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Short Abstract: This article presents an industrial 
application case of geometric constraint graphs, whose nodes 
are statistically optimal instances of manufacturing or design 
features and whose edges are usual geometric relations used in 
tolerance applications.  The features might be virtual ones. As 
a consequence, they may lie beyond the piece’s extents.   The 
geometric constraint graph may have cyclic topology. Contrary 
to deterministic geometric constraint graphs, tolerance 
constraint graphs admit numerical slacks, due to their 
stochastic nature.  The methodology has been applied in 
industrial scenarios, showing superiority to traditional material 
features for the assessment of tolerances.  

Key words: tolerance graphs, optimal fit, geometric 
constraints, datum, stochastic geometry 

1- Introduction 

In industrial applications, tolerance assessment must be 
conducted considering geometric constrains among features of: 
(i) the same body, and (ii) different bodies. This article refers 
to scope (i) above. It must be said, however, that constraint 
graphs apply to both steps, and geometric constraints are 
central to any application in design and manufacturing. In 
particular, in Parametric Tolerance systems, graphs of 
geometric constraints are fundamental ([DQ1]). 
 
2- Literature Review 

[SS1]  considers plane and line fitting to point samples giving 
different weights to each point. We deal with cylinders, cones, 
and ellipsoids, besides planes and straight lines.  [S1] is an 
overview of computational tolerance issues. For our purposes, 
we use, for example, Least Squares (as opposed to Chebyshev) 
fitting. In [S1], we can recognize that primitive fitting is still an 
open issue in Computational Tolerancing. [PSRS1] presents 
multidimensional SF (Substitute Features) fit to (semi) 
analytical forms. In the multidimensional domain, we discuss 
here initial guesses for general directrix cylinders. 
[S2]   presents a very useful compendium for Least Squares 
fitting for general testing, based on orthogonal distance to the 

analytical surface. In our case, we complement these 
algorithms with our Initial-Guess estimation for the 
Levenberg Marquardt algorithms in [S2]. 
 

 

 

  

Figure 1:  Workpiece. 

3- Methodology 

Fig. 1 displays a study case workpiece on which the 
tolerance assessment is tested.  A Coordinate Measuring 
System (CMS) contact point sample is taken from the 
features: (1) Πp Bearing Resting Plane, (2) Cyl-1 Bearing 
Cylinder , (3) Cyl-2 Knuckle Cylinder and (4) Cn-1 Cone.  
Each one of these point samples triggers a Levenberg 
Marquardt (LM) optimal fitting, which estimates a general 
plane, cylinder, cylinder and cone, respectively, therefore 
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rendering estimations of their geometrical components.  
 

Entity Type Analytic 
Primitives 

Estimated Geometrical 
Components 

Plane  Πp plane pivot point pv 
plane normal vector np 
 

Cylinder  Cyl-1 cylinder axis vector vA 
cylinder axis pivot pA 
cylinder cylinder radius r1 

Cylinder  Cyl-2 cylinder axis vector vG 
cylinder axis pivot pE 
cylinder radius r2 

Cone  Cn-1 cone axis vector vF  
cone apex pF 
cone angle β1  

Table 1. Initial Point Samples and Estimated 
Geometrical Components. 

 
Fig. 2 shows the data flow of the Object Oriented code, which 
lends itself to be parallel.  The statistical fit for analytical 
primitives Pp, Cyl-1, Cyl-2 and Cone-1 instances several 
geometric components for each one of them. For example, the 
fitting for the cone Cn-1 renders: (1) the cone axis vector, (2) 
cone angle, and (3) cone apex. Notice that the cone axis can be 
expressed as a 3D parametric line L( ) ( L(α) = pv + α *v ) with 
pv = cone apex and v = cone axis direction vector.  Table 1 
presents the geometric parameters that are extracted form the 
initial fit of the analytic primitives Plane, Cone and Cylinder. 
 

 
(a) 

 
(b) 

 
(c) 

Figure 2: Initial Guess for Cone Fitting. ([RUIZ.2013]) 

 
Fig. 2 displays an initial method for initial estimation of cone 
parameters, prerequisite of the LM fitting ([RAA1]).  Fig 2-a 
indicates that a generalized cone is a ruled surface. Any local 
neighbourhood may be rigidly transported (via M) to the origin 
of R3 forming a local channel surface which has a direction of 
minimal (zero) curvature and a perpendicular direction of 
maximal curvature. The minimal curvature direction is back 
transformed via M-1, estimating the local generatriz L(α).  Fig 
2-b displays how the process is repeated for several 

neighborhoods of the cone, obtaining a set of cone 
generatrices {L1(α), L2(α), . . .} which approximately meet in 
the Apex of the cone.  Fig. 2-c shows that each one of the 
generatrix lines Li(α), can be re-parameterized to have its 
origin pv in the cone apex. In these conditions, it is easy to 
generate a family of circles perpendicular to, and with 
centers lying on, the cone axis. Principal Component 
Analysis identifies the cone axis vF. The cone angle β1 
trivially follows.     
 

