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Abstract

The Boundary Representation of a 3D manifold contains FACES (cteuhec
subsets of a parametric surfage R?* — R3). In many science and engineering
applications it is cumbersome and algebraically difficult to deal with the pelyn
mial set and constraints (LOOPS) representing the FACE. Becausis oé#son,

a Piecewise Linear (PL) approximation of the FACE is needed, which iallysu
represented in terms of triangles (i.e. 2-simplices). Solving the probidtAGE
triangulation requires producing quality triangles which are: (i) independe
the arguments of, (ii) sensitive to the local curvatures, and (iii) compliant with
the boundaries of the FACE and (iv) topologically compatible with the triangles
of the neighboring FACESs. In the existing literature there are no guasafee
the point (iii). This article contributes to the topic of triangulations conforming
to the boundaries of the FACE by applying the concept of parametepéndient
Gabriel complex, which improves the correctness of the triangulaticardety
aspects (iii) and (iv). In addition, the article applies the geometric corafeph-
gent ball to a surface at a point to address points (i) and (ii). Additicersgarch

is needed in algorithms that (i) take advantage of the concepts presertesl in
heuristic algorithm proposed and (ii) can be proved correct.
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Glossary

S: Parametric SurfaceS : R? — R?3. is an (infinite)
2-manifold without border.

F.H: Faces. Connected subsets of a parametric surface
(F,H C95).

STL(F): Pre-image off" in parametric spac& — V.

Tr: Triangulation of face’ in Euclidean space.

Tyv: A triangulation in parametric spa¢é — V.

T=5STyv): Triangulation inR? as a mapping, vi&, of the trian-
gulationTyy in U — V parametric space.

0X: Boundary of the sek.

L;: Aloop (L; € OF), is a 1-manifold without border.
It is a connected subset of the boundaryof

E; Anedge §; C L;), is a 1-manifold with border.

t: A triangle of the triangulatiofi".

D, q: Points in Euclidean spacg, g € R3.

U, v, W: Real parameters of a cur¢§w) or a surfaces(u, v).

cl(A): Closure of the sefl. cl(4) = AU JA.

int(A): Interior of the setd. int(A) = A — 0A.

Ba(p,q,r) Gabriel BallinR3. Spherical point set whose center is
contained in the planggr, passing through the points
p,q, 7 € R3.

Ba(p,q): Gabriel Ball inR3. Spherical point set whose center
is contained in the edgey, passing through the points
p,q € R3.

e: Edge of a triangle.

1 Introduction

Boundary Representations, B-Reps, are the computer fizatiah of the boundary
of a body M = 0BODY). Shortly, M is a collection of SHELLS, which in turn
are collections of FACEs. For convenience, we will assuna¢ tthe SHELLs are 2-
manifolds without border ifR*. Each SHELL is decomposed into FACES, which must
have boundary. It is customary in geometric modeling to neak@CE F' a connected
proper subset ofne parametric surfacé(u,v) C R3. In this article we consider the
b-reps as closed 2-manifolds with continuity inside each face and® among them.
The border off" is 9F, which is the collection of LOOPS; embedded irb. The
LOOP L; can be thought of as a 1-manifold without border, witty continuity except
in a finite number of points, where it i§°-continuous. In such locations; is split
into EDGEsL;, each one being@> 1-manifold with border. The problem of surface
triangulation takes place in one of such FAGESA PL approximatiorir of face F' is
required which: (a) is formed by triangles, (b) departs frbrim less than a distance
(c) has triangles as equilateral as possible, (d) has agifavgltes as possible, and, (e)
each edge; of the triangle set has exactly two incident triangles. Brop(e) is a con-



sequence of the fact that a B-Rep is a 2-manifold without Hamn The triangulation
T is also a 2-manifold (of th€® class) without boundary. Condition (e) also holds
for edgese; whose extremes lie on any lodp. This means, this edgg receives a
triangle from the triangulatioft’» (face F') and another from the triangulatidn, (face
H).

An important aspect to control in triangulating a faces that having a triangula-
tion Tty correctly coveringS—!(F) in parametric spacé — V is not a guarantee for
the triangulationl’ = S(Tyv) in R? to be correct. Several problems may arise: (i)
Fig. 1 illustrates that a completely internal triangteb, c] in parametric spact — V
may not be mapped h§ to an internal triangléS(a), S(b), S(c)] in R3. (i) roughly
equilateral triangles in U — V space may map to extremely deformed trianglés
in R? because of sharp warping caused%yiii) neighboring triangles;, ¢;, tx, .... in
U — V space mapped vid() may form a fish scale effect iR® because of the same
warping inS.

