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Abstract

Fitting C2-continuous or superior surfaces to a set S of
points sampled on a 2-manifold is central to reverse engi-
neering, computer aided geometric modeling, entertain-
ing, modeling of art heritage, etc. This article addresses
the fitting of analytic (ellipsoid, cones, cylinders) sur-
faces in general position in R3. Currently, the state of
the art presents limitations in (i) automatically finding
an initial guess for the analytic surface F sought, and (ii)
economically estimating the geometric distance between
a point of S and the analytic surface F . These issues are
central in estimating an analytic surface which minimizes
its accumulated distances to the point set. In response to
this situation, this article presents and tests novel user-
independent strategies for addressing aspects (i) and (ii)
above, for cylinders, cones and ellipsoids. A conjecture
for the calculation of the distance point-ellipsoid is also
proposed. Our strategies produce good initial guesses for
F and fast fitting error estimation for F , leading to an
agile and robust optimization algorithm. Ongoing work
addresses the fitting of free-form parametric surfaces to
S.
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Nomenclature

S : {p0, p1..., pn} Noisy point sample

F : best fit surface to S

PCA : Principal Component Analysis

LM : Lenvenberg-Marquardt

k : norm degree

f : objective function

di : minimum distance between the i -th

point of S and its corresponding point

on F

1 Introduction

Surface reconstruction is a widely studied field because
of its importance in CAD-CAM applications, virtual re-
ality, medical imaging and movie industry. Particularly,
the reconstruction of analytic surfaces is important since
they are frequently used in mechanical parts ([1]). Sur-
face reconstruction process consists of obtaining a surface
that minimizes the distance between each point pi of a
point sample S and its corresponding point on surface F .
It is assumed that S fulfills the Nyquist-Shannon criteria
([2],[3]).

1.1 Optimization Approach

The optimization problem of fitting F to S is described
by the objective function f shown in Eq. (1).

f =
n∑

i=1

dwi (1)

Where the residual di represents the minimum dis-
tance between the i -th point of S and its corresponding
point on F and w indicates the order of the residual.
Then di is given by:

di = min‖F − pi‖k (2)

Where k is the norm-degree to calculate the distance.

To minimize f and find the best surface fit, some
variables are tunned. These variables are specific for
each situation. Table 1 shows the decision variables for
each surface addressed in this paper. On the other hand,
norm k remains constant in the optimization process
and is considered as a parameter of the problem.

The number of decision variables V and the number
of equality constrains E in a optimization problem,
allow to know the degrees of freedom with the equiation
G = V − E. Table 1 presents the degrees of freedom for
each analytic surface addressed in this paper. Notice
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Surface Decision Variables Type G
Cylinder Axis vector Vector

Axis pivot point Vector 7
Radius Scalar

Cone Apex Vector
Axis vector Vector 7
Semi angle Scalar

Ellipsoid Center point Vector
Angle 1 Scalar
Angle 2 Scalar
Angle 3 Scalar 9
Semi axis 1 Scalar
Semi axis 2 Scalar
Semi axis 3 Scalar

Table 1: Decision variables in analytic surfaces fitting

that G corresponds to V because the problem is uncon-
strained.

1.2 Optimization Method

The Gauss-Newton iterative method for solving non-
linear optimization problems uses the Hessian approxi-
mation H = J ∗ JT to calculate the next iteration, as is
shown in Eq. 3.

xk+1 = xk − (J(x)TJ(x))−1J(x)T r (3)

Where x is the decision variables vector and r is
residuals vector.

Notice that in the case in which f is not strictly convex,
J can be singular at some iteration possibly causing the
algorithm to diverge. This problem can be overcome by
using the Levenberg-Marquardt (LM) Method ([4], [5]):

xk+1 = xk − (J(x)TJ(x) + µI)−1J(x)T r (4)

Where µ is the LM parameter and I is the identity
matrix.

