
Gabriel-constrained Parametric Surface
Triangulation

Oscar E. Ruiz, John E. Congote, Carlos Cadavid, Juan G. Lalinde,
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Abstract

The Boundary Representation of a 3D manifold contains FACES (connected
subsets of a parametric surfaceS : R2

−→ R3). In many science and engineering
applications it is cumbersome and algebraically difficult to deal with the polyno-
mial set and constraints (LOOPs) representing the FACE. Because of this reason,
a Piecewise Linear (PL) approximation of the FACE is needed, which is usually
represented in terms of triangles (i.e. 2-simplices). Solving the problem of FACE
triangulation requires producing quality triangles which are: (i) independent of
the arguments ofS, (ii) sensitive to the local curvatures, and (iii) compliant with
the boundaries of the FACE and (iv) topologically compatible with the triangles
of the neighboring FACEs. In the existing literature there are no guarantees for
the point (iii). This article contributes to the topic of triangulations conforming
to the boundaries of the FACE by applying the concept of parameter-independent
Gabriel complex, which improves the correctness of the triangulation regarding
aspects (iii) and (iv). In addition, the article applies the geometric conceptof tan-
gent ball to a surface at a point to address points (i) and (ii). Additional research
is needed in algorithms that (i) take advantage of the concepts presented inthe
heuristic algorithm proposed and (ii) can be proved correct.
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Glossary

S: Parametric Surface.S : R2 → R3. is an (infinite)
2-manifold without border.

F ,H: Faces. Connected subsets of a parametric surface
(F,H ⊂ S).

S−1(F ): Pre-image ofF in parametric spaceU − V .
TF : Triangulation of faceF in Euclidean space.
TUV : A triangulation in parametric spaceU − V .
T = S(TUV ): Triangulation inR3 as a mapping, viaS, of the trian-

gulationTUV in U − V parametric space.
∂X: Boundary of the setX.
Li: A loop (Li ⊆ ∂F ), is a 1-manifold without border.

It is a connected subset of the boundary ofF .
Ej An edge (Ej ⊆ Li), is a 1-manifold with border.
t: A triangle of the triangulationT .
p, q: Points in Euclidean space.p, q ∈ R3.
u, v, w: Real parameters of a curveC(w) or a surfaceS(u, v).
cl(A): Closure of the setA. cl(A) = A ∪ ∂A.
int(A): Interior of the setA. int(A) = A − ∂A.
BG(p, q, r): Gabriel Ball inR3. Spherical point set whose center is

contained in the planepqr, passing through the points
p, q, r ∈ R3.

BG(p, q): Gabriel Ball inR3. Spherical point set whose center
is contained in the edgepq, passing through the points
p, q ∈ R3.

e: Edge of a triangle.

1 Introduction

Boundary Representations, B-Reps, are the computer formalization of the boundary
of a body (M = ∂BODY ). Shortly, M is a collection of SHELLs, which in turn
are collections of FACEs. For convenience, we will assume that the SHELLs are 2-
manifolds without border inR3. Each SHELL is decomposed into FACEs, which must
have boundary. It is customary in geometric modeling to makea FACEF a connected
proper subset ofone parametric surfaceS(u, v) ⊂ R3. In this article we consider the
b-reps as closed 2-manifolds with continuityC2 inside each face andC0 among them.

The border ofF is ∂F , which is the collection of LOOPsLi embedded inS. The
LOOPLi can be thought of as a 1-manifold without border, withC∞ continuity except
in a finite number of points, where it isC0-continuous. In such locationsLi is split
into EDGEsEj , each one being aC∞ 1-manifold with border. The problem of surface
triangulation takes place in one of such FACEsF . A PL approximationTF of faceF is
required which: (a) is formed by triangles, (b) departs fromF in less than a distanceǫ,
(c) has triangles as equilateral as possible, (d) has as few triangles as possible, and, (e)
each edgeej of the triangle set has exactly two incident triangles. Property (e) is a con-
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sequence of the fact that a B-Rep is a 2-manifold without boundary. The triangulation
T is also a 2-manifold (of theC0 class) without boundary. Condition (e) also holds
for edgesej whose extremes lie on any loopLi. This means, this edgeei receives a
triangle from the triangulationTF (faceF ) and another from the triangulationTH (face
H).

An important aspect to control in triangulating a faceF is that having a triangula-
tion TUV correctly coveringS−1(F ) in parametric spaceU − V is not a guarantee for
the triangulationT = S(TUV ) in R3 to be correct. Several problems may arise: (i)
Fig. 1 illustrates that a completely internal triangle[a, b, c] in parametric spaceU − V
may not be mapped byS to an internal triangle[S(a), S(b), S(c)] in R3. (ii) roughly
equilateral trianglest in U − V space may map to extremely deformed trianglesS(t)
in R3 because of sharp warping caused byS, (iii) neighboring trianglesti, tj , tk, .... in
U − V space mapped viaS() may form a fish scale effect inR3 because of the same
warping inS.

