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Abstract: Hessian Locally Linear Embedding (HLLE) is an algorithm that computes the nullspace of a Hessian func-
tional H for Dimensionality Reduction (DR) of a sampled manifold M. This article presents a variation of
classic HLLE for parameterization of 3D triangular meshes. Contrary to classic HLLE which estimates local
Hessian nullspaces, the proposed approach follows intuitive ideas from Differential Geometry where the local
Hessian is estimated by quadratic interpolation and a partition of unity is used to join all neighborhoods. In
addition, local average triangle normals are used to estimate the tangent plane TxM at x ∈ M instead of PCA,
resulting in local parameterizations which reflect better the geometry of the surface and perform better when
the mesh presents sharp features. A high frequency dataset (Brain) is used to test our algorithm resulting in a
higher rate of success (96.63%) compared to classic HLLE (76.4%).

1 INTRODUCTION

Dimensionality Reduction (DR) takes a d-manifold
M ⊂RD and computes a map h : M →Rd such that: 1)
h is bijective and 2) h and h−1 are continuous. There-
fore, h is an homeomorphism and the image of M un-
der h is a DR of M.

Mesh Parameterization can be seen as a particular
case of DR where M ⊂ R3 is a triangular mesh of a
2-manifold (i.e. D = 3 and d = 2). Triangular meshes
are very common data structures in CAD CAM CAE
applications and parameterization of such meshes is
relevant for areas such as: reverse engineering, tool
path planning, feature detection, etc.

A natural way to handle Mesh Parameterization is
to attack the problem from the point of view of DR.
Classic HLLE (Hessian Locally Linear Embedding)
(Donoho and Grimes, 2003) is an algorithm which
proposes to compute a DR of M by computing the
eigenvectors of a Hessian functional. This article pro-
poses a modification for the classic HLLE which can
be applied to triangular meshes. Our proposed ap-
proach computes a partition of unity on M and esti-
mates the tangent Hessian on each neighborhood Ni of
M by interpolating any function f with second degree
polynomials. In addition, local average triangle nor-
mals are used to compute the tangent local plane TxM
of M which is more consistent than Principal Compo-
nent Analysis (PCA) specially for surfaces with sharp

features.
The remainder of this article is organized as fol-

lows: Section 2 reviews the relevant literature. Sec-
tion 3 describes the implemented methodology. Sec-
tion 4 discusses and compares the results of the pro-
posed approach against classic HLLE. Section 5 con-
cludes the paper and introduces what remains for fu-
ture work.

2 LITERATURE REVIEW

Given a set of points X = [x1,x2, . . . ,xn] ⊂ RD ly-
ing on a d-manifold M, DR seeks a homeomorphic
function h : M → Rd such that the set of points
[h(x1),h(x2), . . . ,h(xn)] ⊂ Rd compose a DR of X .
For the rest of the article we assume D = 2 and d = 3,
turning the DR problem into a Mesh Parameterization
one.

The most popular algorithm for DR is the Princi-
pal Component Analysis (PCA). PCA is a linear al-
gorithm which parameterizes M by projecting X onto
a plane, which is only a valid parameterization if h is
linear. However, this assumption limits the algorithm
making it useful only for trivial cases.

For nonlinear manifolds, other approaches have
been proposed in the literature. For example, Isomap
(Tenenbaum et al., 2000) attempts to compute an
isometric parameterization of M by computing the'5
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geodesic distances in M and reproducing them in the
parameter space. Isomap has been succesfully ap-
plied in the context of Mesh Parameterization (Sun
and Hancock, 2008; Ruiz et al., 2015). Usually a
shortest path algorithm such as Dijktra’s or Floyd’s
is used to estimate geodesic distances which fail for
non-convex manifolds such as surfaces with holes.

Spectral theory is an important branch of graph
theory where several DR algorithms have been de-
rived. Laplacian Eigenmaps (Belkin and Niyogi,
2003) computes the Laplacian matrix which acts over
any function defined on the graph of M measur-
ing its curvature. Diffusion Maps (DM) (Lafon and
Lee, 2006) computes the Markov matrix which esti-
mates the transition probability between vertices of
the graph of M. DR is achieved in both cases by com-
puting the eigenvectors of these matrices respectively.
Spectral algorithms preserve topologic properties of
the underlying graph keeping adjacent points near in
the parameter space. However, these algorithms usu-
ally fail to preserve geometric properties which be-
comes important in Mesh Parameterization applica-
tions.

