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ABSTRACT
In surface reconstruction from slice samples (typical from medical imaging, coordinate measurement
machines, stereolithography, etc.) the available methods attack the geometrical and topological aspects
or combinations. Topological methods classify the events occurred in the 2-manifold between two
consecutive slices. Geometrical methods synthesize the surface based on local proximity of contours in
consecutive slices. Many of these methods work with modifications of Voronoi - Delone (VD) techniques,
applies on slices i and i+1. Superimposed 2D Voronoi Diagrams V Di and V Di+1 (used in surface recon-
struction) present topological problems if, for example, a site of V Di lies on an site or an edge of V Di+1.
The usual treatment of this problem in literature is to apply a geometrical disturbance to either V Di or
V Di+1, thus eliminating the degeneracy. Recent works seek to quantify the amount of the disturbance
applied in relation to the probability distribution of the event ”change in the topology of VD”. In this
article, in contrast, virtual disturbances are proposed and implemented, which allow the application of
subsequent steps of the algorithm at hand (in this case, tetrahedra construction for surface reconstruc-
tion) without regard to the geometrical exception. Tetrahedra (or any other downstream constructs)
can then be instantiated as per non-degenerate conditions. Although this method is applied for surface
reconstruction, it gives insight as to how to circumvent degeneracies in procedures based on VD methods.
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1. INTRODUCTION

Degenerate conditions in geometric algorithms
have been attacked by different ways: (i) by stat-
ing the same problem in different spaces with bet-
ter conditioning, (ii) by increasing the real compu-
tation precision, (iii) by relying on rational num-
bers, with no rounding errors, and (iv) by

Permission to make digital or hard copies of all or
part of this work for personal or classroom use is
granted without fee provided that copies are not made
or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Conference proceedings ISBN 80-903100-7-9
WSCG’2005, January 31-February 4, 2005
Plzen, Czech Republic.
Copyright UNION Agency - Science Press

numerically disturbing the input to the geometri-
cal algorithms, while at the same time estimating
the probability of respecting the original problem
topology. Strategies (i) and (ii) have been exten-
sively applied in Numerical Analysis, for exam-
ple by generating equivalent linear systems with
better manipulation properties. Alternative (iii)
has been investigated, for example in (Compu-
tational Geometry Algorithm Library [2]), with
exact computation paradigmsi. Strategy (iv) has
presented results of probablility bounds for alter-
ation of Voronoi-Delone topology upon numerical
disturbance of degenerate events (see [4]).

Virtual Perturbations have been used in other
contexts (see [3] for previous reports). In the strat-
egy presented here, the problem at hand is ana-
lyzed, and the topological structure of a correct
result is created in the form of objects, without
immediate instantiation. This strategy assumes



the possibility of detecting the degenerate condi-
tion. Beyond this point, no numerical manipu-
lation is introduced. Instead, the generic objects
are instantiated with the numerical information,
and the algorithm proceeds. It should be noticed
that none of the mentioned strategies solves the
degeneracy problem. Each is suited for a partic-
ular domain of problems. The one presented here
is of course convenient when there is a finite num-
ber of topological configurations, that allow to be
enumerated and distinguished.

The particular context in which this strategy is
presented is the general problem of surface recon-
struction, from planar samples. Particular steps
of the Boissonat & Geiger algorithm ([1, 5]) have
been changed, to make them more robust (see
[[6, 7]] besides this article). Section 2 gives the
application context of the present work and re-
views related literature. Section 3 describes the
methodology applied and the procedures followed.
Section 4 gives account of the results, while section
5 concludes the article.

2. CONTEXT AND LITERA-
TURE REVIEW

The algorithm proposed and implemented by
Boissonat & Geiger in [1, 5] (called here B+G
) builds tetrahedra filling the space between two
consecutive sampling planes i and i + 1. B+G is
a fairly fast and robust algorithm, originally pre-
senting weakenesses that have been strenghtned
by complementary works. The boolean union of
such tetrahedra renders the solid object cut by
the sampling planes. This strategy basically uses
geometrical proximity between contours to infer
the existence of surface. Because of this reason, it
may present over-stretched surfaces, joining local
portions of contours which are close, while the con-
tours as a whole have little to do with each other.
This efect may be diminished by applying a 2D
shape similarity (2DSS) algorithm (see [6, 7]). On
the other hand, the tetrahedra are built by pro-
jecting the Voronoi Diagram (VD) of the point
set in level i, V Di, onto V Di+1, or viceversa. A
condition which is degenerate for B+G is that a
Voronoi site of V Di exactly lie on either a site
or an edge of V Di+1. Such a condition produces
a non-manifold and self - intersection condition
in the surface so build. The treatment of such
exceptional situations to re-arrange the data for
a smooth functioning of B+G is the goal of this
work.

