬂxé - ——= 0g
© U 5 o 6~/2 NF
go 1§ g o ¢° u
é1 0y el -1 ou
_é 1] é a
H,=g0 1 it 2%+ 1+ 0y
go 1§ g0 o od
€1 0 O0u é1 -1 0u
He=§ 1 o0g-g 1 1 o0y
go 1§ g0 0 0§
60 1 0u
Ho=gl 0 o0y
g0 0 1§

Figure 141. Procedure based on the Househol der reflector to obtain the transformation matrixfor amirror about the plane X =Y.

As shown, the result obtained is the same reached before for the mirror reflection through plane X = .
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72 CHAPTER 4 - Examples of control point generation (MATLAB code)

721 Example. (sphere)

function [ Px, Py, Pz] = sphere()

% This function generates the control points for a shpere

% __________________________________________________________________________________________
% EAFIT University

% Dr. Prof. Oscar E. Ruiz S.

% Colonmbia - Medellin

close all
R = 10; % Radi us of shpere
n_arcs = 80; % nunber of generative arcs
n_pts = 20; % Nunber of points per arc
d_al f = pi/n_pts; % | ncrenental step of pareneter
d_th = 2*pi / n_arcs; % | ncremental step of pareneter
Px =[]
Py =L
Pz =1
for (th =0 : d_th : 2*pi)
i =1;
X =[];
y =[5
z =[5

for (alf =0 : d_alf : pi)
x(i,1) = R*sin(alf)*cos(th);
y(i,1) = R*sin(alf)*sin(th);
z(i,1) = Rrcos(alf);
i = i+1;

end

figure(l);hold on;grid on

plot3(x,y,z,'.")

vi ew( 145, 20)

axi s equal

Px

Py
Pz

R
N X

1s
)
]

[
[
[ .

end

figure(2)

surf (Px, Py, Pz)
grid on

vi ew( 145, 20)
axi s equal
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722 Example. (Cone)

function [ Px, Py, Pz] = cone_z()
% This function generates the control points for a cone aligned with the z-axis
% Uses a | ongitudinal proportion expression for generating points on a revolving line

% EAFIT University
% Dr. Prof. Oscar E. Ruiz S
% Colonbia - Medellin

close all
clc
H = 30; % Hei ght of the cone
R = 10; % Radi us of the cone
npts = 20; % Nunber of points on the generative |ine
n_slices = 40; % Nunber of generative |lines
d_al f = 1/ (npts-1); % | ncrement step of |ongitudinal paraneter
Pi nt = zeros(npts+1, 3); %initialization of array of points in the generative |ine
rev = (2*pi); % armount of revol ution
d_th =rev/(n_slices 1); % | ncrenent step of angul ar paraneter
Px =L
Py =[]
Pz =1
for( th = 0:d_th:rev )

Pl = [Rfcos(th), R*sin(th),0];

Po =[0,0,H;

i =1;

for( alf =0:d_alf:1)

Pint(i,:) = (1-alf)*Po + P1*(alf); % | ongi tudi nal proportion expression
i =i+l

end
figure(l);hold on;grid on
plot3(Pint(:,1),Pint(:,2),Pint(:,3),".")

vi ew( 145, 20)

Px = [Px; Pint(:,1)"'];
Py = [Py; Pint(:,2)"];
Pz = [Pz; Pint(:,3)'];

Pi nt = zeros(npts+1, 3);
end
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7.2.3 Example. (Cylinder)

function [Px, Py, Pz] = cylinder_z()

% This function generates the control points for a cylinder aligned with the z-axis
75
% EAFIT University

% Dr. Prof. Cscar E. Ruiz S.

