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Abstract: Visualization of vector fields plays an important role in research activities nowadays. Web applications allow
a fast, multi-platform and multi-device access to data, which results in the need of optimized applications to be
implemented in both high-performance and low-performance devices. Point trajectory calculation procedures
usually perform repeated calculations due to the fact that several points might lie over the same trajectory. This
paper presents a new methodology to calculate point trajectories over highly-dense and uniformly-distributed
grid of points in which the trajectories are forced to lie over the points in the grid. Its advantages rely on
a highly parallel computing architecture implementation and in the reduction of the computational effort to
calculate the stream paths since unnecessary calculations are avoided, reusing data through iterations. As
case study, the visualization of oceanic currents through in the web platform is presented and analyzed, using
WebGL as the parallel computing architecture and the rendering Application Programming Interface.

1 INTRODUCTION

Vector field visualization has an important role in
the automotive and aero-spatial industries, maritime
transport, engineering activities and others. It allows
the detection of particularities of the field such as vor-
texes or eddies in flow fields, but also permits explor-
ing the entire field behavior, determining e.g., stream
paths.
Particularly, ocean flow visualization is important in
maritime transport and climate prediction, since the
movement of huge water masses can produce temper-
ature variations of the wind currents, and, as a result,
its visualization becomes determinant to represent the
ocean’s behavior.
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Figure 1: flow visualization of Atlantic ocean currents in
WebGL. Hierarchical integration was used to reduce the to-
tal number of iterations required to calculate the paths.

With the growth of a multiverse of devices, devel-
opment of multi-platform applications has become a
common goal for developers. The web is being es-
tablished as a universal platform in order to unify
the development and execution of applications. How-



ever, challenges arise since applications must be opti-
mized in order to be implemented as well as on high-
performance as on low-performance devices.
The contribution of this paper is a new methodology
to calculate point trajectories of a highly dense grid
of points over n-dimensional vector fields, in which
the trajectories are forced to pass over the grid points
(Figure 1). This allows to implement a hierarchical
integration procedure (HSW11), which takes in ad-
vance previous calculated data in order to avoid repet-
itive and unnecessary calculations, and reduces the
complexity of the algorithm from linear to logarith-
mic. The procedure is suitable to be implemented
over highly parallel computing architectures due to
independent calculations and the number of computa-
tions to be performed. As a result, we employ WebGL
as the parallel computing engine to calculate the iter-
ations, using images in order to store the data through
the iterations.
Different from other procedures, in which the calcula-
tion of the trajectories is performed for each point in
particular, our methodology allows to merge its cal-
culation for all the points in which the field is dis-
cretized. Therefore, the number of unnecessary com-
putations is critically reduced.
This paper is organized as follows: Section 2 presents
the related work. Section 3 exposes the methodology
in which the contribution of this work is explained.
Section 4 presents a case of study in oceanic currents
and finally the conclusions of our work are presented
in section 5.

GLOSSARY

API Application Programming Interface
CUDA Compute Unified Device Architecture

PL Piecewise Linear
SIMD Single Instruction Multiple Data
GLSL Graphic Library Shading Language

WebGL Web Graphic Library
LIC Line Integral Convolution

GPU Graphics Processing Unit
FBO FrameBufer Object

Shader Instructions to be performed in the
GPU

2 LITERATURE REVIEW

2.1 Flow Visualization

A great amount of methodologies to visualize vec-
tor fields (flow fields) has been developed among the

last decades. Geometric-based approaches draw icons
on the screen whose characteristics represent the be-
havior of the flow (as velocity magnitude, vorticity,
etc). Examples of these methodologies are arrow
grids (KH91), streamlines (KM92) and streaklines
(Lan94). However, as these are discrete approaches,
the placement of each object is critical to detect the
flow’s anomalies (such as vortexes or eddies), and
therefore, data preprocessing is needed to perform
an illustrative flow visualization. An up-to-date sur-
vey on geometric-based approaches is presented by
(MLP+10).

However, in terms of calculating those trajectories for
determined points in the field, the procedures usu-
ally compute for each point the integrals, and, as a
result, the procedures are computationally expensive
for highly dense data sets.