0 y
S:R* > R®
* b
¢ S(c
(b S(a)
0 a R
ro I‘f

Figure 1: Trianglezbc is internal in parameter space. Trianglé:)S(b)S(c) is exter-
nal to the surfacé&(r, §) = (r cos(f), r sin(6), 0)

2 Related Work

2.1 Fundamental definitions

As discussed in [1] a smooth 2-manifold with boundary (fagejs a sub-manifold
of a smooth 2-manifolcs’ without boundary. If the neighborhood of a pomte F
is homeomorphic to a 2 dimensional euclidean space, theraywéhat thep is in the
interior of F' (int(F")). If the neighborhood of a pointin F' is homeomorphic to a half
euclidean space then we say that the point is in the boundary(8F"). The exterior
of the submanifoldF' is composed by the poings € S and not in the closure of’'
(p ¢ cl(F)). Itincludes all the points neither in the interior nor theubdary ofF’ but
still in S. The boundary is a closed set and the interior and exteréoopen sets. In
Fig. 4 the interior, boundary and exterior are shows B denotes the difference
between setsl and B).

Fig. 2 displays the general situation in which a féces carried by a parametric sur-
faceSin R3. F is a connected subset 8f with the boundary of”, F = { L, ..., L,,}
being the set of loops; which limit 7 on S. If the functionS(u, v) is 1-1 (which can
be guaranteed by a convenient decomposition of the overRIEB) then there exists
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Figure 2: Pre-imagé'~! = S—1(F) of the faceF" by the parametric surface.

a pre-image off" in parametric spac& x V, that we callF~!. Such a region can
be calculated ag'~! = S~!(F). To do so, a point sample ¢fF' formed by points
p; € R3 is tracked back to their pre-imagés;, v;) € (U x V) therefore rendering a
connected regiol—! C (U x V'), most likely with holes, bounded by a set of planar
Jordan curve®F 1 = {Ty,...,[', }.

c cC
.

q *
L] b L]
d
Delaunay Tetrahedron Gabriel 2-simplex
a-b-c-d in R’ a-b-c in R’

Gabriel 1-simplex a-b Gabriel 1-simplex a-b
inR’ in

Figure 3: Delaunay tetrahedron for poinish,c,d € R?, Gabriel 2-simplex for
a,b,c € R3, Gabriel 1-simplex for, b € R3, Gabriel 1-simplex for, b € R2.

Fig. 3 displays a short collection of Delaunay and Gabriehplexes. A Delaunay
tetrahedron in a set of points in 3D is a tetrahedron (3-@m)dormed by four points
whose circumscribed sphere contains no other point of theGigen verticesy;vjvy
in the point set, they form a Gabriel triangle (2-simplexhi¢ smallest sphere through
them contains no other point of the set. The trianglg v, is embedded in the equa-
torial plane of such a sphere. A Gabriel edge; (1-simplex) is one withy; andv; in
the point set, such that the sphere centere@;n- v;)/2 with radiusr = d(v;,v;)/2
contains no point of the sample other thgnandv;. Such a sphere is the smallest
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one containing; andv;. Each Gabriel 1-simplex makes part of at least one Gabriel
2-simplex, and each Gabriel 2-simplex makes part of at [m@stDelaunay tetrahedra.

The present article applies the Gabriel variant (1- and i2pkces) to Delaunay
connectivity to calculate a triangulation for a point saeig}- (sensitive to curvature
and independent of the parameterization) on the fazarried by a parametric surface
S. Section 2 reviews theoretical and algorithmic knowledgated to triangulations
and surface curvatures. Section 3 discusses the algoridbrised and implemented
to triangulate Boundary Representations. Section 4 ptedie complex Boundary
Representations with manufacturing and organic surfagdshagh genii triangulated
by the implemented algorithm. Section 5 concludes thislaréind sketches directions
for future work.

2.2 Curvature Measurement in Parametric Surfaces

A parametric surface is a functigsi: R> — R?, which we assume to be twice deriv-
able in every point. The derivatives are named in the folfmananner ([10], [20],):

oS aS %S %S
Su—%7 Sv—%a Suu—wy va—w7 (1)
2
SuUZSWZaS Su X Sy

dudv’ ' T S, x Sy

with n being the unit vector normal to the surfaget S(u, v).
The Gaussian and Mean curvatures are given by:

LN -MM . LG-2MF + NE
EG—-FF'~ ~  2(EG-FF) '

where the coefficient®, F, G, L, M, N are:

K =

(2)

E=S,¢8,; F=5,05,=5,5;; 3)
G=S,058,; L=>5,en;
M=S8,,en;, N=S5,en;
Minimal, Maximal, Gaussian, Mean Curvatures from the Weingarten Application

The Weingarten Application ([10])}}/ is an alternative way to calculate the Gaussian
and Mean curvatures.

