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Abstract. Interest points extraction and matching is a common task
in many computer vision based application, which are used in different
domains, such as 3D reconstruction, object recognition, or tracking. We
present an evaluation of current state of the art about interest point
extraction algorithms to measure several parameters, such as detection
quality, invariance to rotation and scale transformation, and computa-
tional efficiency.
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1 Introduction

Image analysis or computer vision based applications deal with information ex-
traction from the images acquired by a camera sensor. This information is usually
discretized in form of relevant pixels or set of pixels (regions) having distinctive-
ness or discriminative characteristics, i.e, retain information about the structures
in the scene being captured, compared with surrounding or neighbouring pixels
or regions. Different terms in the literature referring to the same structures can
be found, such as feature points, interest points, key points, or corner points.
There has been progress in the last decade within the area of feature point
extraction algorithms with image and video descriptors that led to substantial
improvements in many computer vision areas including registration, 3D recon-
struction, motion estimation, image registering, matching,and retrieval, or object
and actions recognition. These types of techniques are usually found in the first
stages of many computer vision algorithms, and can therefore be considered as
low level image information extractors or descriptors. This information is then
delivered to other processes in a bottom-up manner, until a semantic knowledge
or meaning is recovered. In this article we show the results of an evaluation to
measure the behaviour of several points detection algorithms, representative of
the current state of the art.

The paper is structured as follows: In section 2 an overview of point detectors
followed by a brief description of every detection algorithms evaluated in this
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study are given. In section 3, a description of the methods, measures and data
sets used during the evaluation are shown. In section 4 details about the results
obtained during the evaluation are given. Finally, in section 5 some general
conclusions are made and future work perspectives are proposed.

2 Methods

2.1 Evaluation Parameters

A review about feature or interest point detectors can be found in [13]. The
authors suggest that there are several parameters of a point detector that can
be measured, and point out which are the most relevants that a point extractor
should address:

Repeatability : Ideally, the same points should be extracted by a detector even
if a transformation to the image is applied.

Distinctiveness : Detected features should be different enough in order to be
identified or matched, and the same feature should not vary in images of the
same scene.

Quantity : This factor measures the number of interest points a detector is
able to extract from an image.

Accuracy : Measures the difference in spatial (image) localization of the same
point. This value should be as minimal as possible, and ideally having zero
or close to zero variance.

Efficiency : Measures how fast an interest point detector is able to process an
image.

It’s worth noticing that all these factors are somehow application dependent,
i.e, every computer vision application or image analysis has different needs. While
for applications such as real-time simultaneous location and mapping (SLAM)
mainly the quantity, and efficiency factors are critical, for an application such as
off-line object recognition, repeatability and distinctiveness are more relevant. In
any case, aforementioned factors can be reduced to two: quality and efficiency.
Quality represents the feasibility of a detector to delegate accurate, precise, dense
and robust set of points to the next process in the image analysis pipeline, while
efficiency represents how fast and with which computation resources is able to
carry out that task. Depending on these factors, the following processes in the
pipeline should or should not apply different mechanisms, filters, estimators, or
heuristics in order for the application to succeed, running efficiently and obtain-
ing accurate results. Interest points have to be ideally invariant or robust to any
image transformations in order to be identified or matched from one image to
another. Image transformations can be categorized in two different classes: ge-
ometric and radiometric transformations. Geometric transformations are those
that modify the shape or the location of a feature in the image space, while
radiometric transformations influence the feature appearance, i.e, the intensity
or color value of the pixels. Changes in lighting conditions or camera acquisition



III

parameters, i.e, sensor sensibility, exposure time or lens aperture, directly affect
radiometric appearance of image by changing their luminance and/or chromi-
nance information. Several geometric transformations are involved in the process
of image formation, starting from the most general ones such as projectivities
or homographies, to the most specific ones such as euclidean transformations,
rotations, translations and scaling. In our study we focus only in geometric trans-
formations excepting those related to optics such as lens distortions are out of
the scope of this study.

2.2 Point Detectors

We have included in our evaluation many of the point detectors that currently
represent the state of the art and also some older approaches that today are still
broadly used by the computer vision community. In the following section, a brief
description of every point detector included in the evaluation is given.

HARRIS We have included Harris corner detector in the evaluation because
it’s one of the most used feature extractors by computer vision community since
its publication [3]. Harris’ approach can be seen as an evolution of one of the
earliest corner detectors published, such as the Moravec’s detector [10]. Harris’
approach improves Moravec’s detector by taking into consideration different ori-
entations around the candidate pixel, instead of shifting patches by computing
the second moment matrix, also called the auto-correlation matrix. Harris cor-
nerness measure is still used by many point extractor approaches as a mechanism
of non-maxima suppression. In this evaluation we have used a pyramidal version
of Harris proposed in [7].