On the other hand, texture-based approaches repre-
sent both a more dense and a more accurate visualiza-
tion, which can easily deal with the flow’s feature rep-
resentation as a dense and semi-continuous (instead of
sparse and discrete) flow visualization is produced. A
deep survey in the topic on texture-based flow visual-
ization techniques is presented by (LHD+04).

An animated flow visualization technique in which a
noise image is bended out by the vector field, and then
blended with a number of background images is pre-
sented by (VW02). Then, in (VW03) the images are
mapped to a curved surface, in which the transformed
image visualizes the superficial flow.

Line Integral Convolution (LIC), presented by
(CL93), is a widely implemented texture-based flow
visualization procedure. It convolves the associated
texture-pixels (texels) with some noise field (usually
a white noise image) over the trajectory of each texel
in some vector field. This methodology has been ex-
tended to represent animated (FC95), 3D (LMI04)
and time varying (LM05; LMI04) flow fields.

An acceleration scheme for integration-based flow vi-
sualization techniques is presented by (HSW11). The
optimization relies on the fact that the integral curves
(such as LIC) are hierarchically constructed using
previously calculated data, and, therefore, avoid un-
necessary calculations. As a result, the computational
effort is reduced, compared to serial integration tech-
niques, from O(N) to O(logN), where N refers to
the number of steps to calculate the integrals. Its
implementation is performed on the CUDA architec-
ture, which allows a GPU-based parallel computing
scheme, and therefore the computation time is criti-
cally reduced. However, it requires, additionally to
the graphic APIs, the CUDA API in order to reuse
data, and hence, execute the procedure.



2.2 WebGL literature review

The Khronos Group released the WebGL 1.0 Specifi-
cation in 2011. It is a JavaScript binding of OpenGL
ES 2.0 API and allows a direct access to GPU graph-
ical parallel computation from a web-page. Calls
to the API are relatively simple and its implementa-
tion does not require the installation of external plug-
ins, allowing an easy deployment of multi-platform
and multi-device applications. However, only images
can be transfered between rendering procedures using
FBOs.
Several WebGL implementations of different appli-
cations have been done such as volume rendering,
presented by (CSK+11) or visualization of biologi-
cal data, presented by (CADB+10). However, for the
best of our knowledge, no other implementation that
regards to LIC flow visualization on WebGL has been
found in the literature or in the Web.

2.3 Conclusion of the Literature Review

WebGL implementations allow to perform applica-
tions for heterogeneous architectures in a wide range
of devices from low-capacity smart phones to high-
performance workstations, without any external re-
quirement of plug-ins or applets. As a result, opti-
mized applications must be developed. In response
to that, this work optimizes the calculation of point
trajectories in n-dimensional vector fields over highly
dense set of points, forcing the trajectories to lie over
the points in the set. As a consequence, previously
calculated data can be reused using hierarchical inte-
gration, avoiding unnecessary calculations and reduc-
ing the complexity of the algorithm.

3 METHODOLOGY

The problem that we address in this work is: given
a set of points and a vector field that exists for all of
these points, the goal is to find the finite trajectory that
each point will reproduce for a certain period of time.
Normal calculation of point trajectories in n-
dimensional vector fields, requires to perform numer-
ical integration for each particular point in order to re-
produce the paths. In the case of a dense set of points,
the procedures suffers from unnecessary step calcula-
tions of the integrals, since several points in the field
might lie over the same trajectory of others. Hence,
some portions of the paths might be shared. Figure 2
illustrates this situation.
In order to avoid repeated computations, we propose a
methodology to calculate trajectories of highly dense
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Figure 2: Trajectory overlapping in several point paths.

grid of points, in which the paths are forced to lie over
the points in the grid, i.e., the paths are generated as a
PL topological connection between a set of points that
approximates the trajectory. With this, hierarchical
integration (HSW11) is employed to iteratively com-
pute the paths and reuse data through the iterations.