W = ailr a2 (4)
az;  a22
with aii, 12,021,022 being:
_ MF - LG, _ NF - MG 5)
an_iEG—FQ’ ale_iEG_FQ 5
_LF—-ME _ MF-NE
T EG—F2 T EG - P2

The following facts allow to calculate the curvature measuior.S from the Wein-
garten Application: (i) The eigenvaluésy k5 of W are calledPrincipal Curvatures,



with k; being themaximal curvature and:, being theminimal curvature (assume that
|k1| > |k2|). (i) K = det(W) is theGaussian Curvature, with K = ky * ko. (iii)
2H = trace(W) is twice theMean Curvature, with H = %1%2 (iv) The maximal
and minimal curvatures aré¢; = H + v H? — K andky = H —VH? — K.

W xv = k % v is the eigenpair equation for th& matrix. The solutions for such
an equation are the eigenpaffs , v1) and(ks, v2). ThereforeW x v; = ky x v; and
W x vy = ko * v9. The directions of principal curvatuie U x V' space arev; and
vy (v1 = (w11, w12) @andvy = (wa1,wsz)). The directions of maximal and minimal
curvatures inR? areu; = wyq * Sy, + wiz * Sy aAnduy = woy * Sy, + Wag * Sy,
respectively.

2.3 Previous Work

[12] implements an algorithm which starts with an alreadiidv&iangulation on a
trimmed surface5(u, v) and originates a new triangular mesh. It proposes a surface
triangulation with a Delaunay method given 3 pointgRifiwhich determine a sphere
whose equatorial plane is defined by the 3 given points. Tderithm creates a point
set which may be more dense as needed by a particular cnitrig. curvature). This
algorithm uses expensive operations (e.g. surface-liteesection). The boundary of
the triangulated trimmed and meshed face is expressed #ndatad in handled in
parametric space. Since the algorithm in [12] starts withvargtriangulation and
modifies it, if such triangulation is not correct, or it doest nespect the boundary of
the trimmed surface, the triangulations following keeptsadlaracteristic. According
to [16], the restricted Delaunay triangulation of geneogidiogical spaces is defined.
The restricted Delaunay triangulation in the case of trimmearface inR? is the dual
of the Voronoi diagram intersected with the surface. Thareefa triangle is created in
each intersection of 3 voronoi cells with the surface. A dbation of the paper is to
show that Chew’s algorithm is a restricted Delaunay tridaigon.

In the problem of the triangulation of manifolds with boungahe theoretical
guaranties that serve for surface reconstruction do ndyapjpr examples-samples
([4],[3]) which use the smallest distance of a sample painthe medial axis of the
solid (i.e. thee). Since a trimmed surface may be close or far from the medial a
such criteria do not apply for surface triangulations.

In [7], The ball pivoting algorithm, (BPA), is presented. dbmputes a triangle
mesh interpolating a given point cloud: 3 points form a tgianif a ball of radius
smaller thanp (a user specified radius) touches them without containingadher
point. This triangle is a Gabriel 2-simplex ®R®. The algorithm makes a region of
triangles grow by adding a triangle to one of the boundaryesdy the triangle mesh.
The reconstruction algorithm needs a very uniform sample.

In [19] the intrinsic Delaunay triangulation of a Riemarmiaanifold is shown to
be well defined in terms of geodesics. A smooth surface enggkdidR? can define
a Riemannian manifold. The Riemannian manifolds have tbpety that if all the
calculations and definitions are done in a small subset afnidngifold, (as they can be
done with a good sampling condition), the Delaunay triaatioh and the Voronoi di-
agram are defined exactly as with the euclidean metric andiuge Although defining



triangulations with geodesics is theoretically sound,ai$ la prohibitively high com-
plexity because it implies the solution of simultaneoughlgic systems.

In [2] the Gabriel complex is defined f@&". For a set of points ifR3 the Gabriel
complex is composed of triangles whose smallest definedroigsphere is free of points
in the set. The advantage with respect to [12] is that it do¢seed information about
the surface. The Umbrella filter algorithm described presutmpologically correct
triangulations. Our article takes advantage of such a diefinialong with a curvature
- sensitive point sample.

[5] gives lower bounds for densities of well distributedqtsiin surfaces, based on
Delaunay triangulations. [11] presents an algorithm tofgarand triangulate a surface,
but it uses computer expensive and not common operationg8] lthe concept of
loosee-sample is developed but the operations which implemengitamputationally
expensive.