GFTT (GoodFeatureToTrack) detector [12] is, like Harris detector, one of the
most common feature detectors used by computer vision community. This ap-
proach was proposed as interest point detector for to be used in camera tracking
algorithms, based on previous work of [6]. This approach proposes to different
measures named texturedness and dissimilarity for solving the feature matching
in order to obtain accurate tracking results, by estimating both a pure trans-
lations and affine motion respectively. Texturedness measure is used to extract
good candidate points to be tracked, by examining the minimum eigenvalues of
auto-correlation matrix.

SIFT (Scale Invariant Feature Transformation) descriptor [5] is one of the most
successful approaches for feature or interest point extractor and description. De-
tection is based on the convolution of images with difference of Gaussians (DoG)
operator η = (gσ−gσ′). Images are arranged in a pyramidal representation, where
every level(octave) of the pyramid represents a down sampled and smoothed ver-
sion of the image in previous level. Smoothed images are obtained by convolving
with a Gaussian operator with different values of scale σ. This arrange of im-
ages allows SIFT to work in a scale-space representation [4] or framework. SIFT
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detector and respective descriptor is intended to be invariant to either rotation
and scale transformation, but not to perspective transformation, such as affine
transformation.

SURF (Speed Up Robust Feature) extractor follows an similar approach to
SIFT, but addressing the problem of reducing computation cost. SURF searches
for local maxima of the Hessian determinant in the scale-space. SURF calcu-
lates Hessian determinant efficiently by using a discrete approximation of the
Gaussian second order partial derivatives, in conjunction with integral images
representation [14]. Differently from SIFT approach, the scale is not obtained by
decreasing the image size after smoothing, but by increasing the discrete kernels
size.

FAST detector [11] uses a different approach than SIFT or SURF detectors.
This approach uses supervised classification to label pixels as their values or
pertinence to two classes, interest point or background, by examining the values
of surrounding pixels around a candidate one in a circular manner. A feature is
detected at pixel p if the intensities of at least n contiguous pixel of a surrounding
circle of j pixels are all below or above the intensity of p by some threshold t.
FAST approach does not use scale-space representation, and therefore is not
invariant to scale nor rotation transformation.

MSER (Maximally stable extremal regions)[9] is an approach based on the
detection of blob like structures. MSER detects blobs by using local extrema in
intensity or luminance space, obtained by iteratively applying watershed based
segmentation. A region Ri is considered a feature if for all its n joined connected
components R1, ..., Rn obtained after n watershed segmentations, it attains to a
local minimum in the function qi = |Ri+α−Ri−α|/|Ri|, where α is a used defined
parameter and |.| represents the cardinality of the blob measured in pixels.

STAR This point extractor is also known as Censure (Center Sorround Ex-
trema) [1]. This approach approximates the Laplacian not using DoG operator
as SIFT does, but using bi-level center-surround filters of different shapes such
as boxes, octagons, or hexagons. The computation of these filters in combina-
tion with integral images allows the detection of interest points in scale-space
much faster than SIFT. In our evaluations we used bi-level star shaped filter as
proposed and implemented in [2].

ORB is the acronym of Oriented BRIEF. This algorithm proposes a modified
version of FAST detector for computing orientation during detection step, and
an efficient computation of BRIEF based approach for generating descriptors.
This approach tries to merge the rotation and scale invariance of SIFT and the
computational efficiency of FAST detector.
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3 Evaluation

In our evaluation we have used the popular data set, publicly available in [8].
Original data set is composed of 6 different set of images, covering many prob-
lems addressed by computer vision or image analysis such as geometric trans-
formations between images, image blurring, changing light conditions or image
artifacts due to compression. We used only those set of images covering as-
pects related with geometric transformations, named Graffiti, Bark and Brick,
as shown in figure 1. All tests were carried out using the point detector im-
plementations integrated in Open Source computer vision Library OpenCV[2].
We have focused our evaluation by measuring two key factors in any interest
point extractor: repeatability, also known as stability, and accuracy. Stability
is referred as the ability of a detector of detect the same feature point across
even in a change in radiometric or geometric conditions occurs between two
different image acquisitions. Accuracy is related with the consistency and pre-
cision, in image space coordinates, in the location of every point extracted by
a detector after a change occurs between two images. We have evaluated how
accurate every point extractor is by measuring the matching ratio, i.e, the num-
ber of matched points or correspondences between two images divided by the
total number of points detected, knowing a priori the geometric transformation
applied between both images. A candidate pair of points in imagesi and imagej
respectively is considered a correspondence, if the true match is within a search
window of radius r of its estimated correspondence given known rotation, scale
or homography transformation. All tests were carried out by using a computer
running Windows 7 OS, with 4Gb of RAM and an Intel QuadCore 2.7Ghz CPU.
In 2.3.1 version of OpenCV not every CPU point detector algorithm has its own
GPU version, so we decided not to distort the results by mixing CPU and GPU
implementations.