% Colonbia - Medellin

close all
H = 10; % Hei ght of t he cylinder
R =5; % Radi us of the cylinder
npts = 20; % nunber of points per generative vertical |ine
nslices = 50; % nunber of generative vertical |ines
revs = 2*pi;
dth = revs/(nslices);
dh = H (npts-1);
Px =[]
Py =L
Pz =1L
for (th = 0:dth:revs)
i =1,
x =[]
y =11
z = [];
for (h = 0:dh:H)
x(i) = Rrcos(th);
y(i) = R:sin(th);
z(i) = h;
i = i+1;
end

figure(l); hold on;grid on, view 145, 20), axi s equal
plot3(x,y,z,".")

Px = [Px; x];
Py = [Py; y];
Pz = [Pz; z];

end
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7.24 Example. (The M &biusBand)

function [Px, Py, Pz] = mobius_band()

% This function generates the control points for a nobius band

% Uses a longitudinal proportion expression for generating points on a revolving |ine

LT T S
% EAFIT University

% Dr. Prof. Gscar E. Ruiz S

% Colonbia - Medellin

close all

R = 20;

n_slices = 50; % | NT. Nunmber of generative lines to nake al ong theta.

rev = (2*pi); % Amount of revol ution to performabout theta.

dth = rev/n_slices; % I ncrement step for the sweep angle theta.

n_pts = 10; % Amount of points in the generative |ine.

dal f = 1/(n_pts-1); % I ncrement step for the point coordinate generaion on

the line.

L = 10; % Length of the generative |ine.

Px =1

Py =[1;

Pz =[]

Pi nt =11

for (th = 0:dth:rev)
gama = 1/ 2*th; % Control of the nunber of |oops the band will mnake
P1 = [(R L/ 2*cos(gama)) *cos(th), ...

(R L/2*cos(gama))*sin(th),...
(-L/2*sin(gama))];

P2 = [ (R+L/ 2*cos(gama)) *cos(th), ...
(R+L/ 2*cos(gama) )*sin(th),. ..
(L/2*sin(gama))];

for (alf =0:dalf:1)
Pint = [Pint; (alf)*P2 + (1-alf)*P1];
end

figure(1)
plot3(Pint(:,1),Pint(:,2),Pint(:,3)," .")
hold on; grid on;axis equal

Px =[Px; Pint(:,1)'];
Py =[Py; Pint(:,2)'];
Pz =[Pz; Pint(:,3)'];
Pi nt =11

end

figure(2)

surf (Px, Py, Pz)

grid on

axi s equal
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73 CHAPTER 5 — Example 3— Implementation in MATLAB—

% exercise_CP3_01.m

% CBJECTI VE
%
%

%  FUNCTI ONS USED: << rotation_nmatrix.m>>
translate_matrix. m>>
draw solid. m>>
gen_solid. m>>

%
%

%

% EAFIT University

% Dr. Prof. Oscar E. Ruiz S.

% Colonbia - Medellin

<<
<<
<<
<<
<<
<<
<<
<<
<<

gen_surf.

MATLAB MAI N SCRI PT
% Appendi x Chapter 5 - CGEOVETRI C MODELI NG

m >>

scal e. m >>

transf_1.
transf_2.
transf_3.
transnsh.

m >>
m >>
m >>
m >>

To integrate the concepts of transformations,

boundary representations, and paranetric curves.

clear all
clc

clf

% Solid

[solid, di ns_of _| oops] = gen_solid;
draw sol i d(solid, di ns_of _| oops);

Yprimtive
[PX PY,PZ] = gen_surf;

% Tranformation 1: face 15

[P1X, P1Y, P1Z] = transf_1(PX, PY, P2);

mesh( P1X, P1Y, P12) ;

% Tranformation 2: face 16

[ P2X, P2Y, P2Z] = transf_2(PX, PY, PZ);

mesh(P2X, P2Y, P22) ;

% Tranformation 3: face 17

[ P3X, P3Y, P3Z] = transf_3(PX PY, PZ);

mesh(P3X, P3Y, P32);
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7.3.1 Auxiliary functions

function [ ] = draw_solid(obj,|oop_din
% This function draws the solid whose | oops are packed in obj,
% and whose | oop dinensions are contained in | oop_dim

