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ABSTRACT

Determining hydro-mechanical properties of porous
materials present a challenge because they exhibit a
more complex behaviour than their continuous coun-
terparts. The geometrical factors such as pore shape,
length scale and occupancy play a definite role in the
materials characterization. On the other hand, com-
putational mechanics calculations for porous materi-
als face an intractable amount of data. To overcome
these difficulties, this investigation propose a workflow
(Image segmentation, surface triangulation and para-
metric surface fitting) to model porous materials (start-
ing from a high-resolution industrial micro-CT scan)
and transits across different geometrical data (voxel
data, cross cut contours, triangular shells and para-
metric quadrangular patches) for the different stages
in the computational mechanics simulations. We suc-
cessfully apply the proposed workflow in aluminum
foam. The various data formats allow the calculation
of the tortuosity value of the material by using vis-
coelastic wave propagation simulations and poroelastic
investigations. Future work includes applications for
the geometrical model such as boundary elements and
iso-geometrical analysis, for the calculation of material
properties.
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NOMENCLATURE
G = (P, E) = Graph with vertex set P and edge set

E, nearly embedded in S0
P = Pressure scalar field of a fluid

occupying Ω. P : Ω→ R.
S0 = 2-manifold (possibly disconnected,

with border) surface corresponding
to the isosurface V (p) = VTR for
p ∈ Ω.

T = {t1, t2, . . .} triangular mesh of
triangles ti with vertices in P

V = A scalar field V : Ω→ R produced
by the CT scan of Aluminum Foam
in Ω.

VTR = Threshold real value in Hounsfield
units which marks the presence of
Aluminum Foam in a CT scan.

Ω = Rectangular prism aligned with the
world axes such that Ω ⊂ R3.
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1. INTRODUCTION

Micro-scale Computational Mechanics studies of
porous media are limited by the difficulty in geomet-
rically modelling the microstructure material in an ac-
curate manner. The cavities are extremely small, the
data size is very significant, and the data is present in
unusable formats, since (e.g.) Voxel-based geometries
cannot be used in most commercial structural mechan-
ics and computational fluid dynamics software.

Researchers take two approaches: (i) Create their own
geometries, based on abstraction of the subscale ge-
ometries. Examples are the so called ’packed spheres’,
lattices from convex uniform honeycombs, boolean op-
erations with spheres or ellipsoids, Gaussian random
fields, among others ([8], [19]). (ii) Use actual scan
samples of porous media geometries that are based on
CT scan data, which favors the usage of regular grid
numerical methods. These methods have shortcom-
ings in imposing boundary conditions, dealing with
high frequency saw-tooth geometries, and describing
curved boundaries with large numbers of degrees of
freedom.

In this article we implement and apply several geomet-
rical processing methods to represent solids from in-
dustrial micro CT scans of porous materials. The dif-
ferent representations of the material (voxels, contours,
triangular meshes and parametric surfaces), allow sim-
ulations in the middle steps of the process. We can
also manage the information about the porous media
geometry with a lower memory usage. Finally with the
parametric surfaces of the material, is possible the use
of robust commercial CAE software that can not man-
age voxel-based information.

The workflow of our method begins by process-
ing the micro-CT scan data using image segmenta-
tion algorithms (multiple thresholding, watershed al-
gorithms). The segmented data represents enumera-
tions, 3D scalar fields and planar cross sections, which
are used to build 3D shell and solid information by
using several algorithms: Marching Cubes, Poisson,
2-D similarity Voronoi- Delaunay generalized lofting,
Power Crust and Surface Optimization. Parallelized
computations have been applied, using as a unit cubic
sub-domains of the general domain.

We have successfully created the enumeration, cross
sectional, triangular and parametric representation of
aluminum foam. From those representations, it was
possible to estimate geometric properties, such as:
porosity, lattice cross sectional area and shapes, and

pore radius. The geometric properties were used on
analytical solutions of wave propagation in porous me-
dia and compared with independent numerical simula-
tions. The tortuosity is estimated, using the Geomet-
rical Scenario formed, in two manners: Using Biot’s
poroelastic approach (a) The flow velocity is calcu-
lated and from it, the tortuosity. (b) Virtually stiffening
the aluminium foam, calculating the flow velocity and
from it the tortuosity. The results closely match each
other.