Figure 1: Triangleabc is internal in parameter space. TriangleS(a)S(b)S(c) is exter-
nal to the surfaceS(r, θ) = (r cos(θ), r sin(θ), 0)

2 Related Work

2.1 Fundamental definitions

As discussed in [1] a smooth 2-manifold with boundary (face)F is a sub-manifold
of a smooth 2-manifoldS without boundary. If the neighborhood of a pointp ∈ F
is homeomorphic to a 2 dimensional euclidean space, then we say that thep is in the
interior ofF (int(F )). If the neighborhood of a pointp in F is homeomorphic to a half
euclidean space then we say that the point is in the boundary of F (∂F ). The exterior
of the submanifoldF is composed by the pointsp ∈ S and not in the closure ofF
(p /∈ cl(F )). It includes all the points neither in the interior nor the boundary ofF but
still in S. The boundary is a closed set and the interior and exterior are open sets. In
Fig. 4 the interior, boundary and exterior are shown (A − B denotes the difference
between setsA andB).

Fig. 2 displays the general situation in which a faceF is carried by a parametric sur-
faceS in R3. F is a connected subset ofS, with the boundary ofF , ∂F = {L0, ..., Ln}
being the set of loopsLi which limit F onS. If the functionS(u, v) is 1-1 (which can
be guaranteed by a convenient decomposition of the overall B-Rep) then there exists
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Figure 2: Pre-imageF−1 = S−1(F ) of the faceF by the parametric surfaceS.

a pre-image ofF in parametric spaceU × V , that we callF−1. Such a region can
be calculated asF−1 = S−1(F ). To do so, a point sample of∂F formed by points
pi ∈ R3 is tracked back to their pre-images(ui, vi) ∈ (U × V ) therefore rendering a
connected regionF−1 ⊂ (U × V ), most likely with holes, bounded by a set of planar
Jordan curves∂F−1 = {Γ0, ...,Γn}.

Figure 3: Delaunay tetrahedron for pointsa, b, c, d ∈ R3, Gabriel 2-simplex for
a, b, c ∈ R3, Gabriel 1-simplex fora, b ∈ R3, Gabriel 1-simplex fora, b ∈ R2.

Fig. 3 displays a short collection of Delaunay and Gabriel complexes. A Delaunay
tetrahedron in a set of points in 3D is a tetrahedron (3-simplex) formed by four points
whose circumscribed sphere contains no other point of the set. Given verticesvivjvk

in the point set, they form a Gabriel triangle (2-simplex) ifthe smallest sphere through
them contains no other point of the set. The trianglevivjvk is embedded in the equa-
torial plane of such a sphere. A Gabriel edgevivj (1-simplex) is one withvi andvj in
the point set, such that the sphere centered in(vi + vj)/2 with radiusr = d(vi, vj)/2
contains no point of the sample other thanvi andvj . Such a sphere is the smallest
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one containingvi andvj . Each Gabriel 1-simplex makes part of at least one Gabriel
2-simplex, and each Gabriel 2-simplex makes part of at leastone Delaunay tetrahedra.

The present article applies the Gabriel variant (1- and 2- simplices) to Delaunay
connectivity to calculate a triangulation for a point sample VF (sensitive to curvature
and independent of the parameterization) on the faceF , carried by a parametric surface
S. Section 2 reviews theoretical and algorithmic knowledge related to triangulations
and surface curvatures. Section 3 discusses the algorithmsdevised and implemented
to triangulate Boundary Representations. Section 4 presents five complex Boundary
Representations with manufacturing and organic surfaces and high genii triangulated
by the implemented algorithm. Section 5 concludes this article and sketches directions
for future work.

2.2 Curvature Measurement in Parametric Surfaces

A parametric surface is a functionS : R2 → R3, which we assume to be twice deriv-
able in every point. The derivatives are named in the following manner ([10], [20],):

Su =
∂S

∂u
; Sv =

∂S

∂v
; Suu =

∂2S

∂u2
; Svv =

∂2S

∂v2
; (1)

Suv = Svu =
∂2S

∂u∂v
; n =

Su × Sv

|Su × Sv|

with n being the unit vector normal to the surfaceS atS(u, v).
The Gaussian and Mean curvatures are given by:

K =
LN − MM

EG − FF
;H =

LG − 2MF + NE

2(EG − FF )
; (2)

where the coefficientsE, F , G, L, M , N are:

E = Su • Su; F = Su • Sv = Sv • Su; (3)

G = Sv • Sv; L = Suu • n;

M = Suv • n; N = Svv • n;

Minimal, Maximal, Gaussian, Mean Curvatures from the Weingarten Application
The Weingarten Application ([10]),W is an alternative way to calculate the Gaussian
and Mean curvatures.