% Input: obj: packed | oops of the body. Each |oop has format
% v0, v1,....vn, v0. Each vertex Vi is a (3x1)or (4x1l) vector.
% loop_dim a (1xM vector of integer numbers (M=nunber of | oops
% in "obj". loop_din(i) is the nunber of edges of loop i-th.
% CQutput: none. The routine draws the solid.
%
O/ = = = = s mm e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e m e m -
N=si ze(obj, 2);
i=1;
st =0;
while (i<=N
if (st==0)
draw=[obj (:,1)];
st =1;

else if (st==1)
draw=[ draw obj (:,i)];
if (draw(:,1)==obj(:,i))
plot3(draw(l,:),draw(2,:),draw(3,:))

st =0;
hol d on
grid on
axi s equal
end
end
end
i=i+1;

end

x| abel (' EJE X')

yl abel (' EJE Y')

zl abel (' EJE Z')
title(’ SOLID BODY' )

function [solid,dins_of_|oops] = gen_solid

% Coor di nates of the vertices

vli=[10 O 10 1]';
v2= [0 O 10 1]';
v3=[10 0 O 1]°';
v4=[0 10 10 1]';
v6= [0 10 O 1]';
ve=[10 10 0 1]°';
v7=[0 20 0 1]';
v8=[10 20 0 1]';
v9=[10 20 3 1]°';
v10=[0 20 3 1]';
v11=[3 10 10 1]';
vi2=[7 10 10 1]';
v13=[7 10 6 1]';
v14=[3 10 6 1]';
v15=[10 10 10 1]';
vi6=[0 0 O 1]';
vi7=[8 4 5 1]';
vi8=[8 4 8 1]';
vi9=[6 4 8 1]'
v20=[6 4 5 1]';

%Packi ng of | oops
% unp shel |
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L1=[v1l v15 v12 vi1l v4 v2 v1];

L2=[v1 v3 v6 v15 v1];

L5=[v15 v6 v5 v4 v11 v14 v13 v12 vi5];
L8=[v2 v4 v5 v16 v2];

L9=[v2 v16 v3 v1 v2];

L11=[v3 v16 v5 v6 v3];

L12=[v14 v13 v14];

L17=[v12 v13 v14 v11l v12];

Bl=[L1 L2 L5 L8 L9 L11 L12 L17]; 9%Big box
% unp2 shel |3

L3=[v6 v8 v9 v6];

L4=[v7 v5 v10 v7];

L6=[v6 v9 v10 v5 v6];

L7=[v9 v8 v7 v10 v9];

L10=[v5 v7 v8 v6 Vv5];

B2=[ L3 L4 L6 L7 L10]; %wedge

% Solid
sol i d=[ Bl B2];
dins_of _|oops=[6 4 8 442 4334414],

function [PX PY,PZ] = gen_surf
% This function generates a half cylinder surface.
% The axis of the cylinder is the Z axis. Its radius is R=1.

O ec-mcccccecccccccceececcccccccccceesssssecccccecseessssseccccc-sssesssssccccaax

% Input: none
% Qutput: PX, PY, PZ: the nesh for the half cylinder
%

OfmccccceececaeeeccaaecisssMaMceaccasssssssscasceccasssssssscc-ccaasssmsssmsaaax

dt h=15;
PX=[];
PY=[];
PZ=[1];
i=1;
for ang=0: dt h: 180
ang=ang* pi / 180;
x=R*cos(ang);
y=R*si n(ang);
i=1
for H=0:dH 1
z=H;
PX(i,j)=x;
PY(i,j)=y;
PZ(i,j)=z;
j=j+1;
end
i=i +1;
end

function [ = scal e(Sx, Sy, Sz)

s=[

ocoo =z

00
Sy 0
0 Sz
001

“'OOO(S?