[9] presents the Lipschitz-samples, analogous-samples, but applied to piece-
wise smooth (Lipschitz) surfaces. Such a distance permisamnple a Lipschitz sur-
face and to define a mesh on it. However, [9] does not presémtlaexamples of the
performance of the algorithm (as we do here). We do also addte sampling of
edges which bound two incoming smooth surfaces by using tie larger of the two
involved curvatures.

In [13], the greedy Delaunay - based surface reconstruetgorithm from a point
sample is presented. The algorithm uses the fact that theiébapaph is a subset
of the Delaunay triangulation (DT). From a starting triamgt grows matching each
of the edges in the boundary with a triangle in the DT that hasminimum radius.
As disadvantages, we may note that the algorithm: (i) reguine usual distance for
Delaunay triangulations, (ii) needs a very uniform sangplimthe loops and (ii) does
not provide guarantee in the reconstruction.

[1] is focused in the notion of envelope that is the coverihg 8-manifold created
with spheres of\ size and centered in the points of the surface. From the epwel
a surface with boundaries can be reconstructed, but thioaplp does not conserve
the original points sampled in the boundary, and parametersieeded. In practice
the envelope approach does not seem to produce topolggaxaitect results. We
dispose of information about the surface and boundariesiaadgnother approach to
the problem.

In [14] an advancing front method to triangulate parameduifaces is presented.
The method triangulates a B-Rep by discretizing edges arfdcgs. The number of
triangles generated can be adapted to any density functitheisurface. The correct-
ness of the solution depends on the density function providethe edges and for the
surface. In [6] a parameterization-independent algorithiproposed to triangulate a
surface. In the algorithm, a circle in the normal plane of app in the surfaces,
Tp(S,p), is chosen. A polygon of: sides, (withn > 4), and defined by vertices
{p1,p2,...,pn}, is inscribed in the circle. Rays from the vertices and pedf=ilar
to T'p (S, p), intersect the surface and generate new vertices for gneguiation. The
algorithm has the advantage that the connectivity of thengfies is present through
the algorithm. In the other side, the paper handles the bawrid the parameter do-
main and reports a non-uniform sample near to this. The paperts problems are
in regions of high curvature. Also in [21], the algorithm deked in this paper is im-



plemented and problems are reported near the boundariegg€erteralization of their
algorithm to closed surfaces needs a sewing procedurerdetes additional borders.
In [23], an algorihtm that triangulates parametric surfisgpresented. The algorithm
uses an advancing front method. The loops aren't taken ogouat. This algorithm
generates two fronts of triangles that advance one towaelsther. The two fronts
are in oposite sides of the parameter space. The main dr&vifbalsis algorithm is
that: only a squared parameter space is considered. No diotesnplex features are
reported in the paper. In [22] an algorithm to triangulateeps is presented. In the
algorithm all the triangulation occurs in parametric space is mapped t&?. In [21]
two sampling methods and a triangulation algorithm are @sep. In the algorithm the
boundaries are isosampled, i.e not sensitive to the cue/atuany other parameter. In
the triangulation algorithm, a parametric information éeded, so it can fix problems,
and the boundaries are not handled well in all the situations

infinite 2-manifold

Exterior of F carrier surface S(u,v)

sub-manifold F
of manifold S.

Boundary of F:
JF = closure(F) — F

Figure 4: Interior, boundary and exterior of a submanifBlaith respect to a manifold
S.

Gabriel 1-simplex

Center of Gabriel

. . 1-simplex
Gabriel 2-simplex

onint( F ) Center of Gabriel
2-simplex

Figure 5: Gabriel 1- and 2-simplices on fake



3 Methodology

The implemented algorithm to triangulate a fdcenounted onto a parametric surface
S (Fig. 4) has the following layout, whose details will be dissed later: (1) Calculate
the pre-imageF'—! of the faceF through the functionS (Fig. 2). (2) Initialize the
vertex setVr with a curvature-sensitive sample of the loaps, ..., L,, of the face
boundaryoF'. (3) Introduce points in the sampled loops, ..., L,,; such that, all
the segments W[ are Gabriel 1-simplex. (4) Sprinkle the fa¢éwith verticesv;
achieving a vertex density proportional to the local cwmwatof ', K,,,.., inserting
those vertices in sdty. Segments i@ F' remain Gabriel 1-simplex during this stage.
(5) Calculate a Gabriel connectivily for the vertex setr.