Fig. 1. (Left) Graffiti Data set. (Center) Bark Data set. (Right) Brick Data set
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3.1 Number of points detected

In this test we evaluated how many interest point every extractor is able to de-
tect. Depending of the specificities of every algorithm, the number of extracted
features may vary significantly, even if they are apply on the same image. Fur-
thermore, depending on the spatial frequencies present in the images the number
of detect points must be different. For example, images taken from Brick data set
exhibit high frequency details represented by the bricks on the wall and therefore
is the data set that clearly generates the higher number of detections in every
extractor.

Table 1. Number of Points detected in Image 1 of every Data Set

No of features Graffiti Brick Bark

FAST 7244 41266 11735
STAR 870 1461 168
SIFT 2749 8371 4161
SURF 3203 7142 2253
ORB 702 702 702
MSER 516 2287 837
GFTT 1000 1000 100
HARRIS 855 1000 1000

As shown in table 1 FAST is clearly the one that gets more dense clouds of
points, follow by SIFT and SURF, while STAR detector exhibits irregular results.
ORB detector seems to have a maximum number of detections allowed, because
the same number of 702 features is detected in every image, independently on
the content. Similar results are obtained with GFTT and HARRIS having a
maximum threshold of 1000 detections. It is important to notice that not only
the number of points detected means a successful detector, but also how accurate
and repeatable they are against geometric transformations.

3.2 Rotation Transformation

In this test we have evaluated how different approaches are robust against image
rotation. We have used image 1 of every data set, and generate artificial images
by apply different angle of in-plane rotation starting from 0 (same image), to 57.3
degrees in steps of 11.4 degrees, not varying scale nor perspective transformation.
We included the same image without rotation, i.e 0 degrees, as a matter of
measure the consistent of the detectors. In this test all detectors but MSER
perform similarly, being SIFT, GFTT and ORB the ones that obtain better
results.

3.3 Scale Transformation

In the following test we evaluated how the extractors are robust against scaling
transformation. We used the image labeled as 1 of every data set, and generated
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Table 2. Results of Rotation transformation

Graffiti 0,0 11,4 22,9 34,3 45,8 57,3 Mean

2 FAST 100 40,0 41,0 39,3 38,6 40,2 39,8
STAR 100 57,3 49,8 50,5 52,9 49,0 51,8
SIFT 100 62,4 56,8 56,1 54,3 56,6 57,2
SURF 100 44,9 29,2 24,5 24,2 26,2 29,0
ORB 100 82,6 82,4 78,9 76,9 74,5 79,0
MSER 100 33,3 26,7 24,2 20,7 24,2 25,5
GFTT 100 79,7 75,5 74,1 71,2 74,2 74,9
HARRIS 100 73,4 76,3 75,7 71,7 75,4 74,5

Bark 0,0 11,4 22,9 34,3 45,8 57,3 Mean

FAST 100 52,7 51,4 47,6 46,8 44,6 56,6
STAR 100 57,7 44,6 45,8 48,8 39,8 60,8
SIFT 100 68,5 61,5 59,1 57,3 55,7 65,4
SURF 100 62,0 45,4 40,6 37,4 35,7 31,7
ORB 100 72,6 59,4 53,1 49,0 45,2 66,6
MSER 100 30,7 22,4 14,0 11,5 11,4 35,7
GFTT 100 70,1 66,3 59,1 55,8 53 63,8
HARRIS 100 36,1 38 17 11,1 50,6 69,0

Brick 0,0 11,4 22,9 34,3 45,8 57,3 Mean

FAST 100 59,6 58,2 56,6 55,0 53,9 48,5
STAR 100 70,4 63,3 60,0 56,5 55,0 47,0
SIFT 100 69,5 67,3 65,1 63,3 62,0 60,3
SURF 100 46,4 31,7 28,6 27,8 27,2 43,3
ORB 100 70,2 68,3 66,3 66,2 62,3 55,1
MSER 100 45,4 37,3 34,0 32,3 31,0 16,6
GFTT 100 68,1 63,8 63,7 61,6 61,9 60,5
HARRIS 100 72,5 69,6 69,6 66,2 67,5 26,5

