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Abstraet

A Geometrical transformations on a quadtrees is more of a representation

; problem than one of transformation. Thus. for any desired geometrical

transformation, the most expensive operation on quadtrees (and octrees) is that of

rebuilding the converted data structure to match the original space grid. This paper

develops a general algorithm which uses a representation strategy for geometrical

transformations. It is implemented on a pointer-based quadtree without using

additional auxiliary data structures and has a worst case complexity of O(M), where M

is the number of nodes in the output quadtree. The algorithm, although developed

and tested for quadtrees. extents naturally to octrees.

1. INTRODUCTION.

Every CAD/CAM software system is built on the basis of a suitable

representation scheme for the domain of objects it seeks to model. B-rep (Boundary

Representation). CSG (Constructive Solid Geometry). Spatial Enumeration. and many

other schemes [12] . [13] have been proposed and developed. Each representation

scheme may be characterized by its domain. representation properties

(completeness. uniqueness. validity enforcement. etc) and the efficiency with which

object models can be stored and manipulated in it. As different engineering

problems. encountered in the analysis and subsequent manufacture of a part,

require different information and manipulation of the part modelo it has been

conjectured that the ability to switch(translate) between different representation

schemes (each being most efficient for a particular problem) is necessary in

CAD/CAM systems [14] . [15]. Sometimes such a translation is not possible because the

representation scheme chosen is ambiguous or simply because the object is out of its

domain. An example of the first situation is the translation of a model from a wire-
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frame scheme to a B-rep scheme; it is well-known that the wire-frame scheme is

ambiguous and, consequently, it is possible that B-reps of several objects could match

a particular wire-frame model. The representation of a sphere in a polyhedral

modeler is an example of the second situation. No exact representation of this object

is possible in such a scheme.

Among the different representation schemes, spatial enumeration schemes

are found to be particularly useful for performing set operations (unions,

intersections and differences) and for calculating integral properties such as

surface area, weight, volume, centroid location ,moments of inertia, etc., of a solid.

y The drawback of such schemes, besides the fact that they are approximate

representations, is the large quantities of data required for representing even

relatively simple objects. For example, in spatial enumeration, the accuracy of the

representation mcreases as the cell slze decreases. However, the size of the

representation increases exponentially as well. A trade-off is achieved by trying to

express the largest possible portion of the solid with one single cube, and recursively

applying the same idea on the remaining portions of the part, using smaller cubes.

The result is space savings, but the algorithmic aspects of developing, maintaining,

transforming and using such schemes turo out to be very involved. The algorithmic

aspects of such recursive schemes are improved by fixing the locations at which

decompositions can take place in the 'modeling space' (or fixing the decomposition

grid). The effects of this constraint are far-reaching. First, because the same grid is

used, for a given resolution of representation, the number of potential

decompositions is finite, making the representation generation problem less

complex. The second effect makes set operations among the objects in a given

modeling space easier, because all of them are built using the same set of cubes in

the same locations in the space. This concept forms the basis of octree (or quadtree)

rep rese nt ati ons.

In an octree, the modeling space is initially divided into 8 octants each one of

which is labeled FULL, VOIO or MIXEO, depending whether the solid being

represented completely fills it, is completely out of it, or is partially occupying it. For

the case in which the octant is labeled MIXEO, that octant is further divided into its 8

sub-octants and, hopefully, some of them will be labeled VOIO or FULL. The

remaining sub-octants will be recursively subdivided in a similar manner. Of course,
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it is possible that this process be repeated indefinitely with the size of the octants

decreasing with each recursion. However, when the cell size is small enough for it

to be irrelevant (in the context of the application) whether a MIXED cell is labeled

VOID or FULL, this process of recursive sub-division is stopped by an arbitrary

decision.

Several data structures have been used for the internal representation of

octrees, the most popular ones being: pointer-based structures and the linear

representation. In the pointer-based structure each octant in the the space is

represented by a node labeled PULL, VOID or MIXED; if FULL or VOID, it is a leaf in the

tree; if MIXED, it must have 8 children (4 for quadtrees) for which the same idea

applies. In the linear representation, each octant (quadrant) is marked with a

number, and only the FULL nodes are represented. Each FULL node is represented by

a string of module 8 (module 4 for quadtrees) digits which designate the quadrant in

which that node lies within its parent's quadrant. A Rorth W est quadrant is O, a

NorthEast one is 1, a s..outhWest one is 2 and a s..outhEast one is 3. Some authors [5]

from left to right.