3.1 Edge Sampling

Algorithm 1 is used to produce a curvature - sensitive sarapbn EdgeE. Unlike
previous approaches ([22]) such a sample is not an isontdistane. Instead, the sam-
pling interval at pointp on the underlying curv€’ is sensitive to the largest of the
maximal curvatures of; and Ss in such a poinp (line 6). Notice that the curva-
ture of the curve C' at p needs not to be considered in addition to the surface curva-
tures because it will be always less than or equal to the cainrfi@aximal curvatures
(Kmaa:(slap)vaa:v(SQap))'

Algorithm 1 Sample of the Edg&’ between FaceB; and F;
S1(u,v), Sa(u,v): Underlying surfaces for Facdg and F.
C'(\): Underlying Curve forE.

Ao, Ay: Parameters of the extremesgfin curveC.

Ve = {p1, p2, ..., pn }: Output. Sequence of point samplef
K pna2(S, p)): Maximal curvature of Surfacg at pointp.
Ng;qes: Number of sides of a regular polygon.

1. Vg = {}

22 A=A

3: while A <Ay do

4 p=C(\)

5. Vg =VpU({p}

6.k =mar(Kmaz(51,D); Kimaz(52,p))

7. r=1/k

8 0 = polygon_determined_arc(r, Ngides)
9: A\ = dist_to_param(0)

100 A=A+ A\
11: end while

Fig. 6 displays the geometrical idea behind lines 7 and 8 efallgorithm: the
radius of curvature is the inverse of the curvatufe A circle tangent to a curve with
such a curvature may be approximated by a regular polygdw.gf ; sides. The arc
0 determined by such a polygon is considered as a good euclg@apling distance



C(u) S(u,v) Polygon side &

r=1/k
p=S(u,»)

pe=Cw)+r.n Regular tangent Direction of maximal
polygon at p=S(u,v) curvature Wpq,

Figure 6: Locally planar curve and local curvature. Appnoation by regular polygon
of N sides.

for the curveC atp (line 8). Such an euclidean distance must be transformetbizah
parameter distance\ atC'(\) (line 9).

3.2 Loop Resampling. Ensuring that each edge of each loop is a
Gabriel 1-simplex

Algorithm 2 creates new vertices in the loops sampled byrélgo 1, in such a way
that each segment in the new sample is a Gabriel 1-simplexwe®®a lines 4 and
16, each loop/; is traversed as a circular linked list. Each segment, v,c. 1S
tested to be a Gabriel 1-simplex in line 7. If it is not a Gabfiesimplex, a new
point, returned by functiopoint_middle_of _arc (lines 8 and 9), is inserted to the
circular linked list afterv.,,,- and previous ta,..; (lines 10 and 11). LeC, ()\)
be a curve parameterized by arc length. bgtandp, be two points inC, (\). Let
A, and A, be the parameters ¢f, andp, respectively withA, < A,. Function
point_middle_of _arc(C. (\), pa, py) performs the following procedure:

1. Finds the arc length betweerp, andp, in curveC, (\).
2. Returns a point,.e., = C (A, + 2).

If any segment .- v,e.: IS NOt Gabriel 1-simplex, the variablgnished is set
to false (line 12). In line 21 the variablginished is testedirue, to ensure that this
procedure is repeated until all segments are Gabriel 1isknp

Fig. 7 shows the behavior of algorithm 2. In Fig. 7(a), paipte V., is inside
Be (Vewrrs Unext) aNd S€GMEND 1 Uneqrt 1S NOt Gabriel 1-simplex. Aften,,.,, is
inserted toVz;, the new segments at@ .-, Vnew) @nd (Vnew, Unext)- AS Shown in
Fig. 7(b), B; (Vewrrs Vnew) @Nd Bg (Vnew, Unest) @re empty of other points iy g;
and segment&cyrr, Vnew) @NA(Vnew, Unert) are Gabriel 1-simplex.

Sometimes, B-rep models are not well stitched ([24]), arad theates extremely
narrow faces. Every time the loop between lines 1 and 21 isutzd, at least 2 seg-
ments become shorter. In line 18, functianany_segment_too_short (Vyr) evalu-
ates this case and returns failure when an edge is too stedti€iloop is being repeated
too many times). This adds robustness to algorithm 2. Oftisepif two lines of a b-
rep are geometrically equal, but have not been merged in ¢likelnalgorithm 2 would
never stop.
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Algorithm 2 Insert vertices in the sampled loops until all the segmergsGabriel
1-simplex.

Var = {V11, Ve, VL, }: is the set of vertices that sample the boundary of the face
Vi = {VE1, Vie, ..., Ven }: isacircular linked list that contains all the points saetpl

in the loop with algorithm 1 andlz; is the ordered sample of edg@g.