This paper is organized as follows: Section 2 re-
views the literature existent on the geometrical mod-
eling of materials with micro-structure. Section 3
explains the various geometrical methods aligned to
model the porous materials. Section 4 discusses com-
putational mechanics methods mounted on the geomet-
rical models, presenting the achieved results on me-
chanical properties and performance. Section 5 con-
cludes the article and enumerates open research areas.

2. LITERATURE REVIEW
The reconstruction of surface and solid from CT-data
is a common problem in computational geometry
and visualization, but authors usually only focus in a
specific part of the workflow: 1) Image segmentation,
2) Surface triangulation, 3) Parametric surface fitting.

Wirjardi ([30]) exposes a survey on the more common
techniques for image segmentation, such as threshold-
ing ([17], [27]), region growing ([1]) and deformable
surfaces ([5]). Usually additional techniques are ap-
plied to correct noise and other data adquisition de-
fects. Iassonov, et al. ([11]) proposes Image Analysis
Normalization for image correction.

Several authors have proposed methods for surface tri-
angulation from image segmented data. Lorensen et
al. ([15]) propose an algorithm (Marching cubes) that
generate a triangulation from voxels data employing a
table of edge intersections. Amenta et al. ([2]) propose
the Power crust algorithm which generates a triangu-
lated mesh form a point set data. The obtained result
does not depend on the data quality, but has the disvan-
tage that only works with surface points. Ruiz et al.
([21]) recover a triangulated surface from slice sam-
ples by using 2D shape similarity. This method can be
used when a topological faithfulness is really needed,
but implies pre-processing to obtain 2D slices from the
CT-scan data.

Different methods have also been proposed for gener-
ate parametric surfaces from points clouds or meshes.
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Kazhdan et al. ([13]) solve the problem of generating
surfaces form a point data set treating it like the solu-
tion of Poisson equation. A good detail level is pos-
sible but the input data set must have ordered points.
Ruiz et al. ([22]) present a stochastic approach to sur-
face reconstruction from noisy points data set based on
Principal Component Analysis, which has a good be-
haviour with non self-intersecting curves. Other pro-
posed methods for generating parametric surfaces can
be seen in [6], [12] and [18].

The reviewed methods present some disadvantages as
restriction in the input data and high computational re-
quirements. In this paper we propose a workflow for
applying more efficient methods to obtain a geometri-
cal model that can be used suitably for numerical sim-
ulation of effective material properties.

3. METHODOLOGY
Consider a domain Ω ⊂ R3 forming a rectangular
prism aligned with the axes of R3. The domain Ω
contains a porous material. A computer tomogram of
Ω results in a scalar field V : Ω → R which corre-
sponds to the absorption of the X-rays by the material,
measured in Hounsfield units. The CT scanner used
has a resolution of 60 micrometers / Voxel.

In the present case the analysed porous material is 10
ppi AlSi7Mg foam (Fig. 1) by m.pore GmbH. Tab.
1 shows the modelling parameters of the aluminum
foam.

Figure 1 Aluminum Foam.

The goal of this section is to describe the different al-
gorithms used in this investigation to obtain explicit
representations of STR., suitable for numerical calcu-
lations of effective hydro-mechanical properties.

3.1. Iso-Surface Occupancy
• Given:

1. A scalar field V : Ω→ R.

2. A real (threshold) value VTR in the range of V .

• Goal:

1. T triangulation approximating V (p) = VTR

for p ∈ Ω.

This part of the process is conducted by using a vari-
ation of the Marching Cubes algorithm ([15]). The
triangulation T must have the characteristics of 2-
manifoldness. Notice that T ≈ S0 has borders and
it is possibly disconnected within Ω.

3.2. Cross-section-based Surface
Reconstruction

Iso-Curve Occupancy
• Given:

1. A slice k-th of the CT scan in plane Πk with
normal Z.

2. A real (threshold) value VTR in the range of V .

• Goal:

1. A set ∂V ∪k = {Γ0,Γ1, ...} of closed con-
tours Γj , j = 0, 1, ... on Πk, which compose
the boundary ∂V ∪k of the set V ∪k = {p ∈
Πk|V (p) ≥ VTR}.