1.3 Function and Region Convexity

The convexity condition of an objective function and its
feasible region determines if a local extrema corresponds
to a global extrema or not. In order to evaluate this
condition in f , it is required to examine the eigenvalues
e of its Hessian matrix Hf by solving Eq. 5

det
[
Hf ( ~x∗)− eI

]
= 0 (5)

If all eigenvalues of Hf are positive, then f is strictly-
convex, but if at least one eigenvalue is equal to zero,
f is convex ([6]). In the case studies on this research,

an exact calculation of Hf is not possible. Thus, a nu-
merical calculation is required by approximating partial
derivatives numerically.

2 Literature Review

2.1 Objective Function and Distance
Measurement

Some authors have researched the calculation of the dis-
tance between a point and an analytic surface. Sappa
and Rouhani ([7]) present a new technique for the esti-
mation a pseudo geometric distance by calculating the
height of a small tetrahedron intersecting the surface.
This technique is prone to yield accuracy loss in the dis-
tance metric when applied to surfaces with high curva-
tures. Wang and Yu ([1]) present a comparison of the
fitting processes implementing the algebraic, Euclidean,
tangent or squared distance for fitting quadric surfaces.
Zhou and Salvado ([8]) compare the geometric and al-
gebraic distances in fitting ellipsoids. The authors es-
timate the geometric distance as the difference between
the length of the ray connecting the point to ellipsoid
center and the radius in the intersection of the ray and
the surface. This estimation being a fast solution, only
works well in cases of quasi-spherical ellipsoids.

2.2 Optimality Conditions

Just like Zhou and Salvado ([8]),Jiang and Cheng ([9])
classify the surface fitting problem as a non-convex one.
The authors do not discuss the convexity analysis neither
for the objective function nor for the optimization region.
Other references reviewed do not report any classification
of the surface fitting problem in terms of the convexity.

2.3 Optimization Methods

Yan, Liu and Wang ([10]) use Lloyd iterations to
reconstruct quadric surfaces from a 3D point cloud.
Ying, Yang and Zha ([11]) fit ellipsoids to data using
semidefinite programming obtaining low runtime.

Jiang and Cheng ([9]) apply a decomposition technique
to reduce the dimensions of the optimization space. This
implies that the possibilities of dropping into local min-
ima decrease. However, as the approach is out of the
geometrical field, coming up with an initial guess of the
parameters is not an easy task.

Li and Griffiths ([12]) fit ellipsoids by a least squares
method using quadrics. This method does not require
an initial estimation but, as it is not based on real ge-
ometrical distances, the results do not provide the best
geometric fitting ellipsoid.

References [13] and [8] report the use of LM method to
fit analytic surfaces without mentioning the selection of
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the LM parameter and its influence on the optimization
process.

2.4 Initial Guess

Numerical optimization strategies are sensitive to the
initial guess. The closer to the ideal solution is the initial
guess, the less number of iterations in the optimization
process. On the other hand, a bad initial guess could
make the algorithm to diverge.

Just like Ruiz and Cadavid ([14]), Kwon et al. ([15])
use PCA for finding an approximation to axis orienta-
tion, center coordinates and radius of point clouds be-
longing to circular cylindrical surfaces. Because this
technique reduces the dimensionality of the data giving
the direction of largest dispersion ([16]), it is limited to
cylinders with aspect ratio lower than 5.0 ([14]) and to
cylindrical caps. Similarly, Zhou and Salvado ([8]) use
the eigenvectors of the covariance matrix of the whole
data as the axes of the ellipsoid coordinate system. As
noted, this technique gives axes that probably will not
correspond to the ellipsoid coordinate system in the case
of ellipsoidal caps.

Simari and Singh ([17]) estimate the ellipsoid’s center
as the geometric centroid of the data set. This proposal
works in the cases of ellipsoids completely sampled but
it loses validity when the cloud is only a subsample of
the whole ellipsoid.

References [18] and [13] report the implementation of
an algebraic method based on a least squares solution of
the general quadric equation to find an initial guess of
the parameters of analytic surfaces.