Var = {Vi1, V52, Vi, }. Output. The set of vertices that sample the boundary of face

F.
1: repeat
2. finished = true
3: for all V5i € Var do
4 Veurr = head (V;)
5: Unext = next (VLi; U(:urr)
6: repeat
7 |f Hvz S (VLZ - {vcurmvnezt})v
such that: v, € Bg (Veurr, Unert) then
8: C; (N) is the curve, of an edgE}, that containg veyrr; Unewt }-
9: Unew =
point_middle_of _arc(Cj (X), Veurr, VUneat)-
10: next,of (VLi7 vcurr) = Unew
11 ne:ct,of (VL'Z7 Unew) = Unext
12: finished = false
13: end if
14: Veurr = Unext
15 Unext = Next (VLiv Unemt)
16: until vy = head (Vi;)
17:  end for
18 if is_any_segment_too_short (Vor) then
19: return FAILURE
20. endif

21: until finished = true

11



(@) First a sampled vertexv, Iis inside of
BG (Ucu'rr7 'Unezt)- Segment (Ucur'm U'n,ezt) is
not Gabriel 1-simplex.

(b) When algorithm 2 insertsvpew, Segment
VeurrUnext 1S replaced by segment®cyrrvnew
and vpewvnezt- NO point sampled is inside balls
BG (vcu'r'm Unew) andBG (Unew»vnezt)- Segments
VeurrUnew aNdUpewUnest are Gabriel 1-simplex.

Figure 7: The two basic steps of algorithm 2.

3.3 Face Sampling. Vertex Sprinkle on Facé’

Algorithm 3 constructs the vertex sét- of the triangulation sought for fackg.
The initialization of Vx (line 1) is done with the vertices sampled on the boundary
loops of F, OF = {Ly,..., L, }, as per algorithm 1. Such vertices correctly sample
OF. However, the interioint(F') needs to be sampled. To do so, trial vertices are
generated inside the pre-image ! in U x V space (line 4) and their image vfais
calculated (line 7). Such a trial vertgxs rejected if (a) it is too close to other vertices
already accepted iz (line 11) or (b) if it is contained in the smallest ball defingd
a pair of vertices consecutive on a lodp. The closeness criteria is dictated by the
maximal curvatureX’,,,...(S(u,v)) atp = S(u,v) (line 5). In case (a) each already
accepted vertex iy is tested for inclusion inside a balt(p, R) centered ap with
radiusR = polygon_side(r, Ngides) (line 9). In case (b) each segment; in the
sample of the border is tested as a Gabriel segment (1-sijnpiéh respect to the
candidatep. If every segment of the border is Gabriel with respecp,tove assume
thatp is not too close to the border (line 10). A segment is said tsabgpled in the
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Algorithm 3 Sprinkle triangulation vertices on Faéé

F: Input. Face to triangulate.

F~1: pre-image of Facé in space/ x V/
S(u,v): Underlying surface for FacE.

OF ={Loy, ..., L, }: Loops Bounding the Fack.
Ny: Number of tolerated failures.

Vg Output. Vertex set sampled on Fake

1: Vg = sampling of boundarg F’
2. fails =0
3: while fails < Ny do

4:  generate parameter péair,v) € F~!

5 k= Kpae(S(u,v))

6: r=1/k

7. p=S(u,v)

8: R = polygon_side(r, Nsides)

9. if ¢ € V¥ such thatq € B(p, R) then

10: if Jv;v;, a segment of the boundary
such that: p € Bg(v;,v;) then

11: fail = fail +1

12: else

13: Ve =Vrp U {p}

14: fail =20

15: end if

16. else

17: fail = fail +1

18:  end if

19: end while
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Figure 8: Goal Point Population on faégé
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Figure 9: Curvature-sensitive Sprinkle Airbrush

boundary, if its two end vertices are consecutive in a lobp € JF. If tests (a) and
(b) are passedy is accepted in/r (line 13). Fig. 6 depicts that the value f& is
computed as the cord of th€,;,.,-regular polygon inscribed in the circle with radius
1/k. Functionpolygon_side(r, Nyides) equals t@2r sin(r/Nides). Fig. 5 displays
the two tests mentioned in items (a) and (b) above.

3.4 Face Triangulation. Gabriel Connectivity on Vertex Setl/r.

Algorithm 4 builds the connectivity inside the vertex $&t. The algorithm seeks
to complete edge@, v1) already known to belong to the triangulatidr(line 6) with
an additional vertex,.., to build a Gabriel Trianglévg, v1, Uneqw ) (line 9).