Fig. 2(a) shows a typical slice Πk of the CT scan.
Each pixel (i, j) of the Πk slice corresponds to the
point (xi, yj , zk) ∈ Ω ⊂ R3. Fig. 2(a) displays the
pixels with V (xi, yj , zk) ≥ VTR. Each pixel repre-
sents a diminute square inside Πk., and the 2D boolean
union of pixels inside the foam results in a 2D region
with city-block jagged boundary ∂V ∪ in Fig.2(b). A
smoothing of these jagged contours using a Catmull-
Rom interpolation produces the smooth contours in
Fig. 2(c). Since the foam may have internal dis-
connected cavities, the cross sections V ∪ of the foam
present holes, and their boundary ∂V U has several dis-
connected components (∂V ∪ = {Γ0,Γ1}). In our dis-
cussion, Γ0 represents an external foam contour and Γi

for i = 1, 2, ... represent the internal contours. The
collection of such cross sections for a particular neigh-
borhood of Ω is shown in Fig. 3(a).

If the distance between scan planes is considered, volu-
metric pixels (Voxels) are formed, which correspond to
the parts of Ω filled by the aluminum foam (Fig. 3(b)).

2D-similarity-driven Voronoi-Delaunay Algorithm
• Given:

1. A sequence of parallel cross sections of the do-
main Ω, Πk with k = 1, 2, ....
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VoXel V 

VoXel Boundary ∂V 

(a) Set of Voxels with 6000 above threshold.

!
!
!
!

VoXel Union VU 

∂VU : Boundary  
of VU  

(b) Boolean Union of Voxels. City Block Contours.!
!
!
!
!

Outer Contour Γ0 

Inner Contour Γi 

(c) Catmull-Rom smoothing of City Block Contours.

Figure 2 Contour Construction from CT Voxel per-slice
Data.

2. A set ∂V ∪k = {Γ0,Γ1, ...} of closed con-
tours Γj , j = 0, 1, ... on Πk, which compose
the boundary ∂V ∪k of the set V ∪k = {p ∈

(a) Lattice Contours

(b) Volumetric Pixels (VoXels) in CT Scan.

Figure 3 Contours per-slice and Voxels.

Πk|V (p) ≥ VTR}.
• Goal:

1. A sequence of triangular mesh surfaces Ti,i+1

that map the contours ∂V ∪i of level Πi, onto
the contours ∂V ∪i+1 of level Πi+1.

2. T triangulation approximating the iso-surfaces
V (p) = VTR for p ∈ Ω. Notice that T =
∪iTi,i+1.

The triangular mesh that materializes the mapping
among contours of consecutive slices is calculated by
algorithms discussed in [21] or [4] and produces the
results in Fig. 4. The mapping among contours (i.e
lofting) may have a strictly local proximity criterion
(Voronoi - Delaunay methods, [4] ) or it may have a
topological and 2D - shape similarity rationale that
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(a) View 1.

(b) View 2.

Figure 4 Triangular Mesh Surfaces formed by
Contour-mapping (generalized lofting [4, 21])
between Consecutive Cross Section Contour
Sets.

selectively triggers the V-D methods ([21]). The
topological and 2D shape similarity methods use the
fact that topological evolution of features along the
cross sections obeys to only 3 topological transitions
([16]). A topological event corresponds to the addition
of one of: 0-handle, 1-handle or 2-handle, to the
previous contour, and causes the number of contours
to change from cross section Πi to cross section Πi+1.
Fig. 5 shows that the number of contours in slice Πi

will have a variation of +1, -1, +1, -1 as a consequence
of the addition of 0-handle, 1-handle, 1-handle and
2-handle, respectively.

3.3. Triangular Mesh to Parametric
Surfaces

• Given:

1. T triangulation approximating the iso-surfaces
V (p) = VTR for p ∈ Ω.
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Πi 0-h Πi+1 

+ = 
Πi 1-h Πi+1 

+ = 
Πi 1-h Πi+1 

+ = 
Πi 2-h Πi+1 

(a) 0-handle addition.
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(b) 1-handle addition.
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+ = 

Πi 0-h Πi+1 

+ = 
Πi 1-h Πi+1 

+ = 
Πi 1-h Πi+1 

+ = 
Πi 2-h Πi+1 

(c) 1-handle addition.

19/05/a 

 1 

 

 

+ = 

Πi 0-h Πi+1 

+ = 
Πi 1-h Πi+1 

+ = 
Πi 1-h Πi+1 

+ = 
Πi 2-h Πi+1 

(d) 2-handle addition.