2.1. BRIEF REVIEW OF THE B+G
METHOD

The B+G method was developed by Jean-Daniel
Boissonnat ([1]) at INRIA and later improved by
Bernhard Geiger ([5]).
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Figure 1: A simple example of the surface recon-
struction process using the B+G method

The B+G method processes each pair of adja-
cent levels, leveli and levelj and creates a flat-
faced polyhedral surface that joins the contours
of both levels. The process is based on geomet-
ric closeness, supported over two geometric struc-
tures: the 2D Delone Triangulation DT and the
2D Voronoi Diagram VD.

The B+G method divides the interior of the
contours in triangles by creating the Delone Tri-
angulation of the contour vertices (figure 1(b)).
After some processing, the Voronoi Diagrams be-
longing to the levels are used to create a planar
graph named the Joint Voronoi Diagram (figure
1(c)). This graph states how the the triangles in
the levels are linked, by translating it to tetrahe-
drons (figure 1(d)). Finally the triangles of the
tetrahedrons facing the exterior are taken as the
reconstructed surface (figure 1(e)).

3. IMPROVEMENTS ON THE
B+G METHOD

The Polyhedral Surface Method is based on the
B+G method. The B+G method reconstructs in-



complete surfaces and presents no-manifold situa-
tions. The improved version solves the incomplete
surface problem (section 3.4.) and the no-manifold
situations are minimized by taking into account
special cases when creating the joint Voronoi Di-
agram (section 3.3.). Also minor changes, in im-
plementation and conceptualization, were done to
reach better results. In the following sections a
description of the improvements did is given.

3.1. Satisfaction of conditions

Before the construction of the Joint Voronoi Di-
agram, some conditions must be fulfilled for the
Delone Triangulation DT on each level:

Condition 0: Completeness of DT The tri-
angulation should include all the edges which
form the set of contours Ci in the level. In
formal terms, condition 0 is defined in equa-
tion 1.

∀ edge e ∈ Ci : ∃DEij s.t. e = DEij (1)

Condition 1: Partition of DT by contours
The classification of every triangle in the
Delone Triangulation as internal or external
with respect to the contours must be possible.
Let the union of all the external triangles be
called External Region ER, and the union
of all the internal triangles be the Internal
Region IR, then, condition 1 is formalized in
equation 2.

∀DTijk ∈ DT : (DTijk ⊂ IR)∨(DTijk ⊂ ER)
(2)

Condition 2: Confinement of circumcenters
The circumcenter of every Delone triangle
DTijk must lie inside the region to which
DTijk belongs. In formal terms, it is defined
in equation 3.

∀DTijk ∈ DT :{
if DTijk ⊂ IR ⇒ circumcenter(DTijk) ∈ IR

if DTijk ⊂ ER ⇒ circumcenter(DTijk) ∈ ER

(3)

Notice that the satisfaction of condition 0 leads
to the satisfaction of condition 1 and vice versa.
Condition 0/1 and 2 are dependent between them;
condition 0/1 must be fulfilled before condition 2
is checked. This detail is not considered on the
original method, and some presented algorithms
fails because of this omission.

3.2. Lifting of internal points

The B+G method adds some points in the interior
of the some contours in the levels (see figure 2).

(a) Given contours (b) Internal points
added by the B+G
method

(c) Surface recon-
structed

(d) Ghost line
produced by
re-sampling the
resulting surface by
the original planes

Figure 2: Internal points added by the B+G
method

In the case of re-sampling the resulting surface
using the original planes, ghost lines will appear
inside the original contours as it is seen in fig-
ure 2(d). These lines appear because the added
points create an approximated medial axis. To
avoid such lines, the points that are inserted in-
side the contours are orthogonally projected on a
level between the processed levels before the sur-
face is finished. The distance between the created
level and the original one is small, to avoid geo-
metric and topological degeneracies.