The basic idea of recursive subdivision has many variations. By changing the

shape of the sub-division volume (or area for quadtrees) from a block (or rectangle)

many different variations such as triangular (ternary or quaternary)

decompositions are obtained. When working with co-ordinate spaces other than

Cartesian, such as a polar spaces, a cone tree may be used. While these are

interesting extensions to the basic idea of octree decomposition, they are not

immediately relevant to the scope of this paper. The reader is referred to Samet [10]

and [11] for an in-depth discussion on variations on the basic concept of quadtrees

and octrees. Chapter 5 of [10], in particular, discusses several alternative primitives

for the leaves of the tree.

As was stated earlier, integral property calculations and set operations are easily

representation of some arbitrary object

representation generation (Le., the

by an octree), and gcometrical

performed on octrees. However, automatic

name the collection of strings representing FULL nodes, the "leafcode" of the tree;

see figure 2. For easier manipulation and searching the entire set of strings may be

ordered. The ordering criterion IS given by the mentioned digits being compared
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transformations such as translation, scaling and rotation are complicated and

expensive. The reason for the latter stems from the fact that the octants/cubes

representing an object are resized, positioned and oriented when the object

undergoes a geometrical transformation. They might, therefore, correspond to

unacceptable sizes, positions or orientations compared to. the specified and fixed

ones for the modeling space. Each of these octants would, therefore, have to be

represented in terms of the original decomposition grid. Thus, a geometrical

transformation involves a representation task. The purpose of this paper is to

develop a representation strategy in a general form such that it can be used for

translation, scaling, rotation or any combination of the three.

This paper is organized as follows: section 2 is a survey of the related literature;

section 3 states the problem and explains the algorithm used; section 4 presents the

complexity analysis and experimental results and section 5 draws the conclusions of

this work. Some details of the computer implementation are presented in the

appendix.
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2. SURVEY OF ALGORITHMS FOR ROTATION,TRANSLA TION AND SCALING OF

OCTREES.

In [1], Jackins & Tanimoto address the problem of translation, and rotation by 900.

The algorithm translates each node of the source tree by the DEL TA(translation)

vector in the space, and then represents the resulting object in the original space

grid. To do this, it has to use the list of eight (eight nodes for octrees; four for

quadtrees) nodes which overlap the current target node. "A node at level i in the

target tree receives a list of nodes for comparison that reside at level i in the source

. tree; the only exception to this rule is that there may occur on the list source nodes

labeled FULL which reside at levels above i". Clearly, this approach does not work

for scaling operations, because after such a transformation, corresponding levels in

the two trees do not represent the space size. The neighborhood information is

explicitly stored in the list of overlapping source nodes. The order of the algorithm

is 0(8n) (n= log of diameter of the object); this is equivalent to saying that it is of the

order of the number of nodes in the target tree.

In [2], Meagher develops the same idea of using an auxiliary data structure for

keeping track of overlaying nodes which completely cover the space being

considered for labeling in the tree and applies this to arbitrary translation. scaling

and rotation. In his terms this overlaying space is a set of obels. He also proposes a

method for improving the arithmetic operations by expressing each square as four

line equations, Ax+By+C=O with A2 + B2 =1. This makes the derivation of the line

equations for the children of that node easier. Further, it allows one to perform tests

of intersection using the distance point-to-line criteria to decide if some square

overlaps with another. This lowers the number of floating point operations needed.

This method is applicable in any algorithm which tests for inclusion and

intersection of rectangular regions, allowing a reduction in the time devoted to

floating point operations; however it will not, by itself, modify the complexity of

any algorithm which uses it. In [2] it tums out that in spite of incurring into the

overhead of maintaining and using an auxiliary data structure, the worst-case

complexity does not get better than O(M), where M is the number of nodes in the

output (target) octree.