Other DR algorithms focus on a more local ap-
proach where each neighborhood is first parame-
terized locally and then all the neighborhoods are
aligned in the parameter space trying to preserve ge-
ometric properties. Locally Linear Embedding (LLE)
(Roweis and Saul, 2000) expresses each point in M
as a linear combination of its neighborhs and then
computes the DR attempting to preserve such struc-
ture in the parameter space for all the points. Simi-
larly, Local Tangent Space Alignment (LTSA) (Zhang
and Zha, 2002) projects each neighborhood onto the
tangent plane via PCA and then attempts to align
all the neighborhoods in the parameter space using
rigid transformations. These algorithms highly pre-
serve geometric properties and perform well for non-
convex manifolds. However, they expect that each
neighborhood lies on a linear subspace which fails at
sharp features of 3D meshes resulting in non-bijective
parameterizations. Most Mesh Parameterization algo-
rithms also follow this idea by aligning triangles in the
parameter space preserving geometric properties for
each triangle (Floater and Hormann, 2005; Hormann
et al., 2007).

2.1 Classic Hessian Locally Linear
Embedding (HLLE)

Classic Hessian Locally Linear Embedding (Donoho
and Grimes, 2003) is a DR algorithm which com-
bines ideas from LLE and LTSA with ideas from di-
crete differential geometry. HLLE computes a local

parameterization of each neighborhood using PCA.
But instead of aligning all neighborhoods by a rigid
mapping, HLLE estimates a Hessian functional H on
M (similar to Laplacian Eigenmaps which estimates a
Laplacian functional) and computes the DR of M by
estimating the kernel of H , i.e. ker(H ) = { f |H f =
0}.

In order to compute H , the tangent Hessian Htan
x

must be defined (Donoho and Grimes, 2003):

Htan
x f =




∂2 f
∂b2

1

∂2 f
∂b1∂b2

∂2 f
∂b2∂b1

∂2 f
∂b2

2



 , (1)

where b1,b2 ∈ R3 is an orthonormal basis for the
tangent plane TxM at x. If f = { f1, f2, . . . , fn} with
fi = f (xi) is the function f restricted to the set of
points X , then the Hessian functional H is defined
as (Donoho and Grimes, 2003):

H f =
∫

M
‖Htan

x f‖2
F dA =

n

∑
i=1

∫

Mi
φi‖Htan

x f‖2
F dA

≈ fTKf (2)

where f ∈ C 2(M) is a smooth function defined on
M, ‖ · ‖F is the Frobenius norm, dA is a surface dif-
ferential, (Mi, φi) is a partition of unity of M and
K= (K1+K2, . . . ,Kn) is the discrete Hessian estima-
tor computed by adding each local Hessian estimator
Ki at each neighborhood Ni.

Since the matrix K approximates the Hessian
functional on M, the kernel of H can be estimated by
solving the following minimization problem (Donoho
and Grimes, 2003):

h1 = argmin
f

fTKf, h2 = argmin
f

fTKf

s.t.
‖hi‖= 1, hi ⊥ 1, h1 ⊥ h2,

i = 1,2

(3)

where h1 = [h1(x1), . . . ,h1(xn)]T and h2 =
[h2(x1), . . . ,h2(xn)]T are the respective coordi-
nates of X in the parameter space. The constant
function f (x) = c, c ∈ R, is in the kernel of H (the
Hessian of any constant function is 0 as per eq. (1)).
Therefore, the constraint hi ⊥ 1 avoids collapsing
all the vertices to a single point. The constraint
h1 ⊥ h2 guarantees linear independence which avoids
collapsing the surface into a line. The constraint
‖hi‖= 1 fixes the scale of the solution.