W =

[

a11 a12

a21 a22

]

(4)

with a11, a12, a21, a22 being:

a11 =
MF − LG

EG − F 2
; a12 =

NF − MG

EG − F 2
; (5)

a21 =
LF − ME

EG − F 2
; a22 =

MF − NE

EG − F 2

The following facts allow to calculate the curvature measures forS from the Wein-
garten Application: (i) The eigenvaluesk1 y k2 of W are calledPrincipal Curvatures ,
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with k1 being themaximal curvature andk2 being theminimal curvature (assume that
|k1| ≥ |k2|). (ii) K = det(W ) is theGaussian Curvature, with K = k1 ∗ k2. (iii)
2H = trace(W ) is twice theMean Curvature, with H = k1+k2

2
. (iv) The maximal

and minimal curvatures are:k1 = H +
√

H2 − K andk2 = H −
√

H2 − K.
W ∗ v = k ∗ v is the eigenpair equation for theW matrix. The solutions for such

an equation are the eigenpairs(k1, v1) and(k2, v2). Therefore,W ∗ v1 = k1 ∗ v1 and
W ∗ v2 = k2 ∗ v2. The directions of principal curvaturein U × V space arev1 and
v2 (v1 = (w11, w12) andv2 = (w21, w22)). The directions of maximal and minimal
curvatures inR3 areu1 = w11 ∗ Su + w12 ∗ Sv andu2 = w21 ∗ Su + w22 ∗ Sv,
respectively.

2.3 Previous Work

[12] implements an algorithm which starts with an already valid triangulation on a
trimmed surfaceS(u, v) and originates a new triangular mesh. It proposes a surface
triangulation with a Delaunay method given 3 points inR3 which determine a sphere
whose equatorial plane is defined by the 3 given points. The algorithm creates a point
set which may be more dense as needed by a particular criterion (e.g. curvature). This
algorithm uses expensive operations (e.g. surface-line intersection). The boundary of
the triangulated trimmed and meshed face is expressed and calculated in handled in
parametric space. Since the algorithm in [12] starts with a given triangulation and
modifies it, if such triangulation is not correct, or it does not respect the boundary of
the trimmed surface, the triangulations following keep such characteristic. According
to [16], the restricted Delaunay triangulation of general topological spaces is defined.
The restricted Delaunay triangulation in the case of trimmed surface inR3 is the dual
of the Voronoi diagram intersected with the surface. Therefore, a triangle is created in
each intersection of 3 voronoi cells with the surface. A contribution of the paper is to
show that Chew’s algorithm is a restricted Delaunay triangulation.

In the problem of the triangulation of manifolds with boundary the theoretical
guaranties that serve for surface reconstruction do not apply. For exampleǫ-samples
([4],[3]) which use the smallest distance of a sample point to the medial axis of the
solid (i.e. theǫ). Since a trimmed surface may be close or far from the medial axis,
such criteria do not apply for surface triangulations.

In [7], The ball pivoting algorithm, (BPA), is presented. Itcomputes a triangle
mesh interpolating a given point cloud: 3 points form a triangle if a ball of radius
smaller thanρ (a user specified radius) touches them without containing any other
point. This triangle is a Gabriel 2-simplex inR3. The algorithm makes a region of
triangles grow by adding a triangle to one of the boundary edges of the triangle mesh.
The reconstruction algorithm needs a very uniform sample.

In [19] the intrinsic Delaunay triangulation of a Riemannian manifold is shown to
be well defined in terms of geodesics. A smooth surface embedded inR3 can define
a Riemannian manifold. The Riemannian manifolds have the property that if all the
calculations and definitions are done in a small subset of themanifold, (as they can be
done with a good sampling condition), the Delaunay triangulation and the Voronoi di-
agram are defined exactly as with the euclidean metric and aredual. Although defining
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triangulations with geodesics is theoretically sound, it has a prohibitively high com-
plexity because it implies the solution of simultaneous algebraic systems.

In [2] the Gabriel complex is defined forRn. For a set of points inR3 the Gabriel
complex is composed of triangles whose smallest defined circumsphere is free of points
in the set. The advantage with respect to [12] is that it does not need information about
the surface. The Umbrella filter algorithm described produces topologically correct
triangulations. Our article takes advantage of such a definition, along with a curvature
- sensitive point sample.

[5] gives lower bounds for densities of well distributed points in surfaces, based on
Delaunay triangulations. [11] presents an algorithm to sample and triangulate a surface,
but it uses computer expensive and not common operations. In[8] the concept of
looseǫ-sample is developed but the operations which implement it are computationally
expensive.

[9] presents the Lipschitz-samples, analogous toǫ-samples, but applied to piece-
wise smooth (Lipschitz) surfaces. Such a distance permits to sample a Lipschitz sur-
face and to define a mesh on it. However, [9] does not present actual examples of the
performance of the algorithm (as we do here). We do also address the sampling of
edges which bound two incoming smooth surfaces by using the most larger of the two
involved curvatures.