3.3. Special cases in the creation of the
Joint Voronoi Diagram

The Joint Voronoi Diagram of two consecutive lev-
els results from intersecting the orthogonal pro-
jections of their Voronoi Diagrams on a common
plane. The Joint Voronoi Diagram is composed
by three kinds of nodes: T1, T2 and T12. The
Ti nodes correspond to the Voronoi vertices be-
longing to the Voronoi Diagram on level i, with
i = 1, 2. The T12 nodes correspond to the inter-
section of two Voronoi edges.

Every node in the graph corresponds to a tetra-
hedron, and the union of all these tetrahedrons
form the 3D Delone Triangulation of the contour
points P of both levels i and j. Because the



tetrahedrons that are translated from the graph
are Delone tetrahedrons, they satisfy the “empty-
sphere” condition, that is, the sphere that circum-
scribes the tetrahedron does not contain any other
point in P except its vertices. Every tetrahedron
is created with four Delone vertices. See figure
1(d) where a T1, T2 and two T12 tetrahedrons are
translated from the Joint Voronoi Diagram in fig-
ure 1(c).

(a) Surface reconstructed using the B+G
method

(b) Surface reconstructed taking into account
the special cases

Figure 3: Differences between a simple surface re-
constructed using a perturbation and solving the
special cases

The special cases are generated when more than
four Delone vertices stand on the surface of an
empty sphere. In the implementation of the B+G
method, when more this situation is found a per-
turbation is applied to vertices. This perturbation
leads, some times, to non-wished surfaces, like the
one shown in figure 3(a). The conceptual con-
sideration of the special cases does not leave the
election of the tetrahedrons to a random pertur-
bation, and improves the reconstructed surfaces
(figure 3(b)).

When a special case is created, the construction
of the Joint Voronoi Diagram becomes ambiguous
because there is more than one configuration of
nodes (and therefore, tetrahedrons) that could be
generated. If nodes of different configurations are
kept together at the same time, the graph becomes
inconsistent, because the faces of the related tetra-
hedrons intersect among them and the number of

connections between the nodes exceed the limit.
The problem is solved when a valid configuration
of nodes, defined as the set of nodes whose related
tetrahedrons properly share faces, is found and it
is inserted into the graph. These special cases are
not considered in the original method.

As an upper bound, at most six Delone vertices
may share the same empty sphere, because on each
level the limit of co-circular vertices is three and
the graph generation involves just two levels.

3.3.1. Case 1: Voronoi Vertex vs. Voronoi Edge

This case is generated when five Delone vertices
are co-spherical, leading to a Voronoi vertex be-
longing to level i be projected on a Voronoi edge
belonging to level j, or vice versa. An example is
shown in figure 3.3.1.
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Figure 4: Special cases in the creation of the Joint
Voronoi Diagram: example of Voronoi vertex vs.
Voronoi edge case

Each pair of Voronoi edges that intersect each
other, generate a T12 tetrahedron. In this case
three intersections are found, VE12 vs. VEBD,
VE23 vs. VEBD and VE31 vs. VEBD. The cre-
ation of all these T12 tetrahedrons is illegal, be-
cause their faces intersect and one face is shared
by more than two tetrahedrons.

The ambiguity of the situation is essentially
shown when creating the Ti tetrahedron related
to VV123 in figure 3.3.1.. In this case, two dif-
ferent Delone vertices are found at the same dis-
tance to VV123 and the distance is the minimum
among all the points, so, any of them could be
used as the apex. These two found Delone ver-
tices are the ones related to the Voronoi edge on
which VV123 is projected, in figure 3.3.1. they are
DVB and DVD. Because there are two alternatives
to choose from, this situation allows two configu-
rations as solutions.