Mes
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function [M = rotation_nmatrix(ang, ax)

% This function produces the rotation matrix

% in honogeneous coordi nates. Rotation is about one
% of the Wrld Coordinate System X Y or Z

T U S

% Input: ang= angle of rotation (in degrees)
% ax = axis of rotation ("X, 'Y, 'Z)
% CQutput: M the 4x4 honpbgeneous rotation natrix.

ang=ang* pi / 180;

if (ax=="X)
ne[[1 0 0 0]
[0 (cos(ang)) (-sin(ang)) O]
[0 (sin(ang)) (cos(ang)) O]
[000 1]];
elseif (ax==Y)
me[[(cos(ang)) O (sin(ang)) O]
[010 0]

[(-sin(ang)) O (cos(ang)) O]
[0 0O 1]];
elseif (ax==2")

me[[(cos(ang)) (-sin(ang)) 0 0]
[(sin(ang)) (cos(ang)) O O]
[0010]

[0001]];
el se
‘error: rotation_matrix( ): wong axis'
keyboar d
end
MeEm

function [P1X, PlY, P1Z] = transf_1(PX PY, PZ)
% This function transforns a nesh PX, Py, PZ to a new

% position. The transformation chain is:
% (1) rot(z,_), (2) scale(), (3) trans()
7

% Input: PX, PY, PZ the input nesh
% Qutput: P1X, PlY, P1Z: the transfornmed nesh

= rotation_natrix(180,"'Z);
[M] = scale(2,2,3);

[MB] = translate_matrix(7,4,5);

M1 = MB*M2*ML;

[ P1X, P1Y, P1Z] = transnsh(PX PY, PZ, M 1);

function [P2X, P2Y, P2Z] = transf_2(PX PY, PZ)

% This function transforns a nesh PX, Py, PZ to a new
% position. The transformation chain is:

% (1) scale(), (2) trans()
%

% Input: PX, PY, PZ: the input nesh
% Qutput: P2X, P2Y, P2Z: the transformed nesh

72
[M] = scale(2,2,3);

[M] = translate_matrix(7,4,5);

M2 = M2*M;

[ P2X, P2Y, P2Z] = transnsh(PX, PY, PZ, M 2);
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function [P3X, P3Y, P3Z] = transf_3(PX PY, P2)

% This function transforns a nesh PX, Py, PZ to a new
% position. The transformation chain is:

% (1) rot(z,_), (2) scale(), (3) trans()

% Input: PX PY, PZ: the input nmesh
% Qutput: P3X, P3Y, P3Z: the transforned nesh

%

O/ = = = mm e e e e e e e m e e e e e e e e m o m e m e e m o m e m e e m e m e m e e e m e =
[M]= rotation_matrix(180,'Z");

[M] = scale(4,4,4);

[MB] = transl ate_matrix(5, 10, 6);

M3 = MB*M2* ML;

[ P3X, P3Y, P3Z] = transnmsh(PX PY, PZ, M 3);

function [M = translate_matrix(dx, dy, dz)
% This function produces the translation matrix
% in honbgeneous coordi nates, for displacenment dx, dy, dz.

% Input: dx,dy,dz= displacenent vector
% Qutput: M the 4x4 honogeneous translation nmatrix.

% _______________________________________________________________________
A = eye(4,4);

A(L, 4)= dx;

A(2,4)= dy;

A(3,4)= dz;

MEA;

function [Px, Py,Pz] = transnsh(X Y,Z, M
% This function transforms a nesh X Y, Z by a (4x4).
% transformation M

7
% Input: X Y, Z the nesh to transform
% M : the honogeneous transfornation natrix
% Qutput: Px,Py,Pz: The transformed nesh.
%
O/ = = = = mm e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e m o — -
[r,c]l=size(X);
Px=[];
Py=[];
Pz=[];
for i=1:r
for j=1:c
Pto_i=[X(i,j) Y(i,j) Z(i,j) 1]'; %nitial point
Pto_f=MPto_i; %inal point
Px(i,j)=Pto_f(1,1);
Py(i,j)=Pto_f(2 1);
Pz(i,j)=Pto_f(3,1);
end
end
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