 
Figure 3: Data Flow Chart. 

 
Fig 2-a indicates a similar strategy to identify a cylinder with 
general position in R3. In a cylinder, all the local qc lines are 
supposed to hit the cylinder axis.  Given any pair of lines qi 
and qj, they cross (in general) without intersection in R3. The 
crossing point on each one of the (qi vs. qj) pairs lies on the 
cylinder axis. This set of crossing points renders (via 
Principal Component Analysis) an initial guess for the 
cylinder axis. The cylinder radius trivially follows. 
 
Fig 3. Shows an generalization of the fitting of analytic 
primitives based on the point samples.  The data flow graph 
shows conceptually different processes, as follows: (1) 
Interrogations, in which an analytic form is interrogated for 
its components (e.g. given a plane, retrieve its normal 
vector). (2) Geometric transformations of given primitives by 
given parameters (e.g. quaternion rotation of a point about an 
axis by a given angle).  (3) Creation of new analytic 
primitives from given parameters (e.g. create a plane from a 
pivot point and a normal vector). (4) Calculation of new 
geometric objects (e.g. vectors, points, lines) based on the 
existing ones.  Notice that the graph so built contains also the 
possibility to assess whether a geometric relation (for 
example, a tolerance) is satisfied.  

4- Results  

Fig. 3 shows is a very limited subset (for the sake of brevity) 
of the actual calculation and assessment graph actually 
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implemented in industrial level. The implemented system 
allowed, from the sampling of the initial 4 primitives, the 
generation of datums removed from the workpiece (Figs. 4 and 
5).   These datums, and the remaining part of the tolerance 
graph allowed in turn the assessment of more than 100 entities 
of interest in the worpiece evaluated.  Fig. 5 shows a 
navigation scene in a Virtual Reality Modeling Language 
(VRML) derived file.  
 
Fig. 5, the implemented system assesses a large set of 
primitives of the workpiece, building a partially virtual world 
from the fitting of 4 features (2 cylinders, 1 plane, 1 cone), 
selected by the manufacturing engineers.  The enginners 
selected these features since those are the kernel of fixturing 
and machining of the workpiece. 

 

Figure 4: World Entities. 

5- Conclusions 

This manuscript describes the implementation of an industrial 
system for the assessment of tolerances, based on a 
generalization of geometric constraints graphs. The graphs 
implemented include other types of edges, besides the 
geometric constraint ones, allowing for auxiliary constructs of 
virtual, remote features. These in turn allow for the assessment 
of a large set of tolerances on features-of-interest in the 
workpiece. The software was implemented using an Extended 
Object Oriented paradigm, which makes accessible the 
reconfiguration for the evaluation of other workpieces.   
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Figure 5. Recovered Entities. 

7- References 

 
[RAA1] Oscar Ruiz, Santiago Arroyave, Diego 
Acosta.  Fitting of Analytic Surfaces to Noisy Point Clouds. 
In American Journal of Computational Mathematics, ISSN 
Print: 2161-1203, ISSN Online: 2161-1211, Volume 3, 
Number 1A - Special issue on Computational Geometry. 
pages 18-26, 2013. 
 [DQ1] Jean-Yves Dantan, Ahmed-Jawad Qureshi. Worst-
case and statistical tolerance analysis based on quantified 
constraint satisfaction problems and Monte Carlo simulation. 
In Computer-Aided Design, v. 41, 1-12,  2009. 
[S1] Vijay Srinivasan. Computational Metrology for the 
Design and Manufacture of Product Geometry: A 
Classification and Synthesis.  J. Comput. Inf. Sci. Eng. 7(1) : 
3-9. 2006. 
[SS1] Craig M. Shakarji, Vijay Srinivasan. Theory and 
Algorithms for Weighted Total Least-Squares Fitting of 
Lines, Planes, and Parallel Planes to Support Tolerancing 
Standards.  J. Comput. Inf. Sci. Eng. 13(3), 031008. 2013. 
[PSRS1] V. Portman; V. Shuster; Y. Rubenchik; Y. Shneor. 
Substitute Geometry of the Features of Size: Applications to 
Multidimensional Features. J. Comput. Inf. Sci. Eng.  7(1) : 
52-65. 2006 
[S2] Craig M. Shakarji. Least-Squares Fitting Algorithms of 
the NIST Algorithm Testing System. 103(6), J. Res. Natl. 
Inst. Stand. Technol. 633-641. 1998 

!

ΠP 

ΠQ 

ΠS 

pt P 

pt  K pt K1 

ΔHQ 

ΔAK 

Axis A 

ΠD 
H 

ΔDS   

ΔFP  

Cyl-2 

 Cyl-3 

Cyl-4 

Cyl-5 

Cone-1 

Cyl-1 

Cyl-6 

Cyl-7 

Pln-0 
ΔDS 

pt E 

Axis F 

 D
RAFT

 - 
 D

RAFT
 - 

 D
RAFT

 - 
 D

RAFT
 - 

 D
RAFT

 - 
 D

RAFT
 - 

 D
RAFT

 - 