The election of the apex for the Ti tetrahedron



between these Delone vertices, states that the dis-
tance from the elected vertex to VV123 is virtu-
ally smaller than the distance from the non-elected
vertex to VV123. The ambiguity is eliminated as
shown in figure 3.3.1..
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Figure 5: Special cases in the creation of the Joint
Voronoi Diagram: Solutions for Voronoi vertex vs.
Voronoi edge case

Identification of a valid configuration The
complete sequence of steps is given in detail in al-
gorithm 1. The infinite version of the Voronoi edge
on which the vertex is projected, VEBD in figure
3.3.1., divides the plane into two half-planes, each
of them containing one of the Delone vertices re-
lated to the edge and one or two projected Delone
edges belonging to level i. Due to the virtual dis-
placement done by electing the apex (line 1), the
edges contained in the half-plane where the apex
lies, do not longer intersect VEBD but the edges
in the second half-plane properly do it (line 4).
This “intersect and no-longer-intersect” status on
each found intersection leads to a proper creation
of the nodes related to the T12 tetrahedrons that
complete a valid configuration (lines 3-7).

3.3.2. Case 2: Voronoi vertex vs. Voronoi vertex

This case is generated when six Delone vertices
are co-spherical, leading to a Voronoi vertex be-
longing to level i be projected on a Voronoi vertex
belonging to level j.

In this case nine intersections are identified,
VE12 vs. VEAB , VE12 vs. VEBC , VE12 vs. VECA,
VE23 vs. VEAB , VE23 vs. VEBC , VE23 vs. VECA,

Algorithm 1 Solving Voronoi vertex vs. Voronoi
edge Case
[Ti, T12] = solveCaseVerVsEdge( V V , V E )

Input: V V : Voronoi vertex
V E: Voronoi edge

Output: Ti tetrahedron related to
V V
T12: set of at most two
T12 tetrahedrons

Precondition: level of V V is not the
same level of V E
the projection of V V lies
inside V E

Postcondition: the tetrahedrons in Ti

and T12 form a valid con-
figuration

1: Apex = elect left or right vertex of V E
2: Ti = new Ti using the Delone triangle related

to V V and Apex
3: for every Voronoi edge V Ek related to V V

do
4: if half-plane of V Ek is not the same half-

plane of Apex then
5: t12 = new T12 created with the Delone

edges related to V Ek and V E
6: add t12 to T12

7: end if
8: end for
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Figure 6: Special cases in the creation of the Joint
Voronoi Diagram: Voronoi Vertex vs. Voronoi
Vertex case



VE31 vs. VEAB , VE31 vs. VEBC , VE31 vs. VECA.
As in the previous case, the construction of these
nine tetrahedrons, leads to an inconsistent graph.
The “election of apex” problem is also present,
with the detail that there are two Ti tetrahedrons
to elect an apex, and three possible apices for each
tetrahedron. When an apex for any of the Ti tetra-
hedrons is chosen, it restricts the election of the
apex for the second Ti tetrahedron and the cre-
ation of the complementary T12 tetrahedrons. Be-
cause of this, this case allows three configurations
as solutions.

As it happened in the previous case, the elec-
tion of an apex could be translated into a virtual
displacement of the levels and the elimination of
the ambiguity by the assumption that the distance
between the apex and the Voronoi vertex is the
smallest.

Algorithm 2 Identifying Vertex vs. Vertex sub-
cases
subcase = idVerVsVerSubcase( V Vi, V Vj )

Input: V Vi: Voronoi vertex on
level i
V Vj : Voronoi vertex on
level j

Output: subcase: Flag indicat-
ing the sub-case type,
its possible values are
1a2b3c or 1ab23c

Precondition: level of V Vi is not the
same level of V Vj

the projection of V Vi lies
on the projection of V Vj

Postcondition: A sub-case is identified
1: Edges[ ] = angular order of all edges related

to V Vi and V Vj

2: Subcase = 1a2b3c
3: for every Voronoi edge V Ec in Edges do
4: set V En as the edge next to V Ec in Edges
5: if level of V Ec is level of V En then
6: Subcase = 1ab23c
7: end if
8: end for