In [13], the greedy Delaunay - based surface reconstructionalgorithm from a point
sample is presented. The algorithm uses the fact that the Gabriel graph is a subset
of the Delaunay triangulation (DT). From a starting triangle, it grows matching each
of the edges in the boundary with a triangle in the DT that has the minimum radius.
As disadvantages, we may note that the algorithm: (i) requires the usual distance for
Delaunay triangulations, (ii) needs a very uniform sampling in the loops and (ii) does
not provide guarantee in the reconstruction.

[1] is focused in the notion of envelope that is the covering of a 3-manifold created
with spheres ofλ size and centered in the points of the surface. From the envelope
a surface with boundaries can be reconstructed, but this approach does not conserve
the original points sampled in the boundary, and parametersare needed. In practice
the envelope approach does not seem to produce topologically correct results. We
dispose of information about the surface and boundaries anduse another approach to
the problem.

In [14] an advancing front method to triangulate parametricsurfaces is presented.
The method triangulates a B-Rep by discretizing edges and surfaces. The number of
triangles generated can be adapted to any density function in the surface. The correct-
ness of the solution depends on the density function provided for the edges and for the
surface. In [6] a parameterization-independent algorithmis proposed to triangulate a
surface. In the algorithm, a circle in the normal plane of a point p in the surfaceS,
Tp (S, p), is chosen. A polygon ofn sides, (withn ≥ 4), and defined by vertices
{p1, p2, ..., pn}, is inscribed in the circle. Rays from the vertices and perpendicular
to Tp (S, p), intersect the surface and generate new vertices for the triangulation. The
algorithm has the advantage that the connectivity of the triangles is present through
the algorithm. In the other side, the paper handles the boundary in the parameter do-
main and reports a non-uniform sample near to this. The paperreports problems are
in regions of high curvature. Also in [21], the algorithm described in this paper is im-
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plemented and problems are reported near the boundaries. The generalization of their
algorithm to closed surfaces needs a sewing procedure that creates additional borders.
In [23], an algorihtm that triangulates parametric surfaces is presented. The algorithm
uses an advancing front method. The loops aren’t taken into account. This algorithm
generates two fronts of triangles that advance one towards the other. The two fronts
are in oposite sides of the parameter space. The main drawback in this algorithm is
that: only a squared parameter space is considered. No holesor complex features are
reported in the paper. In [22] an algorithm to triangulate b-reps is presented. In the
algorithm all the triangulation occurs in parametric spaceand is mapped toR3. In [21]
two sampling methods and a triangulation algorithm are proposed. In the algorithm the
boundaries are isosampled, i.e not sensitive to the curvature or any other parameter. In
the triangulation algorithm, a parametric information is needed, so it can fix problems,
and the boundaries are not handled well in all the situations.

Figure 4: Interior, boundary and exterior of a submanifoldF with respect to a manifold
S.

Figure 5: Gabriel 1- and 2-simplices on faceF
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3 Methodology

The implemented algorithm to triangulate a faceF mounted onto a parametric surface
S (Fig. 4) has the following layout, whose details will be discussed later: (1) Calculate
the pre-imageF−1 of the faceF through the functionS (Fig. 2). (2) Initialize the
vertex setVT with a curvature-sensitive sample of the loopsL0, ..., Ln of the face
boundary∂F . (3) Introduce points in the sampled loopsL0, ..., Ln; such that, all
the segments in∂F are Gabriel 1-simplex. (4) Sprinkle the faceF with verticesvi

achieving a vertex density proportional to the local curvature of F , Kmax, inserting
those vertices in setVT . Segments in∂F remain Gabriel 1-simplex during this stage.
(5) Calculate a Gabriel connectivityT for the vertex setVT .

3.1 Edge Sampling

Algorithm 1 is used to produce a curvature - sensitive sampleof an EdgeE. Unlike
previous approaches ([22]) such a sample is not an iso-distance one. Instead, the sam-
pling interval at pointp on the underlying curveC is sensitive to the largest of the
maximal curvatures ofS1 andS2 in such a pointp (line 6). Notice that the curva-
ture of the curve C at p needs not to be considered in addition to the surface curva-
tures because it will be always less than or equal to the surface maximal curvatures
(Kmax(S1, p),Kmax(S2, p)).

Algorithm 1 Sample of the EdgeE between FacesF1 andF2

S1(u, v), S2(u, v): Underlying surfaces for FacesF1 andF2.
C(λ): Underlying Curve forE.
Λ0,Λf : Parameters of the extremes ofE in curveC.
VE = {p1, p2, ..., pn}: Output. Sequence of point sample ofE.
Kmax(S, p)): Maximal curvature of SurfaceS at pointp.
Nsides: Number of sides of a regular polygon.