Eq. (3) can be solved by computing the eigenvec-
tors of K associated to the second and third lowest
eigenvalue (the eigenvector associated to the lowest
eigenvalue corresponds to the constant function 1).'5
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Basically, classic HLLE algorithm consists of: 1)
estimate the local Hessian functionals K1,K2 . . . ,Kn
and the Hessian functional K = K1 +K2 + · · ·+Kn
and 2) compute the eigenvectors of K with the small-
est eigenvalue (Donoho and Grimes, 2003).

Like LLE and LTSA, classic HLLE may present
problems for datasets with sharp features resulting in
non-bijective mappings. In addition, the computation
of the matrix Ki which estimates the local Hessian
functional H |i is not consistent with the definition in
eq. (2) as only Hessian nullspaces are computed.

Conclusions of the literature review. In Mesh
Parameterization applications, the preservation of ge-
ometric properties is a priority over topology preser-
vation. Algorithms such as Laplacian Eigenmaps
and DM present highly distorted parameterizations.
Therefore, algorithms that preserve geometric prop-
erties such as Isomap, LLE, LTSA and classic HLLE
are more effective. However, these algorithms present
drawbacks such as the inability to work with con-
vex datasets or high frequency datasets, which are
very common in engineering applications. Mesh Pa-
rameterization algorithms do not face such problems.
However they are only restricted to triangular meshes.

To partially overcome these problems, this arti-
cle proposes a variation of the classic HLLE algo-
rithm for parameterization of triangular meshes. Clas-
sic HLLE algorithm is selected for this purpose since
such algorithm has provided better experimental re-
sults for Mesh Parameterization than other DR algo-
rithms (Ruiz et al., 2015). Also, since HLLE is a DR
algorithm, the proposed approach can be easily ex-
tended to meshes composed of non-triangular faces
posing a potential advantage over traditional Mesh
Parameterization algorithms.

3 METHODOLOGY

In order to parameterize M, we propose to follow the
same idea of the classic HLLE which is described in
section 2.1 (Donoho and Grimes, 2003): 1) estimate
the tangent Hessian Htan

x and the Hessian functional
Ki at each Ni, 2) estimate the Hessian functional H on
M as per eq. (2) and 3) estimate the kernel of H for
Mesh Parameterization via eigendecomposition. The
algorithm is briefly described below:
1. For each neighborhood estimate the tangent plane

TxM at xi by computing the local average normal
vector ni and compute a local parameterization Oi
by projecting Ni onto TxM.

2. Estimate the tangent Hessian Htan
x f and ‖Htan

x f‖2
F

at xi by quadratic interpolation.

3. Apply the partition of unity φi to estimate the local
Hessian functional

∫
Mi

φi‖Htan
x ‖2

FdA ≈ fTKif.

4. Estimate the global Hessian functional H ≈ K =
∑n

i=1 Ki.
5. Compute two orthogonal functions h1 and h2

which solve the optimization problem posed in eq.
(3) by eigendecomposition of the matrix K.

The steps of the algorithm are detailed below.

3.1 Tangent Plane TxM and Local
Parameterization Oi

In order to estimate the tangent Hessian Htan
x at xi,

the tangent plane TxM at xi is estimated. Classic
HLLE estimates TxM applying PCA on Ni. However,
we propose to estimate TxM using the information of
the triangulation T as follows: let {ti1 , ti2 , . . .} and
{ni1 ,ni2 , . . .} be the set of triangles adjacent to xi and
their corresponding normal vectors respectively. Set
TxM as the plane with origin xi and normal ni (where
ni is the average of {ni1 ,ni2 , . . .}). Finally, Oi is com-
puted by projecting Ni onto TxM.

Using the local average adjacent normals to com-
pute TxM usually results in better approximations of
the tangent plane than PCA and if Ni belongs to a
sharp region, PCA may fail to recover a bijective pa-
rameterization as illustrated in fig. 1 while the local
average normals plane results in a bijective parameter-
ization (fig. 2). These local parameterizations affect
the resulting global parameterization in the sense that
local non-bijectivity results in a folding of surface in
the global parameterization.