Two different sub-cases are identified for this
case, both keeping the same characteristics de-
scribed above. Algorithm 2 identifies the sub-
cases. The sub-cases are determined by the dis-
tribution of the edges on the “intersecting star”
created when all the edges are projected on the
same plane (see figure 3.3.2.). There are only two
possible distributions, the edges are intercalated
or they are not. When two consecutive edges be-
long to the same level, the sub-case is identified
as the 1ab23c sub-case (lines 5-7). Otherwise, if

there are no two consecutive levels belonging to
the same level, the sub-case is identified as the
1a2b3c sub-case (the cycle in lines 3-9 never falls
inside lines 5-7).
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VV123

VECA

VEAB

VVABC

VEBC

Figure 7: Special cases in the creation of the Joint
Voronoi Diagram: A solution for 1a2b3c sub-case,
where DV3 was elected as apex for the Ti tetrahe-
dron related to VV123

Identification of a valid configuration for
the 1a2b3c sub-case For this sub-case, each
Voronoi region related to a Voronoi vertex con-
tains a Voronoi edge related to the other Voronoi
vertex (figure 6(a)). The three solutions for this
sub-case are symmetric; the election of the apex
for the first Ti tetrahedron does not change the
fact that two T12 and two Ti tetrahedrons are cre-
ated. In figure 7 the joint Voronoi Diagram with
no ambiguity is shown, and also its physical tetra-
hedron representation.

Algorithm 3 implements the solution for this
sub-case. The election of the apex for the first
Ti is done in line 4. The vertex that lies in the re-
gion that is opposite to the first elected apex in the
consecutive level is chosen as apex for the second
Ti tetrahedron (line 6-8). The T12 tetrahedrons
that complete the valid solution are created using
the edges that bound the corresponding Voronoi
regions of the elected apices (lines 11-13 and 15-
17).

Identification of a valid configuration for
the 1ab23c sub-case For this sub-case, the so-
lutions are not symmetric as they are in the pre-
vious sub-case. The solutions are shown in figure
8.

The simplest solution is shown in figure 8(c),
where just one T12 tetrahedron is created. To
construct that solution, some elements must be
identified: the Full Region and the Lone Edge.

Full Region: The Voronoi region that contains
two Voronoi edges belonging to the other level
is named the Full Region. In figure 8(c), the
Full Region for level i is the Voronoi region
VR1, bounded by VE12 and VE31, and for



Algorithm 3 Voronoi vertex vs. Voronoi vertex
1a2b3c sub-case
[Ti, T12] = solveVerVsVer1a2b3c( V Vi, V Vj )

Input: V Vi: Voronoi vertex on
level i
V Vj : Voronoi vertex on
level j

Output: Ti: set of TWO Ti tetra-
hedrons related to V Vi

and V Vj

T12: set of TWO T12

tetrahedrons
Precondition: level of V Vi is not the

same level of V Vj

the projection of V Vi lies
on the projection of V Vj

Postcondition: the tetrahedrons in Ti

and T12 form a valid con-
figuration

1: Edgej = any Voronoi edge related to V Vj

2: Regionj = Voronoi region to the left of Edgej

3: Apex1 = Delone vertex related to Regionj

4: ti = new Ti using the Delone triangle related
to V Vi and Apex1

5: add ti to Ti

6: Edgei = Voronoi edge whose projection lies
inside Regionj

7: Regioni = Voronoi region not bounded by
Edgei on the level of Edgei

8: Apex2 = Delone vertex related to Regioni

9: ti = new Ti using the Delone triangle related
to V Vj and Apex2

10: add ti to Ti

11: DEi = Delone edge related to the Voronoi
edge to the left of Regioni

12: DEj = Delone edge related to the Voronoi
edge to the right of Regionj

13: t12 = new T12 using DEi and DEj

14: add t12 to T12

15: DEi = Delone edge related to the Voronoi
edge to the right of Regioni

16: DEj = Delone edge related to the Voronoi
edge to the left of Regionj

17: t12 = new T12 using DEi and DEj

18: add t12 to T12
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three T12
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(c) Solution with
just one T12
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solution shown
in (c)

Figure 8: Special cases in the creation of the Joint
Voronoi Diagram: Solutions for the 1ab23c sub-
case

level j it is the Voronoi region VRC , bounded
by VEBC and VECA.

Lone Edge: The Voronoi edge that is alone in a
Voronoi region belonging to the other level is
called the Lone Edge. In figure 8(c), the Lone
Edge for level i is VE12, and for level j it is
VEBD.