2.5 Literature Review Conclusions and
Contribution of this Paper

As was shown in the taxonomy conducted in the liter-
ature review, there are several issues that remain open
in optimized analytic surfaces fitting which are studied
in this work: (1) Estimation of the real geometric dis-
tance between a point and an ellipsoid, (2) Identification
of the effect of the parameters such as the norm k in
the distance measurement, (3) Analysis of the optimal-
ity conditions effect on the convergence of the algorithm.

3 Methodology

3.1 Circular Cylinder Fitting

A circular cylinder is defined by a radius R, an axis
vector and its pivot point v̂ and pv respectively. For
purposes of this research, no assumption is made on
the orientation or position in space of the cylinder from
which the data set belongs.

3.1.1 Initial Guess for Circular Cylinder

The initial guess of the cylinder’s parameters is obtained
with a statistical and geometrical procedure as explained
below and shown in Fig. 1:

1. Random seed points are selected from S and a local
neighborhood Ln found for each seed. See Fig. 1(a).

2. Crossing each other the line segments defined by a
seed point and the normal vector n̂ of the best plane
fit to Ln, a set of points Cp = {q1, q2, ..., qn} passing
near v̂ are found. See Fig. 1(b).

3. A PCA is executed over Cp for finding an initial ap-
proximation of the cylinder axis and its pivot point,
v̂∗ and pv∗ respectively. See Fig. 1(c).

4. An approximation to the cylinder radius is calcu-
lated as the average of the minimum distances be-
tween S and v̂∗.

This method allows processing both complete cylindrical
surfaces and cylindrical caps.

3.1.2 Estimation of Point-Cylinder Distance

The minimum distance di between the point pi and a
circular cylindrical surface is calculated as:

di = |R− ‖(pi − pri)‖ | (6)

Where R is the radius of the cylinder and pri is the
orthogonal projection of pi onto v̂k as is shown in Fig. 2.

3.2 Circular Cone Fitting

A circular right cone can be defined by an axis vector v̂,
an apex Ap and a semi-opening angle ψ.

3.2.1 Initial Guess for Circular Cone

The initial approximation of a circular conical surface to
a point cloud is obtained by an statistical and geometri-
cal procedure as is depicted in Fig. 3 and explained as
follows:

1. A set of seed points and local neighborhoods Ln are
taken from S. See Fig. 4(a).

2. The minimum curvature direction K̂min of Ln, be-
ing collinear with a generatrix of the cone, is found
by fitting a paraboloid p(x, y) = a+ bx+ cy+dxy+
ex2 +fy2 and calculating the eigenvectors of it Hes-

sian matrix H(p) =

[
2e d
d 2f

]
. See Fig. 4(b)
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(c) Statistical axis and radius of
the cylinder

Figure 1: Initial estimation of cylinder parameters

 

   

     

 

    

Figure 2: Calculation of point-cylinder distance
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Figure 3: Procedure for obtaining the Initial Guess of
conical sample
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3. Ap∗ being the first approximation to Ap, is obtained
by averaging the crossing points of all lines defined
by a seed point and its corresponding K̂min. Notice
that Ap∗ represents an statistical apex. See Fig.
4(c).

4. By finding the center of gravity of the center of the
circumferences passing trough the points p1 = Ap∗+
λê1, p2 = Ap∗ + λê2 and p3 = Ap∗ + λê3, where
λ ⊂ R and ê1, ê2, ê3 are unitary vectors in direction
of minimum curvatures, the initial guess of the axis
vector v̂∗ is calculated. See Fig. 4(d).

5. The initial estimation of ψ is taken as the average
of the angles between the vectors K̂min and v̂∗. See
Fig. 4(e).

3.2.2 Point-Cone Distance Estimation

The distance di from a point pi and a cone is calculated
by solving the Eq. (7) for α, β and γ ⊂ R.