3.1 Hierarchical Integration

Since line integration over n-dimensional vector fields
suffers from repeated calculations, hierarchical inte-
gration (HSW11) only calculates the necessary steps
and then iteratively grows the integrals reusing the
data. This reduces the computational complexity of
the algorithm from O(N), using serial integration, to
O(logN). The procedure is summarized as follows.
For an arbitrary point in the field y ∈ Y with Y ⊆ Rn,
let us define f : Y → Rm, as an arbitrary line integral
bounded by its trajectory cy. Consider its discrete ap-
proximation as described in equation 1.

f (y) =
Z

cy

w(x(s))ds≈
t

∑
i=1

w(x(i∗∆s))∆s (1)

where t is the maximum number of steps required to
reproduce cy with ∆s the step size. x(0) = y is the
starting point of the trajectory to be evaluated and w
is the function to be integrated. The integration pro-
cedure is performed for all points y ∈ Y in parallel.
We assume that ∆s = 1 , ∀y ∈ Y and therefore f (y)≈

t
∑

i=1
w(x(i)). The algorithm starts with the calculation

of the first integration step for all the points in the
field. Namely,

f0(y) = w(x(1)) (2)
It is required to store the last evaluated point x(1) over
the growing trajectory and the partial value of the in-
tegral for all the points y in order to reuse them in the
following steps to build the integral. With this, the
next action is to update the value of the integral, us-
ing the sum of the previously calculated step at y and
the step evaluated at its end point (x(1)). Namely,

f1(y) = f0(x(0))+ f0(x(1)) (3)



In this case, the end point of f1(x(0)) is x(2) as the
calculation evaluates f0(x(1)). Therefore, the next it-
eration must evaluate f1 at x(0) and x(2) in order to
grow the integral. In general, the k’th iteration of the
procedure is calculated as follows:

fk(y) = fk−1(x(0))+ fk−1(x(end)) (4)

It is important to remark that each iteration of this pro-
cedure evaluates two times the integration steps eval-
uated in the previous iteration. As a result, the to-
tal number of integration steps t is a power of two,
and the hierarchical iterations required to achieve this
evaluations is reduced by a logarithmic scale, i.e.,
k = log2 t. Also notice that the evaluation of the vec-
tor field is preformed only once, in the calculation of
the first step, which avoids the an unnecessary eval-
uation of the vector field, which are computationally
demanding for complex vector fields. Figure 3 illus-
trates the procedure up to four hierarchical steps.
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f1(y)

f3(y)

f3(y)

f4(y)

Figure 3: Exponential growth of hierarchical integration
methodology. At step 3, the procedure evaluates 8 serial
integration steps, meanwhile at step 4 it evaluates 16 serial
integration steps.

3.2 Stream Path Calculation

In order to perform the visualization of a vector field
using trajectory paths, lets assume a homogeneously
distributed set of points

Y = {y, z ∈ Rn|y− z = ∆y,
∆y is constant ∀z adjacent to y} (5)

and a n-dimensional vector field F : Rn → Rn. The
goal is to calculate for each point y ∈ Y , the PL ap-
proximation of the trajectory that the point will de-
scribe according to F , defined by the topological con-
nection of a particular set of points Ay ⊂ Y . Figure 4
illustrates the approximation.
The trajectory cy of an arbitrary point y in the field is
defined as

cy = xy(s) =
Z

l
F(xy(s))ds (6)

y

Figure 4: PL approximation of the trajectory by the proce-
dure.

where l represents a determined length of integration.
Using hierarchical integration, for each point in the
field the first step of the PL trajectory is calculated,
this is, the corresponding end point of the first step of
the integral is computed using a local approximation
of the point in the set of points.

xy(0) = y (7)

y′ = xy(0)+ γF(xy(0)) (8)

xy(1) = arg
xy

min(Y − y′) (9)

where y′ is the first iteration result of the Euler inte-
gration procedure, γ is a transformation parameter to
adjust the step given by the vector field to the local
separation of the set of points and xy(1) is defined as
the closest point in Y that approximates y′. The value
of xy(1) is then associated (and stored) to y. The set
Ay contains the reference to the points of the trajec-
tory that describes y, and therefore for equation 8, Ay
is defined as:

A0
y = {xy(1)} (10)

Similarly to the hierarchical integration procedure,
the next steps are performed to join the calculated
steps in order to grow the trajectories. Therefore, for
each point y, its computed trajectory is joint with its
last point’s trajectory, this is, for the step in equation
8.