Algorithm 4 formalizes the solution for this sub-
case. The valid construction is composed by the
T12 tetrahedron related to the intersection of both
Lone Edges (line 15), and the Ti tetrahedrons cre-
ated by each Delone triangle related to a Voronoi
vertex and the Delone vertex related to the Full
Region of the other level used as the apex (lines
7-11). In figure 8(d) the tetrahedrons related to
this solution are shown.

3.4. Elimination of tetrahedrons

The elimination of all the faces of the Ti tetra-
hedrons belonging to a non-solid connection leads
to the creation of a incomplete surfaces. This de-
fect is fixed in the version implemented as part
of this project. When a Ti tetrahedron belonging
to a non-solid connection is eliminated, a hole re-
sults in the place where its base stood. To avoid
such holes, the horizontal triangles (bases) of the
Ti tetrahedrons eliminated by non-solid connec-
tions are kept and included into the reconstructed



Algorithm 4 Solving Vertex vs. Vertex 1ab23c
sub-case
[Ti, T12] = solveVerVsVer1ab23c( V Vi, V Vj )

Input: V Vi: Voronoi vertex on
level i
V Vj : Voronoi vertex on
level j

Output: Ti: set of TWO Ti tetra-
hedrons related to V Vi

and V Vj

T12: a T12 tetrahedron
Precondition: level of V Vi is not the

same level of V Vj

the projection of V Vi lies
on the projection of V Vj

Postcondition: the tetrahedrons in Ti

and T12 form a valid con-
figuration

1: Leveli = level of V Vi

2: Edges[ ] = angular order of all edges related
to V Vi and V Vj

3: [Lone edgei, Lone edgej ] = findLoneEdges(
Edges, leveli )

4: [Full regioni, Full regionj ] = findFullRe-
gions( Edges, leveli )

5: base = Delone triangle related to V Vi

6: apex = Delone vertex related to Full regionj

7: ti = new Ti using base and apex
8: add ti to Ti

9: base = Delone triangle related to V Vj

10: apex = Delone vertex related to Full regioni

11: ti = new Ti using base and apex
12: add ti to Ti

13: DEi = Delone edge related to Lone edgei

14: DEj = Delone edge related to Lone edgej

15: T12 = new T12 using DEi and DEj

surface.

4. RESULTS

4.1. Skull

The Skull is a set of 258 contours, placed on 63
planes parallel to the XZ plane. The resulting
surface is composed by 39.808 triangles. This set
of contours present wide m-n branches specially in
the levels between the nose and the eye holes. In
figure 9 a detail of levels 29 and 30 is shown. In
figure 10 more details may be observed.

Figure 9: Detail of levels 29 and 30 of the set of
contours “skull”

4.2. Brain

This set of contours is a complement given with
the algorithm of the B+G method1. It is com-
posed by 15 parallel levels, with 105 contours. The
reconstructed surface has 13607 triangles. Figure
11 shows more details.

5. CONCLUSIONS

A method has been designed and implemented,
to circumvent geometrical degeneracies arising
of simultaneous processing of 2D superimpossed
Voronoi Diagrams, in the context of Surface Re-
construction from Slice Samples. In this partic-
ular problem, for each degenerate condition an
enumerable finite set of non-degenerate counter-
parts is programmed, and instantiated as the ge-
ometry of the degeneracy dictates. In absence of
the algorithm, self intersecting and therefore non
- manifold constructions follow. With the algo-
rithm, degenerate cases are mapped to their non

1ftp://ftp-sop.inria.fr/prisme/NUAGES/Nuages/



(a) Set of contours (b) Wireframe of
the skull

(c) Reconstructed
surface in a trans-
parent material

(d) Reconstructed
surface in concrete

Figure 10: Set of contours and the reconstructed
surface

- degenerate counterparts. This allows the nor-
mal downstream execution of the host algorithm
(B+G, by Boissonnat & Geiger, 1988, 1993). The
method presented classifies actions to be taken,
based on the level of the degeneracy. The results
show that the method is successful in removing the
degeneracy, without further iterations, and in de-
terministic way. This method can be applied when
the number of cases of the degeneracy is known.
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Figure 11: Set of contours and the reconstructed
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