Any internal Gabriel triangle is the first formed trianglaés 1,4). Itis also a seed
to initialize theQueue of edges potentially able to span Gabriel triangles.

If the edge extracted from th@ueue is part of the boundary, it is not expanded
any more (line 7). All the edges which are part of the bounadahybe found because
they are Gabriel 1-simplex and make part of a Gabriel 2-gmpgf a Gabriel triangle
(vo, v1, Unew) €an be built, it is added to the triangulati@h(line 10). If a Gabriel
triangle can be built using only an existing edgg, v1) and a new vertex;,.,, the
general situation is that the new eddes, v,,c.,) and (v,ew, v1) should be queued to
be eventually expanded (line 20). However, this is not agmdne case, since such a
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Algorithm 4 Triangle Connectivity in the séty

Ve Input. Vertex set sampled on Fage
Queue: List of triangle edges to expand.

OF ={Ly, ..., L, }: Loops Bounding the Fack.
T Output. Triangulation.

1: seed = triangle_in_interior(F)
2: {(vo,v1), (v1,v2), (v2,v0)} = edges_of triang(seed)
3: Queue = {(vg,v1), (v1,v2), (v2,v0) }

5. while (Queue # ®) do

edge_to_expand = extract(Queue)

if edge_to_expand is not part of the sample of the boundattyen
(vo, v1) = vertices(edge_to_expand)
Upew = vert_for_Gabriel 2_Simplex(Vi, vy, v1)

10: T =T U{(vo,v1, Unew)}

11: if ((v0, Vnew) € Queue) A ((Vnew, v1) € Queue) then
12: Queue = Queue — {(U07 Une'w)a (Une'wa Ul)}
13: else if ((vo, Vpew) € Queue) then

14: Queue = Queue — {(vo, Vpew) }

15: Queue = Queue U {(v1, Upew)}

16: else if ((vpew, v1) € Queue) then

17: Queue = Queue — {(Vpew,v1)}

18: Queue = Queue U {(Upew, v0)}

19: else

20: Queue = Queue U {(v1, Unew), (Vnew; Vo) }
21: end if

22:  endif

23: end while
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triangle may use 1 or 2additional edges already in the queue. In the first case, the
triangle is filling a corner (lines 13-18). In the second ¢dbke triangle is filling a
triangular hole (lines 11,12). In such special cases atitiedges (1 or 2 besides the
expanded one) should be taken away from the queue.

4 Complexities of the algorithms

Time and space complexities of all the algorithms were foumtey are all output
sensitive; that is, their complexities depends on the sizeooutput given by them.
The first 3 algorithms depend on the number of nodes genebgtéldem. The last
algorithm depends on the number of nodes in the input anceimtimber of triangles
generated.

4.1 Edge Sampling

The time and space complexities of algorithm 1, have beendan the following
manner.

1. Time complexity. The operations with the curve and theraipens to find the
curvatures are dependent upon the parameterization anid tioé number of
points generated. Because of this, the time complexitieslldhe operations
within the loop, (lines 3 to 11), can be assumediad ). The loop is repeated
Ng; times. Ng; is the number of points generated to sample the délgeThe
time complexity of algorithm 1i® (Ng;).

2. Space complexity. As the algorithm only stores the pajetserated, the space
complexity isO (Ng;).

4.2 Loop Resampling

The time and space complexities of algorithm 2, have beendon the following
manner:

1. Time complexity. LetNyr be the number of vertices ilyr, at the end of
algorithm 2. For algorithm 2 the following facts hold:

(&) Nsr changes. In the worst case it grows as an arithmetic pragressth
difference 1. That is why in this paper the calculations amgpkfied by
considering, at any stepNs as the number of vertices Wy .

(b) The number of segments iy is the same as the number of points.

(c) Each time a segment,...v,c.¢ 1S tested to be Gabriel 1-simplex, (line 7),
algorithm 2 tests all the points ¥y . This takes time) (Nyr).

(d) The number of segments tested will@€ Ny ), no matter the number of
points added to the sample in the previous step.
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(e) The worst case scenario occurs when only one point isdaaldiihe time.
This is because of fact (d). In that case, the loop from linde 21 is
repeatedVyr times.

() The worst case escenario occurs when only 3 vertices Ibe®e generated
by algorithm 1. This is the worst case because it means thaute® of the
points inVyr are generated by algorithm 2. The number of times that the
loop between lines 1 to 21 is repeatedi$ Ny r ).

Combining facts (c), (d) and (e) the worst case time complefithe algorithm
2isO (N3p).