(pi −Ap) =
[
û n̂1 n̂2

] αβ
γ

 (7)

Where û is a rotation of v̂ around n̂1 an angle −ψ,
n̂1 = ŵ×v̂

‖ŵ×v̂‖ and n̂2 = û×n̂1

‖û×n̂1‖ as is shown in the Fig. 5.

Finally di = β is the signed distance between pi and the
cone.

3.3 Ellipsoid Fitting

As is shown in Table 1, an ellipsoid in general position is
defined by the center coordinates (Cx, Cy, Cz), the semi
axes Rx, Ry, Rz and the Euler angles θx, θy, θz.

3.3.1 Initial Guess for Ellipsoid

The first approximation to the parameters of the ellipsoid
can be obtained with the following procedure:

1. A general quadric surface is defined by Eq 8.

a1x
2 + a2y

2 + a3z
2 + a4xy + a5xy + a6yz + a7x

+a8y + a9z + a10 = 0

(8)

Rearranging Eq. 8 appropriately ([18]), it can be
written as:

b1(x2 + y2 − 2z2) + b2(x2 − 2y2 + z2)

+4b3xy + 2b4xz + 2b5yz + b6x

+b7y + b8z + b9 = x2 + y2 + z2
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Figure 4: Initial estimation of cone parameters
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Figure 5: Calculation of point-cone distance

In compact form, the above equation is:

ΛB = R (9)

If the n points of S are taken into account, Λ is a
(9× n) matrix where its row i-th is:

x2i + y2i − 2z2i , x
2
i − 2y2i + z2i , 4xiyi, 2xizi,

2yizi, xi, yi, zi, 1

R is a (n× 1) vector with row i-th: x2i + y2i + z2i . B
is the coefficients vector and it can be obtained by
solving the linear system of Eq. 9. As the system is
overspecified, a least squares solution is calculated
the with the pseudo-inverse matrix of Λ, Λ+:

B = Λ+R

2. The initial approximation of the center coordinates
Cx
∗, Cy

∗, Cz
∗, the semi axes Rx

∗, Ry
∗, Rz

∗ and the
Euler angles θ∗x, θ

∗
y, θ
∗
z , are obtained from the sub-

discriminant A in the matrix notation of a general
oriented quadric:

XTAX + V X + d = 0 (10)

where

A =

 a1 1
2a4

1
2a5

1
2a4 a2

1
2a6

1
2a5

1
2a6 a3


V = (a7 a8 a9)T

d = a10

X = (x y z)T

The eigenvectors of A represent the axes of the el-
lipsoid, then θ∗x, θ

∗
y and θ∗z can be calculated. The

eigenvalues of A are proportional to 1
Rx

∗2 , 1
Ry

∗2 and
1

Rz
∗2 ([19]), then Rx

∗, Ry
∗ and Rz

∗ can be obtained.
The initial guess of the ellipsoid center can be ob-
tained as [Cx

∗, Cy
∗, Cz

∗] = −A−1V .

 

   

 
  

      

      

 

 

  

      

      

 

 

 

  

      

      
      

     
      

      

     

 

 

   

   

      

      

 

 

 

Figure 6: Calculation of point-ellipsoid distance

3.3.2 Point-Ellipsoid Distance Estimation

We present the following conjecture (Fig. 6)
Conjecture. Let E be an ellipsoid centered in

(Cx, Cy, Cz), with Euler angles θx, θy, θz and semi axes
Rx, Ry, Rz. Let pi = (xi, yi, zi) be a point in R3. Then,
an ellipsoid E′ exists with the same center and orien-
tation to E, but with semi axes R′x = Rx + di, R

′
y =

Ry + di, R
′
z = Rz + di, that contain pi. If E∗ and pi

are translated to the origin and aligned with the princi-
pal axes by a rigid transformation, the following equation
can be posed:

x2i
(Rx + di)2

+
y2i

(Ry + di)2
+

z2i
(Rz + di)2

= 1 (11)

Rearranging (11):

k6d
6
i + k5d

5
i + k4d

4
i + k3d

3
i + k2d

2
i + k1di + k0 = 0 (12)

where kj = f(xi, yi, zi, Rx, Ry, Rz) with j = 0, 1, ..., 6

The minimum absolute real root of the polynomial in
Eq. (12) corresponds to the minimum signed distance
from pi to E.