6

Kawaguchi and Endo [16], and Kawaguchi, Endo and Matsunaga [17], (al so

referred to in [11]) present a very appealing similarity between cIustering of raw

pixel data from a black and white picture and syntactic evaluation of the picture by

a grarnmar whose production rules are:

Starting_S ym bol -> <Subframe>

<Subframe> -> <Subframe> <Subframe> <Subframe> <Subframe>

<Subframe>

<Subframe>

-> black

white->

where <Subframe> is the only non-terminal symbol and black and white are the

terminal symbols. There is obviously a mapping between the sequence of production

rules used to "compile" a picture and the construction of the quadtree which

represents it. Some portion of the picture must be evaluated to decide which

production rule must be fired; this represents the construction of the quadtree in a

Depth First ( DF code ) traversal. Conversely, the DF code is the binary version of the

Depth First traversal of the quadtree. Since this is a string of O's and l's, separators

"(" help to encode-decode the node information. The process of building the string

has a complexity with a lower bound of the order of the size of the tree represented.

When the DF code is available for a given picture, certain operations which

represent transformations such as translation by an integer multiple of the pixel

size, rotation by an angle which is multiple of 90°, mirroring and scaling can be

performed on it. The positional code to describe the subquadrants is shown in

FIGURE 1, together with the transformations they undergo to represent the

geometrical operation. Of course, after the DF code transformation, a new process of

compaction and "(" re-arrangement is necessary to ensure the validity of the DF

code as a quadtree object.

In Gargantini [4], an algorithm for linear quadtree translation and 90/180-

degree rotation is proposed. It is based on performing arithmetic operations on the

position codes of the black nodes in the linear quadtree. For translating a region of

N p pixels, represented by a linear octree, the octree is decomposed into its

constitutive pixels, and each pixel posi tional code is modified to express the

translated one.
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10 11

FIGURE 1: DF code transformations re

Right/LeftTranslation:
01 <->00
10<-> 11

Up/Down Translation:
00 <-> 10
01 <-> 11

Mirror Transformation:
Vertical Axis
01 <-> 00
10 <-> 11

900rotation
()()-> 01
01 -> 11
11 -> 10
10 -> ()()

Once the pixel-wise transformation is done. sorting is performed on the resulting

list of transformed pixels and then compaction is necessary to have the new linear

quadtree representing the transformed object. Pixel collection translation is done in

O(Np) time; sorting is done in O(Np 10g Np); compaction of Np pixels is claimed to be

performed in O(Np) time. Unfortunately, details of the procedure are not discussed.

This algorithm works in O(Np 10g Np). The paper does not address the problem of

arbitrary rotation. With arbitrary rotations problems arise because, for éach pixel

10
--

11

00 01--

10 11

J
, 1

00 01

10 -- --11

00 -
-01
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in the image, the mapping applied to its positional code is different, depending on its

position relative to that of the rotation axis.

In [3] Ahuja & Nash show that translation can be accomplished by module-S

arithmetic manipulations on the location codes of FULL nodes in the source tree. To

do this, the binary representation of the translation distance must be obtained; in

this way each one of the binary digits will affect only the levels on the tree which

represent a bigger size than that represented by the binary digit. Every time a

black node is found, its new "address" in the target tree is computed and that

"destination location is then accessed, starting from the root of the tree and moving

down... This may require new branches and nodes when the path ... does not already

exist..". Because this algorithm traverses the source tree and each time starts the

target search in the root of the target tree, its complexity is O(n.M) (n=levels in the

output tree; M=nodes in the input tree). However, the module-S arithmetic idea is not

used to directly manipulate the branches in the tree. Weng & Ahuja in [6] propose

an algorithm for rotation and translation in which each FULL node in the source

tree is transformed and the result of this transformation is completely represented

(up to a level allowed by the representation resolution) in the space grid. The

schemes proposed ([6], [3]) are very interesting and intuitively appealing. It is

possible that neighborhood information can be exploited to localize work

performed each time in determining the position of leaf inside the target tree.

Currently, for each FULL node found in the source tree, the search for its

representation in the target tree must start from the rool. The complexity of this

algorithm is bounded by O(K*n) where K is the number of nodes in the source tree

and n is the logarithm of the side length of the modeling space.

In

arbitrary

[5 ], Van Lierop uses the reciprocal of Ahuja's approach to perform

and/or translation; for each node in the target tree, therotation

algorithm looks for information in the source tree; if sufficient conditions for

labeIling are found, it is labelled (FULL or VOID); if not, recursion on its children is

performed, using a subset of the input quadtree which was used their parent node.