Figure 5 Topological Transitions as k-Handle Additions
([21].

• Goal:

1. A Set of parametric patches Sj(u,w) which
approximate the triangular mesh T so that
∪jSj(u,w) ≈ T = ∪iTi,i+1.

In [20] an algorithm is reported, which uses the graph
T under a point sample as proximity graph in Manifold
Learning Algorithms. The parametric surfaces fit to the
triangular mesh appear in Figs. 6(a) and 6(b).

4. RESULTS AND DISCUSSION

4.1. Aluminium Foam geometrical
modeling

Fig. 2(a) shows a slice of the CT scan, which cor-
responds to the pixels with V (x, y, z) ≥ VTR. The
2D boolean union of such pixels results in a city-block
jagged boundary in Fig.2(b). If the distance between
scan planes is considered, Volumetric Pixels (Voxels)
are formed, which correspond to the parts of Ω filled
by the Aluminum Foam (Fig. 3(b)). A smoothing of
these jagged contours produced with a Catmull-Rom
interpolation produces the results in Fig. 2(c). The
collection of such cross sections for a particular neigh-
borhood of Ω is shown in Fig. 3(a). The general-
ized lofting among cross sections produces triangular
shells, shown in Fig. 4. The parametric surfaces fit to
the triangular mesh appear in Figs. 6(a) and 6(b).
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(a) Sub-domain

(b) Surface Modeling of Subdomain.

Figure 6 Parametric surfaces of the geometric modeling of
the aluminum foam.

4.2. Experimental Set-Up
Consider a domain Ω ⊂ R3 (Fig. 7(a)) open in the
planes z = 0 and z = L and closed in the sides (planes
x = 0, x = L, y = 0, y = L). The boundary of
the domain ∂Ω, allows free pass of fluid in the planes
x = 0 and x = L and is hermetic in the planes x = 0,

 
 
 
 
 
 

L L 

X 

Y 
Z 

1 

2 

3 

fluid 

fluid 

foam  
+ 

fluid 

(a) Fluid and Foam-Fluid Domains Ω.

(b) Foam Domain Ω2

Figure 7 Experimental Set-Up

x = L, y = 0 and y = L. Ω is divided in 3 slices, as
follows: (1) Ω1, with 0 ≤ z ≤ ∆1, filled with a viscous
pore fluid. (2) Ω2, with ∆1 ≤ z ≤ ∆1+∆2, filled with
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Figure 8 Pressure Wave

metallic foam whose interstices are filled by the fluid.
(3) Ω3, with ∆1+∆2 ≤ z ≤ ∆1+∆2+∆3, filled with
the fluid. There are no obstacles for the movement of
the fluid in the Z direction, except the presence of the
aluminum foam itself.

At the plane z = 0 an acoustic wave excites the
medium in direction perpendicular to the plane with
an ultrasonic transducer. The wave is described in the
frequency domain by a Gaussian distributionN (0, fc).
The value fc will indicate whether the propagating
wave is in Biot’s high or low frequency domain, cf. dis-
cussion in [14]. It is of our interest to calculate Biot’s
high frequency limit, since the viscous effects of the
fluid can be neglected, and the complexity of the con-
stitutive equation of the fluid is significantly simpler. In
order to enforce this, the value of the central frequency
of the propagating wave must be significantly greater
than Biot’s critical frequency. From this experimental
set-up, two pressure waves are numerically obtained
(slow and fast P-wave, cf. [3] , and then any missing
material parameter in Biot’s equation can be calculated
(e.g. tortuosity).

fcrit =
η

πρfRr2
(1)

The calculation of Biot’s critical frequency fcrit is cal-
culated using the pore radius r found from the para-
metric surfaces in section 3.3. It is found that fcrit is
smaller than 1 Hz. Therefore a wave with a central fre-
quency of 24 KHz lies in the high frequency domain.
To record the interaction of the wave with the water
saturated foam, seismographs are placed in the planes
z = ∆1 and z = ∆1+∆2. The material parameters for

the water phase and the aluminum phase can be found
in Tab. 1.