3.2 Tangent Hessian Htan
x f and

‖Htan
x f‖2

F

The definition of tangent Hessian in eq. (1) requires
a smooth function defined on M. Quadratic inter-
polation is used in order to estimate such Hessian
in a discrete surface. Let [b1,b2] be an orthonor-
mal basis of TxM at xi. Therefore, any point p on
TxM at xi can be expressed as p = ub1 + vb2 + xi.
Let {ui1 ,ui2 , . . . ,uik} and {vi1 ,vi2 , . . . ,vik} be the cor-
responding coordinates of Oi in this basis. If fi =
{ fi1 , fi2 , . . . , fik} are the values of f restricted to Ni,
then f can be interpolated at TxM by a second order
polynomial as follows:

f (u,v) =
k

∑
j=1

Ni j(u,v) fi j , (4)

with Ni j(u,v) = α ju2 +β juv+ γ jv2 + δ ju+ ε jv+ ζ j.
Since f (u j,v j) = fi j , the interpolation functions Ni j
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(a) Sharp neighborhood and PCA plane (red).

(b) Non-bijective local parameterization Oi.
Figure 1: Estimation of TxM and local paramaterization via
PCA for a sharp feature.

are required to satisfy Ni j(uil ,vil ) = 1 if j = l and
Ni j(uil ,vil ) = 0 if j != l (fig. 3). The coefficients of
Ni j are computed by solving the arising linear sys-
tem of equations in a least squares sense. Afterwards,
equation (1) can be approximated as:

Htan
x f ≈

[
2αααT

i fi βββT
i fi

βββT
i fi 2γγγT

i fi

]
, (5)

where αααi, βββi and γγγi are column vectors with the cor-
responding coefficients of the quadratic terms in eq.
(4). Therefore, the norm of the tangent Hessian can
be estimated as ‖Htan

x f‖2
F ≈ fT

i Cifi, where Ci is a sym-
metric matrix defined as:

Ci = 4αααiαααT
i +2βββiβββT

i +4γγγiγγγT
i (6)

3.3 Partition of Unity φφφ and Local
Hessian Functional Ki

Eq. (2) requires a partition of unity (Mi,φi) defined
on M. A partition of unity φφφ = {φ1,φ2, . . . ,φn} is a set
of functions satisfying the following properties:

(a) Sharp neighborhood and average normal plane (red).

(b) Bijective local parameterization Oi.
Figure 2: Estimation of TxM and local paramaterization via
local average normal for a sharp feature.

1. Mi is an open subset of M.
2.

⋃n
i=1 Mi = M.

3. φi : M → [0,1].
4. φi(x) = 0 if x /∈ Mi.
5. ∑n

i=1 φi(x) = 1 for all x ∈ M.

A partition of unity for M can be build as a set
of piecewise linear functions such that for Ni, φi is
defined as:

φi(x j) =

{
1 if i = j
0 otherwise

, ∀ j = 1,2, . . . ,n. (7)

By its definition in eq. (7), φi vanishes at other
neighborhoods. Therefore:

∫

M
φidA =

∫

Mi
φidA =

1
3 ∑

j
Ai j , (8)

where Ai j is the area of the j-th adjacent triangle of
xi. It is not hard to check that eq. (7) satisfies the'5
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Figure 3: Quadratic interpolation function Ni j at Ni such
that Ni j (xik ) = 1 if j = k, 0 otherwise.

Figure 4: Partition of unity φi for a selected neighborhood
Ni. φi equals to 1 at xi and vanishes to 0 at adjacent points.

properties of a partition of unity if M is a triangular
mesh.

Finally, from eqs. (6) and (8) the local Hessian
functional in eq. (2) can be estimated:

∫

Mi
φi‖Htan

x f‖2
F dA ≈

(∫

Mi
φidA

)
fT
i Cifi

=

(
1
3 ∑

j
Ai j

)
fT
i Cifi. (9)

The matrix
( 1

3 ∑ j Ai j

)
Ci estimates the local Hes-

sian functional for any fi. Therefore, the matrix Ki
is built as an n × n matrix which has the terms of( 1

3 ∑ j Ai j

)
Ci at the indices dictated by (Ni,Ni), and

zeros elsewhere.

(a) Brain upper view.