The quadtree is stored in leafcode (linear quadtree). In this form, the search space

can be represented as two markers which delimit the particular space which is to be

searched. The parent node receives a space delimited by two markers, L 1,U 1, and it

passes other markers, L2,U2, to its children with Ll < L2 < U2 < UI. In thi.s way the
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interval within the leafcode is shortened in each step. The complexity of the

algorithm is O(M * (log N + n)) (M=nodes in the output quadtree; n = resolution and

N = number of input leaves). One problem which arises when linear quadtrees are

used is that the savings in storage space are paid for by sacrificing neighborhood

information. This shows up in the time complexity of algorithms using leafcodes.

Referring to FIGURE 2,the nodes 13X and 2lX are code-neighbors in the leafcode;

however, they are not spatial neighbors. If a search was being conducted for some

subspace of 20X, the last step in the search involves 13X and 21X, while with pointer

representation the node 13X would be discarded earlier. This is because in the Doint-

20X

21X

13X
LEAFCODE

13X
21X
232X
300X
303X
311 X
312X

::!:i::i!ii:i::I::i:::i!::i¡:ii'

:::::::::::::::::~

FIGURE 2: Leafcode representation of the obiect shown.

er-based representation, the branching factor is higher, and only spatial neighbors

are considered. The price paid for this advantage is the overhead in storage space.

In [8] and [9], Samet et al. attack the problem of representin~ an array of

pixels as a linear quadtree. The linear quadtree is held on disk, and ordering is

achieved by maintaining an index, in this case a B-tree. In this way, an inserting or

deleting job is done by modifying the B-tree. An advantage of the B-tree is that it

remains almost perfectly balanced, and its branching factor is high, which leads to

a small traverses in order to get its leaves (which are FULL nodes of the octree). The

algorithm calls an "active node" a node with at least one pixel within it already

considered, and with at least one pixel within it not considered yet. This strategy

"...assumes the existence of a data structure which keeps track of the active quadtree

nodes. For each pixel in the raster scan traversal, do the following. If the pixel is the

same color as the appropriate active node, do nothing. Otherwise, insert the largest

possible node for which this is the first pixel and add it 10 the active nodes set.
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Remove any active nodes for which it is the last pixel." If the metric for measuring

the performance of the algorithm is the number of INSERT operations (which

implies disk access) the complexity of it would be 0(1) (I=Insert operations).

However, the Insert operation is not an elementary operation; it being a B-tree

management operator which implies rearrangement of the B-tree topology, some

times requires operations which involve each level in the structure; therefore it

does not seem adequate for measuring algorithm performance.

With the exception of the approach proposed by Meagher, all the approaches

t incur an extra 10gM effort (M being the number of nodes in the target tree) because

they do not exploit the neighborhood information which is encoded in the octree.

Repeated traversal through the tree causes the extra effort. Meagher's approach

does so, but incurs the expense of an auxiliary structure (which is a list of obels).

The algorithm presented in this paper extends current capabilities in that it

presents a unified approach to all geometric transformations. In addition, in terms

of computational effort, it matches Meagher's approach (both are linear in the

number of target tree nodes) and does so without using any auxiliary structures. It

accomplishes this by simultaneously traversing the source tree and building the

target tree, profiting from the neigborhood information implicit in the structure.
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3. PROBLEM STATEMENT AND ALGORITHM OUTLINE.

¡

In this paper a general transformation algorithm which relies on a

representation procedure for pointer-based quadtrees is developed. The algorithm is

independent of the transformation(rotation, scaling, translation or any

combination) performed on the original tree, and does not require auxiliary data

structures to encode neighborhood data.

The basic approach used by the algorithm is as follows: when a

transformation is to be performed on an object in a modeling space, an imaginary

modeling space is also considered to be transformed with it. The quadtree

representing the original object in the real modeling space and that representing

the transformed object in the imaginary space are structuralIy the same. In fact, the

latter, which we refer to as Tillegal is the image of the former, which we calI

T le ga 1, after translation, rotation or scaling operations have been performed on

each of its nodes, without regards to the validity of the final object as an octree (or

quadtree) representation. In other words the transformation:

R- T_S

Tlegal nmnnnnm> Tillegal

(where R_T _S stand s for: rotation, translation or scaling, possibly using

homogeneous co-ordinate transformations) is performed. The problem can now be

considered as one where we attempt to represent the illegal tree as a legal quadtree

in the original space. That is,

REPRESENT

TiIlegal _nnnn_nm> New_Tlegal

T illegal has some properties which should be mentioned.