4 Results and Discussion

In order to test our fitting routines two study cases were
proposed as follows.

4.1 Data Set 1. Frog

In order to prove the algorithm for fitting ellipsoids, a
subset of the frog shown in Fig. 7(a) was taken. In Fig.
7(b) the highlighted points to which the ellipsoids were
fitted can be seen. The result of the fitting process is
presented in Figs. 7(c) and 7(d), with the history of the
fitting error appearing in Fig. 8.
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A good initial guess found by an algebraic approach,
let to a fast convergence of the algorithm. In Fig. 8 it
may be seen that the longest fitting process required of 12
iterations for finding the optimum according to the ter-
mination criteria. Fig. 9 shows the initial estimation of
the ellipsoid and the best geometrical ellipsoid fit. Notice
that the initial surface wraps most of the points, giving
a good starting point for the LM algorithm. Table 2
presents a comparison between the the initial ellipsoids
and the optimized ones.

(a) Frog model

(b) Frog point cloud

(c) Ellipsoid fitting results. View 1

(d) Ellipsoid fitting results. View 2

Figure 7: Ellipsoid fitting results. Public data set ob-
tained from Thingiverse® ([20]).

4.2 Data Set 2. Fan

To test the cylinder and cone fitting algorithms some
parts of the fan shown in Fig. 10(a) were processed with

Figure 8: Behavior of objective function in the optimiza-
tion process

Figure 9: Comparison between initial guess and opti-
mization results in ellipsoid fitting

Data Eye Pupil
Number of Points 1215 667
Number of Iterations 8 12
Final Residual 1.5e-4 2.1e-5
Radius 1 Variation 67.7% 86.6%
Radius 2 Variation 47.1% 177.9%
Radius 3 Variation 152.4% 245.9%
Angle 1 Variation 2.9% 25.1%
Angle 2 Variation 11.1% 15.9%
Angle 3 Variation 78.2% 7.1%
Center Variation 2.9278 1.5143

Table 2: Fitting Results in Frog’s study case
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Data Shaft Air Air
Number of Points 235 827 908
Number of Iterations 3 4 6
Final Residual 1.6e-5 2.0e-2 2.3e-4
Axis Variation 2.1e-8 1.53 0.92
Radius Variation 4.5% N/A N/A
Apex distance IG vs LM N/A 38.23 367.51
Angle Variation N/A 10.5% 28.5%

Table 3: Fitting Results in Fan’s study case

the algorithms. Fig. 10 displays the results of the opti-
mization process of two conical surfaces and one cylinder.
As in the case of ellipsoids, the algorithm found the op-
timal surface after a few iterations. The history of the
optimized function for the Fan Data Set is shown in Fig.
11. The cones (Fig. 12) required 4 iterations while the
cylinders (Fig. 13) required 6 iterations. The good initial
estimation of the surfaces allows the convergence of the
algorithm and to reduce the number of iterations, there-
fore saving computing resources. Geometrical statistics
for the Fan Data Set appear in Table 3.

5 Conclusions and Future Work

This article presents the fitting of analytic surfaces
(such as cylinders, cones and ellipsoids) in the sense
of mathematical optimization. The objective function
for each surface was implemented in terms of the real
geometric distance. In the case of cylinder and conical
surfaces this metric is formulated and calculated easily.
However, in the ellipsoid case the measurement of
the distance between a point and the surface is not
trivial. In response to this situation this work presented
a novel methodology to calculate this distance. The
addressed results allow to check that the proposed
distance calculation works fine.

The routines for the initial guess of the surfaces
were implemented using geometrical and statistical
procedures. The study cases allow to prove that the
iterative optimization algorithms converge fast with a
good initial guess.

Future work includes the extension of the optimization
strategies to other analytic and to free form parametric
surfaces.
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