1: VE = {}
2: λ = Λ0

3: while λ ≤ Λf do
4: p = C(λ)
5: VE = VE ∪ {p}
6: k = max(Kmax(S1, p),Kmax(S2, p))
7: r = 1/k
8: δ = polygon determined arc(r,Nsides)
9: ∆λ = dist to param(δ)

10: λ = λ + ∆λ
11: end while

Fig. 6 displays the geometrical idea behind lines 7 and 8 of the algorithm: the
radius of curvaturer is the inverse of the curvaturek. A circle tangent to a curve with
such a curvature may be approximated by a regular polygon ofNsides sides. The arc
δ determined by such a polygon is considered as a good euclidean sampling distance
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Figure 6: Locally planar curve and local curvature. Approximation by regular polygon
of N sides.

for the curveC atp (line 8). Such an euclidean distance must be transformed to alocal
parameter distanceδλ atC(λ) (line 9).

3.2 Loop Resampling. Ensuring that each edge of each loop is a
Gabriel 1-simplex

Algorithm 2 creates new vertices in the loops sampled by algorithm 1, in such a way
that each segment in the new sample is a Gabriel 1-simplex. Between lines 4 and
16, each loopVLi is traversed as a circular linked list. Each segmentvcurrvnext is
tested to be a Gabriel 1-simplex in line 7. If it is not a Gabriel 1-simplex, a new
point, returned by functionpoint middle of arc (lines 8 and 9), is inserted to the
circular linked list aftervcurr and previous tovnext (lines 10 and 11). LetCz (λ)
be a curve parameterized by arc length. Letpx andpy be two points inCz (λ). Let
Λx and Λy be the parameters ofpx and py respectively withΛx < Λy. Function
point middle of arc (Cz (λ) , px, py) performs the following procedure:

1. Finds the arc lengthδ betweenpx andpy in curveCz (λ).

2. Returns a pointpnew = C
(

Λx + δ
2

)

.

If any segmentvcurrvnext is not Gabriel 1-simplex, the variablefinished is set
to false (line 12). In line 21 the variablefinished is testedtrue, to ensure that this
procedure is repeated until all segments are Gabriel 1-simplex.

Fig. 7 shows the behavior of algorithm 2. In Fig. 7(a), pointvx ∈ VLi is inside
BG (vcurr, vnext) and segmentvcurrvnext is not Gabriel 1-simplex. Aftervnew is
inserted toVLi, the new segments are(vcurr, vnew) and(vnew, vnext). As shown in
Fig. 7(b),BG (vcurr, vnew) andBG (vnew, vnext) are empty of other points inV∂F ;
and segments(vcurr, vnew) and(vnew, vnext) are Gabriel 1-simplex.

Sometimes, B-rep models are not well stitched ([24]), and that creates extremely
narrow faces. Every time the loop between lines 1 and 21 is executed, at least 2 seg-
ments become shorter. In line 18, functionis any segment too short (V∂F ) evalu-
ates this case and returns failure when an edge is too short (i.e the loop is being repeated
too many times). This adds robustness to algorithm 2. Otherwise, if two lines of a b-
rep are geometrically equal, but have not been merged in the model, algorithm 2 would
never stop.
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Algorithm 2 Insert vertices in the sampled loops until all the segments are Gabriel
1-simplex.

V∂F = {VL1, VL2, VLn}: is the set of vertices that sample the boundary of the faceF .
VLi = {VE1, VE2, ..., VEm}: is a circular linked list that contains all the points sampled
in the loop with algorithm 1 andVEj is the ordered sample of edgeEj .
V∂F = {VL1, VL2, VLn}. Output. The set of vertices that sample the boundary of face
F .

1: repeat
2: finished = true
3: for all VLi ∈ V∂F do
4: vcurr = head (VLi)
5: vnext = next (VLi, vcurr)
6: repeat
7: if ∃vx ∈ (VLi − {vcurr, vnext}),

such that: vx ∈ BG (vcurr, vnext) then
8: Cj (λ) is the curve, of an edgeEj , that contains{vcurr, vnext}.
9: vnew =

point middle of arc (Cj (λ) , vcurr, vnext).
10: next of (VLi, vcurr) = vnew

11: next of (VLi, vnew) = vnext

12: finished = false
13: end if
14: vcurr = vnext

15: vnext = next (VLi, vnext)
16: until vcurr ≡ head (VLi)
17: end for
18: if is any segment too short (V∂F ) then
19: return FAILURE
20: end if
21: until finished ≡ true
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Figure 7: The two basic steps of algorithm 2.