1.- The working space or modeling space, S, of the original octree Tlegal i s

not the same as that of Tillegal.

2.- Tillegal is an valid representation of the object in the transformed or

imaginary modeling space. The leaves of the tree do not have any spatial

overlap.

3.- The resolution level of Tillegal could be different from that of Tlegal.

The leaves in Tillegal wi1l have whatever dimensions and orientations that
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result from the geometric transformation. However. nodes at any level of

the tree continue to representing half the dimensions represented by their

parent nodes.

Algorithm Outline

In the previous paragraph it was argued that the problem of geometric

transformations is essentially a representation problem. The algorithm starts with

an object. represented by a tree T on the transformed or imaginary space. and the

objective is to obtain the representation of that object in a space S (the original

. modeling space), which is shifted either rotationally or translationally relative to T.

and possibly scaled to some other size.

The first action is based on looking for an easy answer. namely:

If the S and T spaces are completely disconnected. the representation of the object in

the SDace S is VOID. FIGURE 3 shows this situation.

S : SPACE

If no part of the

transformed object T

is inside s, then the

space S is VOID

If the situation is not so easy. we can reduce the problem size in two ways:

First: It might tum out that all information contained in T is not required for

building the quadtree in S. Thus. we look for the minimum part of T which

contains all the information to reach a conclusion about its representation in S.

This information is in T itself or in some quadrant (or branch) of T. Let's

suppose this information is in some tree Tb (Tb will always be a sub-tree in



13

T ¡Ilegal), which represents some space Sb which is a descendent of T. The

function MINIMUM_SPACE(Tree_l,Square):Tree_2 looks for the smallest space

represented within Tree_l which contains all the infonnation to fill Square,

and retums that space expressed in the Tree 2. FIGURE 4 shows the motivation

for looking in a reduced space.

T : TREE
S : SPACE

If only one quadrant

of T touches S, we

can forget about the

other three quadrants.
Inside the MIXED one in

the figure, this situation

can,recursively, be present

FIGURE 4: Identification of the part of T which has the inforrnation to label S

If the S space is completely contained in the Sb space and

then, the S space will take the same attribute. (See

If Sb has an L-shaped region with unifonn label which

then S will take that attribute. (See FIGURE 5)

Sb is VOID or FULL,

FIGURE 5)

completely contains S,

.l'f\.
... \.

T./ \.\.

"''''' ~b
... '

... '
'-
'-,-.' s

'- .

'-t
... ,.
... ,.
... ,.
\."

..l'\.

..1 \.

f...I ~\.\. Sb
..1 .

..1 .

,..1 : s
... .

"''''....'

"''''... ,.r
... r

"'"r

......

T ' ..., ...

~
If S is contained

inside a uniformly

labeled region of

T, S will inherit

the correspondent
label.

FIGURE 5: Cases in which irnrnediate decision about S can be rnade.

Second: Even though Sb might be infonnationally complete to fill S, it is

possible that either Sb is not uniformly labelled, or, it does not completely

endose S. In these cases no decision can be reached about S and it is necessary

to divide it imo four quadrants and try to represent them using the infonnation

in Sb. In this way the algorithm recursively proceeds to detennine the labels

for the children of S while simultaneously reducing the size of the space where
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this information is for to only the minimum

decision. (See FIGURE 6

space that issearched

informationall

T : TREE
S : SPACE

If S is not inside Sb, no

matter how simple Sb is,

it is necessary to

recursively call the

representation algorithm

for the space Sb into the

spaces O , 1 , 2 and 3;
children of S.

3 2

1o

FIGURE6: Case in which recursion is necessary because either the intersection of space Sb

and S does not have uniform label and/or it does not entirelv cover S.