2. Space complexity. Onlysr is stored by the algorithm. The space complexity
of algorithm 2 isO (NsF).

4.3 Face Sampling

The time and space complexities of algorithm 3, have beendadn the following
manner:

1. Time complexity. The algorithm terminates if variatfleils > Ny; so for each
new point, the algorithm tries at moaf; times. The number of times that the
loop between lines 3 and 19 @ (Ny x N), being N the number of points
generated in the interior of the face. In the loop, for a nemegated poinp two
tests are performed:

(@) Inline 9, every € Vi is tested for inclusion itB (p, R). R is as described
in line 8. This operation can be performedM Nr + Nyr).

(b) Inline 10,p is tested for inclusion in everB¢ (v;, v;), wherev;v; are two
consecutive points in the sample of the boundary'ofThis operation can
be performed irO (Nyr).

The worst complexity is that of test (a).

Combining test (a) with the number of times the loop betwéessl3 and 9 is re-
peated, we have that the complexity of the algorithnti§N; x Ng (Ng + Nap)).

2. Space complexity. The algorithm only stores the poinas #ne accepted. The
space complexity of the sampling algorithm(Og Nz ).

4.4 Face Triangulation

The time and space complexities of the algorithm 4, have bmemd in the following
manner.

1. Time complexity. For algorithm 4, the following facts Hol
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(a) Each time that the loop (lines 5 to 23) is repeated, tlgerghm checks a
different edge that belongs to the triangulation. The nunabedges that
belong to the triangulation is a linear function of the numidfdriangles (i.e
each new triangle adds a maximum of 3 edges). The numberaobtas
generated will be denoted a¥'r.

(b) The operatiorvert_for_Gabriel_2_ Smplex (line 9), is the one that has the
highest complexity within the loop (lines 5 to 23). The rebth®e opera-
tions haveO (1) complexity.

(c) For thevert_for_Gabriel_2_Smplex (line 9) operation, first a candidate ver-
tex () is chosen. This vertex can complete a Gabriel simplex gitien
edgevgvy. All the points inVg, except foryvy ,v; andr are tested for in-
clusion in B¢ (vg, v1, 7). Using a naive approach, the time complexity of
this operation would b& (N?), whereN is the number of vertices iti.

Combining facts (a), (b) and (c), the complexity of algamith isO (Nz x N?).

2. Space complexity. The algorithm stores a set of edgé&guitue. As a topo-
logical constrainQueue can only contain the same edge twice. The number of
edges stored is, in the worst case, a linear function of tmebew of triangles
stored. The space complexityds(Nr).

5 Results

Several Boundary Representations B-Reps were used toheestnplemented algo-
rithm, proposed in this article. Such B-reps have genera Superior, and present
faces ' whose underlying surfaces are parametric ones of the NURBS or Spline
types. AnN; = 1000 maximal number of failed trials was used to stop the spriokle
vertices onF" (generation of the sétr). The number of sides for the approximating
polygon wasV;4.s = 30. Figs. 10, 11 and 13 show complex B-Reps. Other examples
of B-reps triangulated include a model of a pre-columbianifisFig. 14, a support of
an axle in Fig. 15, and a stub axle in Fig. 16.

The attention of the reader is called to the fact that the eotivity construction is a
process completely independent of the vertex generatmeegs. Since the vertex gen-
eration algorithm (Sprinkle) is the most critical one, tixe@ution time was recorded
for such an aspect.

For the modeldPump and Hands, Figs. 12(a) and 12(b) show execution times,
corresponding to the vertex generation process. Fig. Xhays the comparison of
vertex generation times for such runs.
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Figure 10: Pump carter [17]. Colormap according to qualitiriangles.

Figure 11: 2 hands with 3 genus, scanned and reconstrudtepgRainDrop Geomagic.
Colormap according to the size of the triangles
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Figure 12: Times spent sampling the faces and their congraris

Figure 13: Other view of the 2 hands with 3 genus. Colormapiaiag to the quality
of the triangles.
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Figure 14: Artificial replica of a pre-columbian gold fish [L&€olormap according to
size of the triangles

6 Conclusions and future work

The proposed algorithm for generating triangulation vestets and for calculating the
connectivity among them proved to function correctly, ef@nvery extreme geome-

tries and topologies. Several aspects of the algorithm briatidressed: the continuity
of triangle sizes at the Face Edges, the possibility of uaélarg re-meshing of already
existing triangulations and its related endeavor, nantedylével of detail, necessary
for Finite Element Analysis applications. Additional raseh is needed in algorithms
that (i) take advantage of the concepts presented in thaskiewalgorithm proposed

here, but (ii) can be proved correct.
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