3.3 Face Sampling. Vertex Sprinkle on FaceF

Algorithm 3 constructs the vertex setVF of the triangulation sought for faceF .
The initialization ofVF (line 1) is done with the vertices sampled on the boundary
loops ofF , ∂F = {L0, ..., Ln}, as per algorithm 1. Such vertices correctly sample
∂F . However, the interiorint(F ) needs to be sampled. To do so, trial vertices are
generated inside the pre-imageF−1 in U × V space (line 4) and their image viaS is
calculated (line 7). Such a trial vertexp is rejected if (a) it is too close to other vertices
already accepted inVF (line 11) or (b) if it is contained in the smallest ball definedby
a pair of vertices consecutive on a loopLj . The closeness criteria is dictated by the
maximal curvatureKmax(S(u, v)) at p = S(u, v) (line 5). In case (a) each already
accepted vertex inVf is tested for inclusion inside a ballB(p,R) centered atp with
radiusR = polygon side(r,Nsides) (line 9). In case (b) each segmentvivj in the
sample of the border is tested as a Gabriel segment (1-simplex) with respect to the
candidatep. If every segment of the border is Gabriel with respect top, we assume
thatp is not too close to the border (line 10). A segment is said to besampled in the
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Algorithm 3 Sprinkle triangulation vertices on FaceF

F : Input. Face to triangulate.
F−1: pre-image of FaceF in spaceU × V
S(u, v): Underlying surface for FaceF .
∂F = {L0, ..., Ln}: Loops Bounding the FaceF .
Nf : Number of tolerated failures.
VF : Output. Vertex set sampled on FaceF .

1: VF = sampling of boundary∂F
2: fails = 0
3: while fails ≤ Nf do
4: generate parameter pair(u, v) ∈ F−1

5: k = Kmax(S(u, v))
6: r = 1/k
7: p = S(u, v)
8: R = polygon side(r,Nsides)
9: if ∄q ∈ VF such thatq ∈ B(p,R) then

10: if ∃vivj , a segment of the boundary,
such that: p ∈ BG(vi, vj) then

11: fail = fail + 1
12: else
13: VF = VF ∪ {p}
14: fail = 0
15: end if
16: else
17: fail = fail + 1
18: end if
19: end while
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Figure 8: Goal Point Population on faceF

Figure 9: Curvature-sensitive Sprinkle AirbrushF

boundary, if its two end vertices are consecutive in a loopLj ∈ ∂F . If tests (a) and
(b) are passed,p is accepted inVF (line 13). Fig. 6 depicts that the value forR is
computed as the cord of theNsides-regular polygon inscribed in the circle with radius
1/k. Functionpolygon side(r,Nsides) equals to2r sin(π/Nsides). Fig. 5 displays
the two tests mentioned in items (a) and (b) above.

3.4 Face Triangulation. Gabriel Connectivity on Vertex SetVT .

Algorithm 4 builds the connectivity inside the vertex setVF . The algorithm seeks
to complete edges(v0, v1) already known to belong to the triangulationT (line 6) with
an additional vertexvnew to build a Gabriel Triangle(v0, v1, vnew) (line 9).

Any internal Gabriel triangle is the first formed triangle (lines 1,4). It is also a seed
to initialize theQueue of edges potentially able to span Gabriel triangles.

If the edge extracted from theQueue is part of the boundary, it is not expanded
any more (line 7). All the edges which are part of the boundarywill be found because
they are Gabriel 1-simplex and make part of a Gabriel 2-simplex. If a Gabriel triangle
(v0, v1, vnew) can be built, it is added to the triangulationT (line 10). If a Gabriel
triangle can be built using only an existing edge(v0, v1) and a new vertexvnew, the
general situation is that the new edges(v0, vnew) and(vnew, v1) should be queued to
be eventually expanded (line 20). However, this is not always the case, since such a
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Algorithm 4 Triangle Connectivity in the setVF

VF : Input. Vertex set sampled on FaceF .
Queue: List of triangle edges to expand.
∂F = {L0, ..., Ln}: Loops Bounding the FaceF .
T : Output. Triangulation.

1: seed = triangle in interior(F )
2: {(v0, v1), (v1, v2), (v2, v0)} = edges of triang(seed)
3: Queue = {(v0, v1), (v1, v2), (v2, v0)}
4: T = { seed}
5: while (Queue 6= Φ) do
6: edge to expand = extract(Queue)
7: if edge to expand is not part of the sample of the boundarythen
8: (v0, v1) = vertices(edge to expand)
9: vnew = vert for Gabriel 2 Simplex(VF , v0, v1)

10: T = T ∪ {(v0, v1, vnew)}
11: if ((v0, vnew) ∈ Queue) ∧ ((vnew, v1) ∈ Queue) then
12: Queue = Queue − {(v0, vnew), (vnew, v1)}
13: else if((v0, vnew) ∈ Queue) then
14: Queue = Queue − {(v0, vnew)}
15: Queue = Queue ∪ {(v1, vnew)}
16: else if((vnew, v1) ∈ Queue) then
17: Queue = Queue − {(vnew, v1)}
18: Queue = Queue ∪ {(vnew, v0)}
19: else
20: Queue = Queue ∪ {(v1, vnew), (vnew, v0)}
21: end if
22: end if
23: end while

15



triangle may use 1 or 2additional edges already in the queue. In the first case, the
triangle is filling a corner (lines 13-18). In the second case, the triangle is filling a
triangular hole (lines 11,12). In such special cases additional edges (1 or 2 besides the
expanded one) should be taken away from the queue.