Based on the above discussion, the pseudo-code for the macro-algorithm would be:

REPRESENT( T: TREE; S: SPACE): TREE;

{S represents a grid in the space; T is the quadtree representation of some

object in another displaced and resized grid. The procedure returns the

representation of T in the grid S.}
var TEMPO:TREE;

1F (BEYOND_MAXIMUM_RESOLUTION(S))
REPRESENT := ARBITRARY_DECISION(T,S);
ELSE ->

1F COMPLETELy _DISCONNECTED( T, S )
REPRESENT :=VOID;

ELSE ->
Tb := MINIMUM_SPACE(T, S);
IF POSSIBLE_DECISION(Tb,S) ->

REPRESENT := LABEL(Tb,S)
EL SE ->

TEMPO := NULL_TREE;
FOR EACH(Si) Subspace of S ->

ADD(TEMPO, REPRESENT(Tb,Si));

->

->

ROF;
REPRESENT:=NORMALIZE(TEMPO);

FI
FI

FI

Before the macro-algorithm is discussed, it is important to address the termination

conditions for it. For some situations the representation task could never terminate;

this is because for some nodes (those on the edge of the object for example) the

algorithm may have to choose to follow the recursive option infinitely. In such a



case. an arbitrary decision must be taken when the algorithm realizes it has gone

beyond the minimum grid size chosen for the representation.

Some comments to explain the algorithm are also necessary:

-In line 2. the algorithm recognizes its arrival at a point at which it is necessary to

apply some arbitrary criteria to label the current node. It is not necessary for this

level to be the maximum resolution chosen for the representation;

MAXIMUM_RESOLUTION can be defined so that it allows the algorithm to proceed one

or two levels further and use the information collected there to make a decision

..
¡ about the labels to be assigned to the nodes at the required maximum resolution. For

example. a node at the maximum resolution can be labelled FULL if three of its fOUT

children are labelled FULL.

-In line 9, the boolean function POSSIBLE_DECISION(Tree, Space) retums VES or NO

depending on whether the information found in Tre e is enough to uniformly label

Space. This may mean:

- Tree completely encloses Space and Tree has a uniform label (FIGURE

7.a).

- Tree is an L-shaped, uniform-Iabeled region which encloses Space. By L-

shaped, we also imply the case in which two non-diagonal quadrants have

a uniform label (FIGURE 7.b, 7.c).

- Tree does not completely enclose

uniform label, but the part of Tree

other part of Space must be labeled

label Space as VOID (FIGURE 7.d).

Space, and perhaps Tree does not have

which intersects Space is VOID. As the

VOID anyway, we can at this point just

(a) (b) (e) (d)

FIGURE 7: Cases in which no recursion is neces
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-In line 8, MINIMUM_SPACE(Tree, Space) is invoked. The purpose of this function is

to find the minimum subspace contained in Tree, which is informationally complete

for labeling Space. See FIGURE 8, in which the different conditions for deciding

considered should be are shown.

) DA (Tree -O) ->MINIMUM_SPACE- Tree

if (Tree =

a. Tree is FULL or VOID no smaller space exists.

if (Tree- m-- Space) ->MINIMUM_SPACE.MINIMUM_SPACE(

@
b. Space has to deal with only one quadrant of Tree. Recursion on such quadrant is necessary.

if (Tree-w Space) ->MINIMUM_SPACE-ElJ
c. Spacehas to deal with more than one quadrant of Tree. As an quadtree only can be either decomposed in

four children or not to be decomposed at all, no smaller space wiIIbe found.

FIGURE 8: Graphical specification of procedure MINIMUM_SPACE(,.

The procedure is based on making decisions about whether, or not, two rectangles

intersect and whether one is included in the other. Since this is a very basic

decision that is extensively used by the algorithm, the implementation details are

discussed in the appendix.

-In line 16, NORMALIZE(Tree) behaves differently, based on whether it is working

beyond or within the representation resolution specified for the quadtree. In the

former case, the children are deleted and the parent node is given a uniform label

irrespective of whether the children have identical labels or not. For example, one

criteria that can be used to establish the label of a node is to give it a FULL label if

three out of four children are labelled FULL. In the second case, within the



representation resolution. compaction can be performed only if all the children of a

node have identical labels. In this case they are deleted and their parent takes their

label.

(

The working of the algorithm involves the simultaneous traversal of the

illegal tree and the development of the legal tree. Therefore, neighborhood

information is preserved and exploited without the use of any auxiliary data

structures. AIso. the additional work of traversal/backtracking over the illegal tree

is avoided, thus resulting in a linear-time (in the number of nodes of the tree)

algorithm, as will be evident in the next section. This algorithm works for

transformations of any magnitude which means that no normalization has to be

done on the translation distance or the scaling factor. Also, any rotational angle is

possible. FIGURE 9 shows a very simple. initial object; FIGURE 10 shows it after

performing a translation of -30% of the length of the modeling space in both axis ;

FIGURE 11 shows the object after being scaled by a factor 0.5 and rotated (about the

center of the space) by 45 degrees. Notice in FIGURE 10, the superposition of the

illegal object, partially out of the modelling space. and its representation (legal) in

which only the part of the object which stays in the original space or universe is

represented by the algorithm.