A1
y = A0

y ∪A0
xy(1) = {xy(1),xy(2)} (11)

Note that each iteration of the procedure will increase
the number of points in the trajectory by a power of
two. Therefore, the growth of the paths is exponential.
In general, the k’th iteration is calculated as

Ak
y = Ak−1

y ∪Ak−1
xy(k2) = {xy(1),xy(2), . . . ,xy((k +1)2)}

(12)
The accuracy of the procedure is strongly determined
by the discretization (density) of Y , since it is directly
related to the step size in the integration procedure,
i.e., the approximation of the first step end-point is
determinant. In order to increase the accuracy of the
procedure, the computation of the first step can be cal-
culated with e.g., a 4th order Runge Kutta numerical
integration, however, it might significantly increase



the computation time of the procedure if the compu-
tation time of the vector field function is relevantly
high.

3.3 Time-Varying Data

In terms of unsteady flow fields, i.e., time-varying
vector fields, the generation of the trajectories might
seem difficult. In that case, as proposed in (HSW11),
time is considered another dimension of the vector
field. Therefore, the set of points is formed with the
position coordinates of the points and discretized time
steps, producing an n+1-dimensional grid of points.
It is also determinant for the accuracy of the proce-
dure that the density of the discretization set is high,
in order to increase the precision of the approximated
trajectories.

3.4 Animation

Dynamic scenes are demanding in most of the visu-
alization procedures. We consider in this section two
kinds of dynamic scenes. A first kind of procedures
refers to when the vector field is steady, i.e., it remains
constant through the time. In this case, the goal is to
visualize the motion of the particle all across the field.
Since the paths for all the points in the field are cal-
culated, the representation of the particle’s trajectory
through the frames is simple. Consider a point y and
its approximated trajectory given by the set of points
Ay. Notice, as described in section 3.2, that the first
point of the set Ay [1], i.e., xy(1), represents the next
point in which y will lie in a determined period of
time. As a result, at a posterior frame, the displayed
trajectory should be Axy(1).
The second type of procedure refers when vector field
is varying with the time. Complementary to the ani-
mation stated before, a second kind of dynamic scene
is comprised since it is also important to visualize the
changes that a trajectory suffers in the time. In the
case of time varying data, as in the steady case, all the
points have an associated trajectory. In order to ani-
mate the change of one trajectory, from one frame to
another, the trajectory that will be represented refers
to the one of the point with the same point coordinate,
but the next time coordinate. i.e., Ay,t+∆t .

4 CASE STUDY

In this section the visualization of 2D oceanic cur-
rents using the proposed methodology is performed.
The implementation has been done in WebGL, so
the methodology’s parallel computing capabilities are

fully used. WebGL offers the possibility to use the
rendering procedure to calculate images (textures)
through Framebuffer Objects, and then use those ren-
dered textures as input images for other rendering pro-
cedures. As a consequence, for this implementation
we associate the pixels of an image to the points in the
field, and therefore, the rendering procedure is used
to compute the different hierarchical iterations, which
are stored in the color values of the pixels. Finally, the
trajectories are hierarchically constructed. The imple-
mentation was performed on an Intel Core2Quad 2.33
GHz with 4 GB of RAM and with a nVidia GeForce
480.

4.1 Implementation

For a w×h grid of points (w and h being its width and
height respectively in number of elements), images
of size w× h in pixels are used, in which a particu-
lar pixel (i, j) is associated with the point (i, j) in the
grid. Since for each particular pixel, a four compo-
nent vector is associated, i.e., a vector of red, green,
blue and alpha values, each value can be associated
as a particular position of another pixel. This is, if the
value of a pixel is r, then its associated pixel coordi-
nates are given by

i = r mod w (13)

j =
r− i

w
(14)

where mod represents the remainder of the division of
r by w. As a result, if for each hierarchical integration,
only the last point of the trajectory is to be stored, then
one image can store four hierarchical iterations.
For the zero’th hierarchical iteration, and the image
I to store its calculation, the value of a pixel (i, j) is
given by

i0 = i+ kFi(i, j) (15)
j0 = j + kFj(i, j) (16)