4 Complexities of the algorithms

Time and space complexities of all the algorithms were found. They are all output
sensitive; that is, their complexities depends on the size of the output given by them.
The first 3 algorithms depend on the number of nodes generatedby them. The last
algorithm depends on the number of nodes in the input and in the number of triangles
generated.

4.1 Edge Sampling

The time and space complexities of algorithm 1, have been found in the following
manner.

1. Time complexity. The operations with the curve and the operations to find the
curvatures are dependent upon the parameterization and notin the number of
points generated. Because of this, the time complexities ofall the operations
within the loop, (lines 3 to 11), can be assumed asO (1). The loop is repeated
NEj times.NEj is the number of points generated to sample the edgeEj . The
time complexity of algorithm 1 isO (NEj).

2. Space complexity. As the algorithm only stores the pointsgenerated, the space
complexity isO (NEj).

4.2 Loop Resampling

The time and space complexities of algorithm 2, have been found in the following
manner:

1. Time complexity. LetN∂F be the number of vertices inV∂F , at the end of
algorithm 2. For algorithm 2 the following facts hold:

(a) N∂F changes. In the worst case it grows as an arithmetic progression with
difference 1. That is why in this paper the calculations are simplified by
considering, at any step,N∂F as the number of vertices inV∂F .

(b) The number of segments inV∂F is the same as the number of points.

(c) Each time a segmentvcurrvnext is tested to be Gabriel 1-simplex, (line 7),
algorithm 2 tests all the points inV∂F . This takes timeO (N∂F ).

(d) The number of segments tested will beO (N∂F ), no matter the number of
points added to the sample in the previous step.
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(e) The worst case scenario occurs when only one point is added at the time.
This is because of fact (d). In that case, the loop from lines 1to 21 is
repeatedN∂F times.

(f) The worst case escenario occurs when only 3 vertices havebeen generated
by algorithm 1. This is the worst case because it means that all but 3 of the
points inV∂F are generated by algorithm 2. The number of times that the
loop between lines 1 to 21 is repeated isO (N∂F ).

Combining facts (c), (d) and (e) the worst case time complexity of the algorithm
2 isO

(

N3
∂F

)

.

2. Space complexity. OnlyV∂F is stored by the algorithm. The space complexity
of algorithm 2 isO (N∂F ).

4.3 Face Sampling

The time and space complexities of algorithm 3, have been found in the following
manner:

1. Time complexity. The algorithm terminates if variablefails > Nf ; so for each
new point, the algorithm tries at mostNf times. The number of times that the
loop between lines 3 and 19 isO (Nf × N), beingNF the number of points
generated in the interior of the face. In the loop, for a new generated pointp two
tests are performed:

(a) In line 9, everyq ∈ VF is tested for inclusion inB (p,R). R is as described
in line 8. This operation can be performed inO (NF + N∂F ).

(b) In line 10,p is tested for inclusion in everyBG (vi, vj), wherevivj are two
consecutive points in the sample of the boundary ofF . This operation can
be performed inO (N∂F ).

The worst complexity is that of test (a).

Combining test (a) with the number of times the loop between lines 3 and 9 is re-
peated, we have that the complexity of the algorithm is:O (Nf × NF (NF + N∂F )).

2. Space complexity. The algorithm only stores the points that are accepted. The
space complexity of the sampling algorithm isO (NF ).

4.4 Face Triangulation

The time and space complexities of the algorithm 4, have beenfound in the following
manner.

1. Time complexity. For algorithm 4, the following facts hold:
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(a) Each time that the loop (lines 5 to 23) is repeated, this algorithm checks a
different edge that belongs to the triangulation. The number of edges that
belong to the triangulation is a linear function of the number of triangles (i.e
each new triangle adds a maximum of 3 edges). The number of triangles
generated will be denoted as:NT .

(b) The operationvert for Gabriel 2 Simplex (line 9), is the one that has the
highest complexity within the loop (lines 5 to 23). The rest of the opera-
tions haveO (1) complexity.

(c) For thevert for Gabriel 2 Simplex (line 9) operation, first a candidate ver-
tex (r) is chosen. This vertex can complete a Gabriel simplex giventhe
edgev0v1. All the points inVF , except forv0 ,v1 andr are tested for in-
clusion inBG (v0, v1, r). Using a naive approach, the time complexity of
this operation would beO

(

N2
)

, whereN is the number of vertices inVF .

Combining facts (a), (b) and (c), the complexity of algorithm 4 isO
(

NT × N2
)

.

2. Space complexity. The algorithm stores a set of edges inQueue. As a topo-
logical constrain,Queue can only contain the same edge twice. The number of
edges stored is, in the worst case, a linear function of the number of triangles
stored. The space complexity isO (NT ).

