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Abstract In Reverse Engineering, it is capital to find a para-
metric trimmed surface which approximates a triangular mesh
(2-manifold with border) M ⊂ R3. This article proposes and
implements a quasi isometry f : M → R2 which allows a
parameterization of M. We consider quasi - developable 2-
manifolds M ⊂ R3. f (p) = (u,w) with (u,w) being the co-
ordinates of p ∈ M under a grid of geodesic curves Ci(u)
and C j(w) on M. We seek that the geodesic curves Ci(u) and
C j(w) be orthogonal to each other on M. This means, that
the Ci(u) should not cross each other, and each Ci(u) should
intersect each C j(w) in perpendicular manner.

Keywords manifold learning · surface reconstruction ·
developable surfaces

1 Introduction

In Reverse Enginnering and CAGD, finding a parametric
surface in R3 that approximates a set of points S sampled
on a smooth 2-manifold M in R3 is a central open problem
([5],[2]). The existing approach of Manifold Learning (ML)
receives a point sample in a 2-manifold M ⊂ R3 and maps
it to R2 via a quasi-isometry f : M→ R2, whenever possi-
ble. ML builts a graph whose vertices are the points of S and
its edges are straight segments, lying on the 2-manifold M.
ML approaches the geodesic path between 2 points on M as
the shortest path within this graph. ML seeks to find a set of
points S2 in R2 (S2 = f (S)) , such that the euclidean distance
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between two vertices of S2 is the same as the geodesic dis-
tance (in M) between the corresponding vertices of S. This
article proposes and implements an alternative f : M→ R2
as follows: f (p) = (u,w) with (u,w) being the coordinates
of p∈M under a grid of geodesic curves Ci(u) and C j(w) on
M (Fig. 1). We seek that the geodesic curves Ci(u) and C j(w)
be orthogonal to each other on M, and the curves Ci(u) be
parallel to each other on M (and likewise for the C j(w)). This
means, that the Ci(u)should not cross each other, and each
Ci(u) should intersect each C j(w) in perpendicular manner.
M being developable is a precondition for this ideal situa-
tion. However, we aim to quasi - developable M. This ex-
pectation (also present in ML) is a reasonable one in Re-
verse Engineering by applying Manifold Segmentation. By
using this mapping, a family of (u,w) parameterizations of
M is reachable, which allows us to develop a trimmed sur-
face representing M (an important landmark in Reverse En-
gineering).

2 Literature review

In general, a surface is developable if for each point in the
surface, its Gaussian curvature is zero [7]. With this in mind,
some researches [8,9] in literature focused on approximat-
ing a model using developable surfaces. However, these ap-
proaches can only model surface patches with 4-sided bound-
aries as the surfaces are usually defined on a squared para-
metric domain [2]. Other tries include reconstructing the
surface from geodesic interpolation, however, this approach
depends strongly on the align of the geodesics. Other meth-
ods instead, approximate the surface triangulation with one
or more piece-wise polynomial patches to each triangular
facet. These methods are weak for large number of trian-
gles, since they generate a large amount of data that it turns
to be not practical [6].
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3 Methodology

Fig. 1 presents the origin (red dot) of the geodesic grid to
build on M. There are R2 DOFs to choose this origin. A vec-
tor tangent to the containing triangle gives the initial direc-
tion of geodesic C1(u) (θ ). Another vector tangent to it, but
perpendicular to it, initials the geodesic C1(w). The direc-
tion of this vector pair has R DOFs. The grid separation is
an additional DOF. Therefore, in generating a grid we have
R4 DOFs. However, only 2 DOFs are important (grid sep-
aration and orientation of angle of initial frame on M). It
is easy to find out the evolution of (iso - spaced) Ci(u) and
C j(w) over the triangular mesh. Once all the geodesics are
built on the surface, we look for the intersections of the Ci(u)
vs. C j(w) ones, rendering the blue nodes in Fig. 1.
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Fig. 1 Origin of Geodesic Grid.

Fig. 2(a) shows the Ci(u) (blue) and C j(w) (red) geodesics
in a developable surface (e.g. cone).
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(a) Partial Geodesics on Cone. (b) Full Geodesics on Cone

Fig. 2 Grids on developable (cone) manifold.

For the angle θ that maximizes the number of intersec-
tion points on the grid we extend the grid of geodesics until
all the manifold is covered. Once all the manifold is covered,
we deal with the intersections of ’parallel’ geodesics Ci(u)
vs. C j(u) (Fig. 3(a)). Every time a intersection is found, the
polylines corresponding to the geodesics in the manifold are
inter-changed after the intersection point (Fig. 3(b)).

(a) Defective Geodesic Grid. (b) Correction for defective (cross-
ing) Geodesics.

Fig. 3 Defective geodesic grid on non-developable M.

4 Results

Fig. 3 shows early and finished status of the geodesic grid for
a developable surface (e.g. cone). In this case, obviously, the
fundamental assumption of orthogonality of the grid mesh is
true. Fig. 3(a) shows a defective grid, resulting from a non-
developable manifold. In this case, geodesic curves Ci(u)
and C j(u) intersect, therefore challenging the expectation of
’parallelism’ of them. In such case, we use a heuristic rem-
edy to force the separation of the Ci(u) and C j(u) by re-
defining them as per Fig. 3(b).

5 Conclusions and Future work

The implemented process must be expanded to synthesize a
parametric surface S(u,w) ∈ R3 that approximates and con-
tains M. This goal requires an iterated application of the dis-
cussed process. This is the next step in our research.
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