(b) Brain side view.
Figure 5: Segmented Brain dataset.

3.4 Global Hessian H and
Parameterization of M

The Hessian functional is estimated exactly as de-
scribed in (Donoho and Grimes, 2003) by adding each
local Hessian: H ≈ K = ∑i Ki. Finally, the parame-
terization h1, h2 of M is achieved by solving the min-
imization problem in eq. (3) via eigendecomposition
of the matrix K.

4 RESULTS AND DISCUSSION

In this section we present and discuss the parame-
terization results obtained for the segmented Brain
dataset (Desikan et al., 2006) (fig. 5) by classic HLLE
and our algorithm. The Brain dataset presents several
challenges in terms of Mesh parameterization given'5
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Figure 6: Left Hemisphere - Frontal Pole mesh. The red
ellipse marks a high frequency zone.

the high curvatures and the low developability of the
surface. We remeshed all the sub-meshes and some of
them were also partitioned manually prior to param-
eterization. From the 89 sub-meshes, classic HLLE
computed only 68 (76.40%) bijective parameteriza-
tions while our algorithm computed 86 (96.63%) bi-
jective mappings.

The Left Hemisphere - Frontal Pole sub-mesh
(fig. 6) presents a high frequency zone near a cor-
ner. Fig. ?? presents the parameterization results ob-
tained by classic HLLE and our algorithm. As de-
scribed in section 3.1 Classic HLLE parameterization
(fig. 7(a)) computes local non-bijective parameteri-
zations at such sharp zone. As a consequence, the
parameterized surface folds as detailed in fig. 7(b)
resulting in a non-bijective parameterization. On the
other hand, our algorithm does not face this problem
and correctly unfolds the surface recovering a bijec-
tive parameterization (figs. 7(c) and 7(d)).

Figs. 8 and 9 present the results for two sub-
meshes with several sharp sections (figs. 8(a) and
9(a)) using the classic HLLE algorithm and our al-
gorithm. Classic HLLE fails to adequately results
in non-bijective mappings for both meshes as sharp
zones are locally non-bijective (figs. 8(b) and 9(b)).
Again, our algorithm does not face this problem re-
sulting in bijective mappings for both cases (figs.
8(c). Additionally, less shape distortion can be evi-
denced in the Left Hemisphere - Rostral Anterior Cin-
gulate dataset compared to the classic HLLE algo-
rithm (figs. 8(b) and 8(c)) due to the explicit compu-
tation of the local Hessian functional in our algorithm
as opposed to classic HLLE.

Results for other sub-meshes of the Brain are pre-
sented in fig. 10. The texture map of a chessboard pat-
tern illustrates the angular distortion of the respective
parameterization where less local distortion is present
if the corners of the mapped rectangles are near 90
degrees. All the four parameterizations are bijective
despite the high frequencies of the sub-meshes.

Highly non-developable meshes still pose a prob-

(a) Non-bijective parameterization with classic HLLE.

(b) Zoom into high frequency zone for classic HLLE (non-
bijective).

(c) Bijective parameterization with our algorithm.

(d) Zoom into high frequency zone for our algorithm (bijec-
tive).
Figure 7: Parameterization results for the Left Hemisphere
- Frontal Pole mesh. The red ellipse marks the high fre-
quency zone.'5
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(a) Non-bijective parameterization with classic HLLE.
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(a) Left Hemisphere - Rostral Anterior Cingulate mesh.

(b) Non-bijective parameterization with classic
HLLE.

(c) Bijective parameterization with our algorithm.
Figure 8: Parameterization results for the Left Hemisphere
- Rostral Anterior Cingulate mesh with classic HLLE and
our algorithm.

(a) Right Hemisphere - Temporal Pole mesh.

(b) Non-bijective parameterization with clas-
sic HLLE.

(c) Bijective parameterization with our algo-
rithm.

Figure 9: Parameterization results for the Right Hemisphere
- Temporal Pole mesh with classic HLLE and our algorithm.'5
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(a) Left Hemisphere - Inferior
Parietal texture map.

(b) Left Hemisphere - Rostral Middle Frontal
texture map.