4. COMPLEXITY AND EXPERIMENTAL RESUL TS.

The algorithm having been discussed and results demonstrated, the next

problem to be addressed is that of estimating the performance of the algorithm. The

worst-case performance in terms of basic operations that the algorithm might have

to perform when performing a transformation is estimated. An assumption is made

that the number oí nodes in source and target trees are comparable at least in order

of magnitude.

Let, at any instant, the algorithm be dealing with a target space S; then the

computational task can be decomposed into two parts:

- Four calls for representing a S/4 space.

- One call MINIMUM_SPACE. Let's suppose the worst conditions occurs and

the call has to travel to the bottom of the tree to find the minimum space.

Therefore, the total effort is given by:

T(S) = 4T(S/4) + Kl*Log S

if a variable y is used, such that,

4Y = S,

then

4y-1 = S/4 and log S = K2 * Y

therefore

If the

T(4Y) = 4T(4y-l) + K3 * Y

function T(4Y) == f(y); therefore

f(y) - 4*f(y-l) = K3*y

the z-transform, we have:Taking

F(z) - 4F(z)/z = K3 *z/(z-l)2

the n

F(z)*(1 - 4/z) = K3*z/(z-l)2

solving for F(z):

F(z) = K3* z2/(z-l)2(z-4)

which can be decomposed as

F(z) = A/(z-4) + B/(z-l) + C/(z-1)2

or

F(z) = Az/(z-4)z + Bz/(z-l)z + Cz/z(z-I)2

using the inverse z-transform, the following is obtained:
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f(y)= A* 4(y-l) + B + C*(y-I)

and substituting for the function f,

T(4Y) = A* 4(y-l) + B + C*(y-I)

Since 4Y is proportional to the number of nodes in the tree, M:

T(M) == K * M + B + K log M
Which means

T(M) == O(M)

To experimentally verify the complexity of the algorithm, the pointer

follow-up operations performed in the procedures REPRESENTO and

MINIMUM_SPACEO were counted. This was done to make the data collected

independent of the hardware on which the programs were run (unlike the situation

in which execution time is observed). The pointer follow-up operation counts the

number of displacements within the source tree (MINIMUM_SP ACEO) and the

target tree ( REPRESENTO). It can also be seen as the number of recursive calls made

during the execution of the procedures.

Five different test cases were run. Each had a different number of nodes

ID the starting or source tree and this varied from 1 node to 17 nodes. Three of these

are shown in the FIGURE 12. In FIGURE 12a the internal representation for the space

shown is also displayed. EMPTY or VOID nodes are stored as NULL pointers while

FULL ones are sto red as FULL-Iabeled spaces with all four children NULL. For each

test case, a 13 degree rotation was performed (See FIGURE 13) This was repeated for

different levels of resolution (or depths of the quadtree) starting from 3 (with the

possibility of having at most 64 leaves) and going up to 7 (16,384 leaves) levels. The

graph in FIGURE 14 shows the results of the algorithm. Since the number of levels

in the representation is proportional 10 the log of the number of nodes in the tree,

the results have been presented as Logarithm 01 Operations Vs. Number 01 Leve/s,

however they can be read as Logarithm 01 Operations Vs. Logarithm 01 Number 01

Nodes.

An examination of the graph reveals a linear relationship between the

number of elementary operations and the nodes, thus verifying the linear

relationship that has been predicted by the complexity analysis. Another important

observation that can be made from the graph is the dependency of the number of

elementary operations on the number of nodes in the source tree for smaller source



trees. This is because the assumption in the complexity analysis about the nodes in

the source and target trees being of the same order of magnitude is not satisfied.

However, it can be observed that as the number of nodes in the source tree increases

this dependency is 10s1. Por example, the lines corresponding to 9, 13 and 17 source

tree nodes show no particular order.

Experimental Results
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5. CONCLUSIONS.

In this paper a general algorithm has been presented for geometric

(rotation, translation and scaling) transformations of quadtrees. The algorithm uses

a representational approach in that it seeks to represent the known quadtree of an

object in one modeling space in another which is displaced. or scaled relative to it.