5 Results

Several Boundary Representations B-Reps were used to test the implemented algo-
rithm, proposed in this article. Such B-reps have genera 3 orsuperior, and present
facesF whose underlying surfacesS are parametric ones of the NURBS or Spline
types. AnNf = 1000 maximal number of failed trials was used to stop the sprinkleof
vertices onF (generation of the setVF ). The number of sides for the approximating
polygon wasNsides = 30. Figs. 10, 11 and 13 show complex B-Reps. Other examples
of B-reps triangulated include a model of a pre-columbian fish in Fig. 14, a support of
an axle in Fig. 15, and a stub axle in Fig. 16.

The attention of the reader is called to the fact that the connectivity construction is a
process completely independent of the vertex generation process. Since the vertex gen-
eration algorithm (Sprinkle) is the most critical one, the execution time was recorded
for such an aspect.

For the modelsPump and Hands, Figs. 12(a) and 12(b) show execution times,
corresponding to the vertex generation process. Fig. 12(c)shows the comparison of
vertex generation times for such runs.
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Figure 10: Pump carter [17]. Colormap according to quality of triangles.

Figure 11: 2 hands with 3 genus, scanned and reconstructed using RainDrop Geomagic.
Colormap according to the size of the triangles

19



(a)

Number of points generated

T
im

e 
in

 s
ec

o
n
d
s

(a) Sample time per face for the
pump.
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(c) Comparison between the hands
(NURBS) and the Pump Carter. Hands time
in solid line, Pump time in dotted line

Figure 12: Times spent sampling the faces and their comparison.

Figure 13: Other view of the 2 hands with 3 genus. Colormap according to the quality
of the triangles.
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Figure 14: Artificial replica of a pre-columbian gold fish [15]. Colormap according to
size of the triangles

6 Conclusions and future work

The proposed algorithm for generating triangulation vertex sets and for calculating the
connectivity among them proved to function correctly, evenfor very extreme geome-
tries and topologies. Several aspects of the algorithm mustbe addressed: the continuity
of triangle sizes at the Face Edges, the possibility of undertaking re-meshing of already
existing triangulations and its related endeavor, namely the level of detail, necessary
for Finite Element Analysis applications. Additional research is needed in algorithms
that (i) take advantage of the concepts presented in the heuristic algorithm proposed
here, but (ii) can be proved correct.
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the delaunay triangulation of points on surfaces the smoothcase. InSCG ’03:
Proceedings of the nineteenth annual symposium on Computational geometry,
pages 201–210, New York, NY, USA, 2003. ACM.

[6] Marco Attene, Bianca Falcidieno, Michela Spagnuolo, and Geoff Wyvill. A
mapping-independent primitive for the triangulation of parametric surfaces.
Graphical Models, 65(5):260 – 273, 2003. Special Issue on SMI 2002.

[7] Fausto Bernardini, Joshua Mittleman, Holly Rushmeier,Claudio Silva, and
Gabriel Taubin. The ball-pivoting algorithm for surface reconstruction.
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS,
5(4):349–359, 1999.

[8] J-D Boissonnat and S. Oudot. An effective condition for sampling surfaces with
guarantees. InSM ’04: Proceedings of the ninth ACM symposium on Solid mod-
eling and applications, pages 101–112, Aire-la-Ville, Switzerland, Switzerland,
2004. Eurographics Association.

[9] Jean-Daniel Boissonnat and Steve Oudot. Provably good sampling and meshing
of lipschitz surfaces. InSCG ’06: Proceedings of the twenty-second annual sym-

22



Figure 16: Stub axle [18]. Colormap according to the qualityof the triangles

posium on Computational geometry, pages 337–346, New York, NY, USA, 2006.
ACM.

[10] Manfredo Do Carmo.Differential geometry of curves and surfaces, pages 1–168.
Prentice Hall, 1976. ISBN: 0-13-212589-7.

[11] Siu-Wing Cheng, Tamal K. Dey, Edgar A. Ramos, and Tathagata Ray. Sampling
and meshing a surface with guaranteed topology and geometry. In SCG ’04: Pro-
ceedings of the twentieth annual symposium on Computational geometry, pages
280–289, New York, NY, USA, 2004. ACM.

[12] L. Paul Chew. Guaranteed-quality mesh generation for curved surfaces. InSCG
’93: Proceedings of the ninth annual symposium on Computational geometry,
pages 274–280, New York, NY, USA, 1993. ACM.

[13] David Cohen-Steiner and Frank Da. A greedy delaunay based surface reconstruc-
tion algorithm. Research report, INSTITUT NATIONAL DE RECHERCHE EN
INFORMATIQUE ET EN AUTOMATIQUE, 2002.

[14] JC Cuillière. An adaptive method for the automatic triangulation of 3d parametric
surfaces.Computer-Aided Design, 30(2):139 – 149, 1998.

[15] Museo del Oro Bogotá DC. Pre-columbian fish.
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