All Images 100 50,1 49,7 47,3 46,3 45,9 47,8

STAR 100 61, 5 52,0 51,8 52,6 47,5 52,9
SIFT 100 66,7 61,7 60,0 58,2 58,0 60,8
SURF 100 50,5 34,8 30,5 30,1 29,4 34,3
ORB 100 74,9 69,4 65,2 62,9 59,4 66,2
MSER 100 35,9 28,2 22,6 19,7 20,5 24,7
GFTT 100 72,5 68,4 65,3 62,6 62,4 66,1
HARRIS 100 57,7 58,7 44,7 37,5 63,6 51,5

artificial images by applying different isotropic image scaling factors starting
from 1.0 (no scaling) to a factor of 3, not applying rotation nor perspective
transformations. As expected, as scale factor increases results of all detectors

Table 3. Results of Scale transformation

Graffiti 1,0 1,4 1,8 2,2 2,6 3,0 Mean

FAST 100 37,7 29,8 28,8 29,5 24,3 29,7
STAR 100 43,2 31,6 22,0 21,7 13,9 24,6
SIFT 100 45,3 27,3 18,6 16,5 12,7 21,7
SURF 100 41,5 31,3 28,0 20,1 18,7 26,7
ORB 100 69,2 51,7 37,7 31,7 31,0 42,1
MSER 100 31,5 23,8 15,8 8,3 5,4 13,9
GFTT 100 67,9 56,4 48,1 45,2 30,5 47,9
HARRIS 100 64,6 50,7 44,0 41,0 26,6 43,5

Bark 1,0 1,4 1,8 2,2 2,6 3,0 Mean

FAST 100 43,2 33,6 30,9 29,8 26,2 32,3
STAR 100 50,5 40,4 32,1 24,4 13,6 29,3
SIFT 100 46,9 27,5 19,3 13,3 9,6 19,9
SURF 100 49,3 34,6 25,2 18,3 12,8 25,1
ORB 100 70,2 53,7 46,1 41,5 42,1 49,7
MSER 100 25,0 17,5 10,9 6,3 4,4 10,5
GFTT 100 55,5 43,4 36,2 35,3 25,9 38,0
HARRIS 100 35,7 23,9 25,3 26,7 15,2 24,4

Brick 1,0 1,4 1,8 2,2 2,6 3,0 Mean

FAST 100 41,1 33,0 32,6 33,4 27,0 33,1
STAR 100 24,9 8,3 2,9 1,5 0,6 3,5
SIFT 100 34,0 15,6 8,9 4,8 3,2 9,3
SURF 100 37,6 24,7 17,5 11,2 8,6 17,3
ORB 100 53,1 33,9 26,6 24,0 20,3 29,7
MSER 100 42,1 29,2 14,2 3,1 0,4 7,3
GFTT 100 40,2 27,6 22,7 19,7 18,3 24,6
HARRIS 100 43,8 28,6 21,2 21,5 18,8 26,1

All Images 1,0 1,4 1,8 2,2 2,6 3,0 Mean

FAST 100 40,6 32,1 30,7 31,5 25,9 31,7
STAR 100 37,95 22,0 12,7 9,3 4,8 13,6
SIFT 100 41,6 22,7 14,7 10,2 7,0 16,0
SURF 100 42,5 29,9 23,1 16,0 12,7 22,6
ORB 100 63,7 45,5 35,9 31,6 29,8 39,6

MSER 100 32,1 23,0 13,5 5,5 2,1 10,3
GFTT 100 53,3 40,7 34,1 31,6 24,4 35,5

HARRIS 100 46,6 32,6 28,7 29,9 19,7 30,3

decrease. STAR detector shows the worst performance while GFTT and ORB
exhibits the most stable results.

3.4 Homography Transformation

In the following test we have evaluated how well the extractors are robust against
homography transformation. An homography is a plane projective transforma-
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tion. The transformation between any two images of the same planar structure
in space can be described by an homography transformation. Homography trans-
formation estimation are widely used by computer vision community in many
applications such as image rectification, image registration, camera calibration
or camera pose estimation. We have used the six images of Graffiti data set
with homography ground truth transformation, mapping points from image 1 to
the rest of images of the data set. In this test we obtained overall worst results