(c) Right Hemisphere - Inferior Parietal
texture map.

(d) Right Hemisphere - Lateral Occipital bijective tex-
ture map.

Figure 10: Texture map for several bijective mappings for
the Brain dataset.

(a) Right Hemisphere - Unknown mesh.

(b) Right Hemisphere - Unknown non-bijective parameteri-
zation with our algorithm.

Figure 11: Failure test for our algorithm.

lem to our algorithm. Fig. 11 presents a case of the
Brain dataset where the algorithm fails to recover a
bijective parameterization. In this case the parameter-
ization degenerates near the boundary (i.e. triangles
overlap) in the parameter space due to the high non-
developability of such zones in the surface.

5 CONCLUSIONS

This article presents a variation of the classic HLLE
algorithm for parameterization of triangular meshes.
Classic HLLE was selected for this purpose since it
has shown experimentally better results than other DR
algorithms for Mesh Parameterization. An intuitiveDRAFT
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approach from Differential Geometry is followed by
estimating locally the tangent Hessian with quadratic
interpolation and computing a partition of unity for
the triangular mesh M as opposed to classic HLLE
approach. In addition, each local parameterization is
achieved by projecting onto the local average trian-
gle normals plane instead of the usual PCA, which
reflects better the local geometry of the surface spe-
cially in cases of sharp features.

The algorithm was tested with the Brain dataset
which consists of a set of sub-meshes with high cur-
vatures. The resulting parameterizations were com-
pared with the results of classic HLLE. Our algorithm
presented a higher rate of success (96.63%) against
classic HLLE (76.40%).

5.1 Ongoing Work

Segmentation of complex meshes with high gaus-
sian curvatures into smaller ones increases the prob-
ability of finding bijective parameterizations. There-
fore, automatic mesh segmentation for this task be-
comes crucial for parameterization of large and com-
plex datasets.
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Hormann, K., Lévy, B., and Sheffer, A. (2007). Mesh pa-
rameterization: Theory and practice video files as-
sociated with this course are available from the cita-
tion page. In ACM SIGGRAPH 2007 Courses, SIG-
GRAPH ’07, New York, NY, USA. ACM.

Lafon, S. and Lee, A. (2006). Diffusion maps and coarse-
graining: a unified framework for dimensionality re-
duction, graph partitioning, and data set parameteriza-
tion. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 28(9):1393–1403.

Roweis, S. T. and Saul, L. K. (2000). Nonlinear dimension-
ality reduction by locally linear embedding. Science,
290(5500):2323–2326.

Ruiz, O. E., Mejia, D., and Cadavid, C. A. (2015). Trian-
gular mesh parameterization with trimmed surfaces.
International Journal on Interactive Design and Man-
ufacturing (IJIDeM), pages 1–14.

Sun, X. and Hancock, E. R. (2008). Quasi-isometric param-
eterization for texture mapping. Pattern Recognition,
41(5):1732 – 1743.

Tenenbaum, J. B., de Silva, V., and Langford, J. C. (2000).
A global geometric framework for nonlinear dimen-
sionality reduction. Science, 290(5500):2319.

Zhang, Z. and Zha, H. (2002). Principal manifolds and
nonlinear dimension reduction via local tangent space
alignment. SIAM Journal of Scientific Computing,
26:313–338.

'5
$)
7�Belkin, M. and Niyogi, P. (2003). Laplacian eigenmaps

DRAFT
 Belkin, M. and Niyogi, P. (2003). Laplacian eigenmaps

for dimensionality reduction and data representation.

DRAFT
 for dimensionality reduction and data representation.

Neural Comput.

DRAFT
 

Neural Comput., 15(6):1373–1396.

DRAFT
 

, 15(6):1373–1396.
Desikan, R. S., Sgonne, F., Fischl, B., Quinn, B. T., Dicker-

DRAFT
 

Desikan, R. S., Sgonne, F., Fischl, B., Quinn, B. T., Dicker-
son, B. C., Blacker, D., Buckner, R. L., Dale, A. M.,

DRAFT
 

son, B. C., Blacker, D., Buckner, R. L., Dale, A. M.,
Maguire, R. P., Hyman, B. T., Albert, M. S., and Kil-

DRAFT
 

Maguire, R. P., Hyman, B. T., Albert, M. S., and Kil-
liany, R. J. (2006). An automated labeling system

DRAFT
 

liany, R. J. (2006). An automated labeling system
for subdividing the human cerebral cortex on

DRAFT
 

for subdividing the human cerebral cortex on
scans into gyral based regions of interest.