(17)

where the parameter ’0’ refers to the hierarchical step
0, k represents the scaling factor of the vector field,
and Fi(i, j) represents the component of the vector
field over the direction of i, evaluated at the point
(i, j). The vector field used in this case study is shown
in figures 5(a) for the direction of i and 5(b) for the di-
rection of j.
In general, the k’th step is calculated as follows,

inext = I(i, j,k−1) mod w (18)

jnext =
I(i, j,k−1)− inext

w
(19)

I(i, j,k) = I(inext , jnext ,k−1) (20)



(a) (b)
Figure 5: Global information. Gray-scale of the oceanic currents magnitude in the (a) longitudinal and (b) latitudinal direc-
tions, of the 1st January of 2010. Images from the NASA’s ECCO2 project.

In the case that k is greater than four, then more im-
ages are used to store the values of the hierarchical
iterations.
With that, all the desired steps are stored in the nec-
essary images. In order to build the trajectories from
those images, a generic line, formed by k2 points, is
required. Each point in the trajectory needs to have an
associated value, that refers to its order in the trajec-
tory, i.e., the first point in the trajectory has an index
0, the second point the value 1 and so on. With this
index associated to each point of the trajectory of the
point y, the position of each point is calculated as fol-
lows.

while(1) do (21)
HL = f loor(log2(index)) (22)

index = index−2HL (23)
y = evalHL(HL,y) (24)

i f (index < 0.5) (25)
yend = y (26)

Finish (27)
(28)

Where HL is the hierarchical level that needs to be
evaluated and the function evalHL() returns the new
position of y a point, for a particular hierarchical level.

4.2 Results

A general grid of 2048× 2048 points is used as the
world’s discretization. The vector field information
was acquired from the NASA’s ECCO2 project (see
figure 5), in which high-resolution data is available.
Only six hierarchical levels, i.e., 26 = 64 points in the
trajectory are used for each point in the field, as a re-
sult only 2 images are required to calculate the trajec-
tories.
The time needed to compute all the hierarchical levels
(from 0 to 6) was 3 ms. The visualization was per-
formed to 10000 equally-distributed points all over

the field, which means that 64000 points need to be
transformed by the trajectory computation. The com-
putation time of those trajectories was 670 ms (Final
results are shown in Figure 6).
In order to compare the visualization with the
methodology, the LIC visualization of the vector field
using the methodology that we proposed in (ACS+12)
was used as a background image. It shows that for
this level of discretization (2048× 2048), the visual-
ization is correct and accurate. However, sparse data
might produce inaccurate results.

5 CONCLUSIONS AND FUTURE
WORK

In this paper, we have presented a novel methodol-
ogy to calculate trajectories of points in highly dense
point sets, in which the trajectories are formed as
piecewise-linear connections of the points in the set.
This allows to merge the calculation of the different
trajectories, and use iteratively the data to avoid re-
peated and unnecessary calculations. The procedure
is suitable to be implemented in parallel architectures
such as OpenCL or CUDA, since the calculations of
the integrals at any moment is independent from the
calculation of the other points.
As a result, thanks to the use of hierarchical integra-
tion, the procedure reduces the computational com-
plexity of the calculation of the trajectories from lin-
ear to logarithmic. The methodology deals with n-
dimensional and time-varying data and animated vi-
sualization can be easily achieved due to the fact that
the trajectories are calculated for all the points in the
set.
Since the procedure performs an approximation of
the trajectories using a piecewise-linear connection of
the points in the set, the accuracy of the algorithm is
strongly influenced by the discretization distance be-
tween the points, because this distance determines the
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Figure 6: Comparison between different visualizations of the oceanic currents using 6 hierarchical steps.

minimum integration step to be used.
An active procedure in order to adjust the position of
the points in the grid through the iterations, and then
increase the accuracy of the calculated trajectories is
proposed as future work of this article.
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