Young’s modulus of
aluminium

Es = 70.0 GPa

Poisson number of
aluminium

νs = 0.33

Density of aluminium ρsR = 2700 kg/m3

Bulk modulus of water Kf = 1.48 GPa
Density of water ρfR = 1000 kg/m3

P-wave velocity of water Vp,water = 1480 m/s
Table 1 Modeling parameters of the fluid and solid phases

In order to simulate the experimental setup, the mo-
mentum equation is solved using a Rotated Staggered
Grid Finite Differences scheme (RSG-FD)( [24, 25,
29]). The RSG-FD method has proven to be an ac-
curate approach to simulate the wave propagation phe-
nomenon in porous media ([26],[23]). The geometric
discretization is taken from the voxel data in section
3.2.

4.3. Water saturated aluminum foam
simulation

Biot’s theory ([3]) states that a wave propagating at
high frequencies in a fluid saturated medium is con-
stituted by two pressure waves and a shearing wave.
Therefore it is expected that two P-waves can be mea-
sured using the first and second arrivals of the signal
in the recorded data in the seismograms. It was only
possible to measure a single P-wave from the seismo-
graphs, the other arrivals had excessive noise. Never-
theless, it was possible to view both propagating waves
in the water saturated foam by digitally draining part
of the foam and taking a snapshot when the wave was
travelling through Ω2. On Fig. 9(a), the aluminum
foam phase has a faster propagating wave than that of
the water phase. The measured velocity Vp,biot is 1487
m/s.

4.4. Water saturated stiffened aluminum
foam simulation

The simplification by Steeb ([28]) of Biot’s equations
leads to a single formula (2) where the pressure wave
velocities can be calculated. All the material parame-
ters necessary to calculate Biot-Willis’ coefficients (i.e.
N,A,Q,R, P and the density tensor ρ̂i,j) were mea-
sured with laboratory experiments except for the tor-
tuosity. Therefore in order to calculate the tortuosity
from the experimental setup, an additional simulation
must be performed.
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(a) Pressure wave snapshot in Ω2. The camera is set per-
pendicular to the z-x plane.

(b) Change in Vp,biot as the aluminum foam is stiffened.

Figure 9 Pressure wave results for the stiffened and
non-stiffened aluminum foam.

ξ1,2 =
∆±

√
∆2 − 4(PR−Q2)(ρ̂11ρ̂22 − ρ̂12ρ̂12)

2(PR−Q2)
,

∆ = P ρ̂22 +Rρ̂11 − 2Qρ̂12. (2)

To circumvent the missing P-wave velocity problem,
the aluminum foam is virtually stiffened with a pa-
rameter β. The effect of the stiffening parameter on
Vp,biot can be seen on Fig. 9(b). The density and
Young’s modulus of aluminum foam are multiplied by
this parameter. This in turn doesn’t modify the P-wave
modulus of the aluminum phase, but it does create a
very high impedance between the solid and fluid phase.
The high impedance between the phases means that the
wave will be mainly traveling through the water phase,
and this allows to a very clear reading of the signals at
the seismographs of Vp,biot.

The measured Vp,biot for the stiffened aluminum foam
setup is 1409 m/s. When comparing both results of
Vp,biot with the variance of the stiffening parameter β,
and the tortuosity, it was found that the tortuosity of the
aluminum foam is α∞ = 1.14.

We compare our results of tortuosity with the exper-
imental results presented by Gueven et al. in [9] and
[10] (α∞ = 1.054), finding that they match closely.
From this we can verify that the proposed geometric
model of the aluminum foam represents correctly the
porous material sample.

We also compare our results with the values presented
in [7], where the aluminum foam is modelled with
a truncated tetrahedron. We find that geometrical
modelling from micro-CT data give us more accurate
information about the material properties than simpli-
fied models.

5. CONCLUSIONS AND FUTURE WORK

The raw data of micro-CT data of an aluminum foam
was successfully transformed from a scalar field in a
regular grid in R3 to a watertight union of parametric
surfaces ∪iSi(u,w). From micro-CT based triangu-
lar mesh, it was possible to simulate the phenomenom
of wave propagation in Biot’s high-frequency domain.
The parametric form of the mesh, ∪iSi(u,w), allows
to determine important geometric parameters used in
Biot’s equations (porosity, pore radius). Our geomet-
ric procedure was validated with simulations of wave
propagation, and these closely resemble experimental
results.

Future work includes the implementation of boundary
elements, iso-geometrical analysis, calculation of ad-
ditional macro-scale material properties and the intel-
ligent automatic thinning of the cavernous system to
achieve a graph - based node / beam representation.
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