DRAFT
 

scans into gyral based regions of interest.
age

DRAFT
 

age, 31(3):968 – 980.

DRAFT
 

, 31(3):968 – 980.
Donoho, D. L. and Grimes, C. (2003). Hessian eigen-

DRAFT
 

Donoho, D. L. and Grimes, C. (2003). Hessian eigen-
maps: Locally linear embedding techniques for high-

DRAFT
 

maps: Locally linear embedding techniques for high-
dimensional data.

DRAFT
 

dimensional data.

Floater, M. and Hormann, K. (2005). Surface parameteri-DRAFT
 

Floater, M. and Hormann, K. (2005). Surface parameteri-

'5
$)
7�

This research has been funded by the Research Group

DRAFT
 

This research has been funded by the Research Group
and College of Engineering at Universidad EAFIT,

DRAFT
 

and College of Engineering at Universidad EAFIT,

Tenenbaum, J. B., de Silva, V., and Langford, J. C. (2000).

DRAFT
 Tenenbaum, J. B., de Silva, V., and Langford, J. C. (2000).

A global geometric framework for nonlinear dimen-

DRAFT
 A global geometric framework for nonlinear dimen-

sionality reduction.

DRAFT
 sionality reduction.

Zhang, Z. and Zha, H. (2002). Principal manifolds and

DRAFT
 Zhang, Z. and Zha, H. (2002). Principal manifolds and

nonlinear dimension reduction via local tangent space

DRAFT
 

nonlinear dimension reduction via local tangent space
alignment.

DRAFT
 

alignment. SIAM Journal of Scientific Computing

DRAFT
 

SIAM Journal of Scientific Computing
26:313–338.

DRAFT
 

26:313–338.

'5
$)
7�graining: a unified framework for dimensionality re-

DRAFT
 

graining: a unified framework for dimensionality re-
duction, graph partitioning, and data set parameteriza-

DRAFT
 

duction, graph partitioning, and data set parameteriza-
Pattern Analysis and Machine Intelligence, IEEE

DRAFT
 

Pattern Analysis and Machine Intelligence, IEEE

Roweis, S. T. and Saul, L. K. (2000). Nonlinear dimension-

DRAFT
 

Roweis, S. T. and Saul, L. K. (2000). Nonlinear dimension-
ality reduction by locally linear embedding.

DRAFT
 

ality reduction by locally linear embedding. Science

DRAFT
 

Science,

DRAFT
 

,

Ruiz, O. E., Mejia, D., and Cadavid, C. A. (2015). Trian-

DRAFT
 

Ruiz, O. E., Mejia, D., and Cadavid, C. A. (2015). Trian-
gular mesh parameterization with trimmed surfaces.

DRAFT
 

gular mesh parameterization with trimmed surfaces.
International Journal on Interactive Design and Man-

DRAFT
 

International Journal on Interactive Design and Man-
, pages 1–14.

DRAFT
 

, pages 1–14.
Sun, X. and Hancock, E. R. (2008). Quasi-isometric param-

DRAFT
 

Sun, X. and Hancock, E. R. (2008). Quasi-isometric param-
eterization for texture mapping.

DRAFT
 

eterization for texture mapping. Pattern Recognition

DRAFT
 

Pattern Recognition

'5
$)
7�

41(5):1732 – 1743. DRAFT
 

41(5):1732 – 1743.
Tenenbaum, J. B., de Silva, V., and Langford, J. C. (2000).DRAFT

 

Tenenbaum, J. B., de Silva, V., and Langford, J. C. (2000).
A global geometric framework for nonlinear dimen-DRAFT

 

A global geometric framework for nonlinear dimen-
ScienceD

RAFT
 

Science