The algorithm is efficient in the sense that the computational effort is of the order

of the number of nodes in the target quadtree (octree) which can, in fact, be

considered the lower bound on the work required to perform a geometrical

transformation. This efficiency is obtained by simultaneously traversing the source

tree and building the target tree. This simultaneous traversal and building saves the

LogM (M being the number of nodes on the tree) effort of searching one of the

trees. Though the algorithm has been implemented for quadtrees, the work extends

naturally to octrees. The only major ehange that would be required would be the

MINIMUM_SPACE proeedure which would now have to use cubes instead of squares.

Finally, sine e the algorithm avoids baektraeking and since at eaeh stage either a

deeision is made or four (eight for octrees) independent problems spawned, the

algorithm should lend itself well to parallel processing, an aspeet we are eurrently

investigating.
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Appendix

In an section 3, it was stated that procedures Possible_Decisionand

Mi n i m um _5 p a e e are considerably employed and hence their efficiencies are

fundamental to the efficiency of the entire algorithm. The basic task performed by

these procedures is testing the intersection of two rectangles and the possible

inclusion of one in the other. Since the construction of the intersection is not of

interest, the traditional calculation of line intersections does not make much sense

here. AIso, even if the points of intersection were known, this does not consider the

possibility of one rectangle being included in the other. Checking for all the

possibilities becomes inefficient and therefore a faster approach is developed to suit

the specific conditions of the problem on hand.

The basic idea behind the functions used is that a line (in 2D) divides the

space into two disjoint regions. Given that, one can easily test whether two points

are in the same half space, in opposite half paces, or one or both lie on the half-

space boundary, it is possible to test whether a line segment is completely or

partially confined to one half space. The next step simply makes use of the fact that

a rectangle is the convex intersection of four half spaces, and therefore inclusion

in it is based on inc1usion in the half spaces.

To test for boolean relations between two rectangular regions in a 2D

space, two abstract data types where implemented. Those two data types, SQUARE and

STRIP, have meanings and properties which are intuitively obvious.

The object STRIP is the 2D space between two lines; we can define the following

operations on it:

INTERS_SQUARE: STRIP x SQUARE --> BOOLEAN

{This operation takes an strip and a square; and retums YES or NO depending on

whether the strip intersects the square. See FIGURE 15}



Square

On the object Square, fonned by the intersection of two strips in a 2D space, define

t the following operations:

STRIPl : SQUARE --> strip

STRIP2 : SQUARE --> strip

{the operations strip 1 and strip2 return the two strips whose intersection make the

square See FIGURE 16 }

Based on the data types and operations shown, a very easy test for intersection of

rectangular regions which considers all possible cases of intersections can be

developed, based on the following theorem:

THEOREM:

Let Sq 1 and Sq2 be two objects of the type SQUARE; then Sq1 intersect Sq2 iff

INTERS_SQUARE( STRIP1(Sql), Sq2) and



INTERS_SQUARE( STRIP2(Sq1), Sq2) and

INTERS_SQUARE( STRIP1(Sq2), Sq1) and

INTERS_SQUARE( STRIP2(Sq2), Sq1).

Strip1 (sq1)

Sq1 INTERSECf Sq2

Sq1 n Sq2 <> <l>

(Sq 1 n Sq2) n (Sq1 n Sq2) <> <l>

(Sq1 n Sq2) n «Str11 n Str12) n (Str21 n Str22» <> <l>

(Sq1 n (Str21 n Str22) ) n (Sq2 n (Str11 n Str12» <> <l>

(Sq1 n Str21) n ( Sq1 n Str22 ) n (Sq2 n Str11) n (Sq2 n Str12) <> <l>

iff

iff

iff

iff

iff

Figure 17 shows the intuitive idea behind the theorem. It was used to test

intersection of squares in the algorithm. Floating point operations were used,

expressing the lines as vectors. No intersections were explicitly calculated and tests

PROOF:

Notation:

Str11 = STRIP1(Sq1);
Str12 = STRIP2(Sq 1);

Str21 = STRIP 1(Sq2);
Str22 = STRIP2(Sq2);



for intersection strip/square were based in cross and/or dot producto If further

speedups are required. this theorem can easily be implemented using the idea

proposed by Meagher [2].
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