Table 4. Results of Homography transformation

Graffiti Image1 Image2 Image3 Image4 Image5 Image6

FAST 100 25.9 23.4 20.4 16.8 13.9
STAR 100 22.2 14.5 6.4 4.8 1.6
SIFT 100 30.8 14.3 9.4 5.8 3.7
SURF 100 20.0 11.8 7.3 5.3 3.9
ORB 100 54.1 36.7 27.6 17.3 3.2
MSER 100 16.2 12.7 6.9 5.2 1.7
GFTT 100 33.4 21.5 13.3 10.7 1.9
HARRIS 100 39.4 25.1 14.5 13.6 1.7

compared to rotation or scale tests. The worst results are obtained comparing
image1 with image6 (column 6) because of the severe distortion generated by
the homography to patches around each feature point. These results shows that
no one of the tested extractors are truly invariant to perspective transformation.
Most of the current approaches propose to generate feature point detectors and
descriptors to be invariant to affine geometric transformation. Affinities preserves
parallelism between lines, while projectivities only preserves straightness of lines
not giving enough discriminative or distinctiveness power allowing to have a
detector fully invariant to such type of transformations. However, perspective
transformations can be effectively approximated by piecewise local affinities so
affine invariants detectors should perform best in this test. ORB detector clearly
outperforms the rest of detectors, being the one that gets best matching ratios
in all images of all data sets.

3.5 Accuracy

We wanted also to measure how precise and consistent every point extractor is
related with the locations, in image space coordinates, of every point detected,
after a viewpoint change occurs between two images. We measure the accuracy
by calculating the difference in pixels between location of detected point, being
a correct match, and the true location. We depict here the averaged results
obtained with Graffiti, brick and bark data sets. Results depicted in table 5 shows
that there is no clear winner with respect to feature point location accuracy, given
a mean pixel error value of 0,62 between all detectors.
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Table 5. Mean pixel error for Homography transformation

Graffiti image1 image2 image3 image4 image5 image6

FAST 0,00 0,73 0,73 0,74 0,75 0,76
STAR 0,00 0,70 0,72 0,72 0,73 0,77
SIFT 0,01 0,66 0,68 0,75 0,75 0,81
SURF 0,05 0,73 0,74 0,74 0,77 0,79
ORB 0,25 0,70 0,73 0,73 0,75 0,75
MSER 0,10 0,72 0,70 0,74 0,70 0,74
GFTT 0,00 0,69 0,70 0,77 0,77 0,84
HARRIS 0,00 0,69 0,71 0,71 0,73 0,81

3.6 Efficiency

In addition to accuracy of feature point detectors and their invariance to geomet-
ric transformation, how fast and efficient they perform such task is also critical
in some computer vision applications. we have measured the time they expend
to perform detection task operation in every of the six images of Graffiti data
set. As mentioned previously, depending on the content of the images, i.e low
or high frequencies, the number of detected points vary and therefore computa-
tion time. The lower computation time the better. Results in image 3.6 shows

Fig. 2. Computation Time measured in miliseconds (lower time is better)

clearly that FAST is the best performer related with efficiency. Even if being the
one that extracts the highest number of points, it only takes 22ms per image
on average. It worth notice also how ORB is very close to FAST taking only
42.7 ms per frame, and taking into account that this approach estimates feature
orientation while FAST does not. As expected, SIFT extractor is the slower due
to the computation of several DoG operators, taking 1000ms on average.

4 Conclusions

We present an evaluation of different feature or interest point extractors. We
have measured their invariance and robustness to several geometric image trans-
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formations such as rotations, translations, scaling or perspective transformations
such as homographies. We have also evaluated their capability of generating in-
formation by measuring the number of points they generate. Finally, we also
measured their efficiency related with computational resources. As mentioned
before, the choice of the feature detector very much depends on the application
specifications. Overall, we can conclude that the recent ORB detector obtains
the best ratio between accuracy and efficiency. ORB shows the best perfor-
mance on rotation and homography tests and also being the second related with
computational cost only exceeded by FAST, however this one does not have
on orientation component and does not produce multi-scale features and there-
fore is not as accurate as ORB in rotation and scaling transformations. One
very important aspect nowadays is efficiency, as more and more applications are
being migrated to mobile devices, such as iPad or iPhone. In this way, those
approaches similar to FAST or ORB detector requiring low computation and
memory resources are very useful and promising. The next step is to evaluate
all these algorithms running on a mobile device, taking into account that some
implementation may be optimized for running on a specific processor architec-
ture using specific instructions, not supported by mobile processors. We are now
interested in evaluating how current feature descriptors, in addition with ran-
dom sampling robust estimation strategies, can overcome problems of robustness
and invariance to scale, rotation, and perspective transformations. Recent fea-
ture descriptor approaches such as BRIEF, GLOH, DAISY, or ORB opens new
possibilities for computer vision applications, such as simultaneous location and
mapping, or image registering and reconstruction to run robustly in real-time.
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