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Abstract: Smooth (C1-, C2-,...) curve reconstruction from noisy point samples is central to reverse engineering, medical
imaging, etc. Unresolved issues in this problem are (1) high computational expenses, (2) presence of artifacts
and outlier curls, (3) erratic behavior at self-intersections and sharp corners. Some of these issues are related
to non-Nyquist (i.e. sparse) samples. Our work reconstructs curves by minimizing the accumulative distance
curve cs. point sample. We address the open issues above by using (a) Principal Component Analysis (PCA)
pre-processing to obtain a topologically correct approximation of the sampled curve. (b) Numerical, instead
of algebraic, calculation of roots in point-to-curve distances. (c) Penalties for curve excursions by using point
cloud to - curve and curve to point cloud. (d) Objective functions which are economic to minimize. The
implemented algorithms successfully deal with self - intersecting and / or non-Nyquist samples. Ongoing
research includes self-tuning of the algorithms and decimation of the point cloud and the control polygon.

Glossary

PL : Piecewise Linear.
PCA : Principal Component Analysis
C0 : Unknown planar curve to be fit.
S : {p1, p2, ..., pn} noisy point sample of C0.
C(u) : Parametric planar curve approaching C0.
Sc : {c1,c2, ...,cw} PL disjoint curves

approaching local portions of C0.
L : PL curve, which integrates Sc.
P : [q1,q2, ...,qm] Control polygon of C(u).
µ : Stochastic component of S.
εk : Error of minimization process at

iteration k.
B(p,r) : Disk of radius r centered at p.
Λ(λ) : p+λ.v̂ Parametric line starting at point

p, with direction v̂ and parameter λ.
pca(SE) : PCA of point set SE . Returns p, v̂ and

correlation coefficient ρ.
ri : Residual associated to point pi ∈ S
Ci : Point on C(u) closest to cloud point pi.
d(p,S) : distance from point p to the point set S.
A j : set of points closest to p j.
Simple Curve : Curve without self-intersections.

1 Introduction

A considerable number of applications in CAD,
CAM, Medical Imaging and Geographic Information
Systems, deal with the sectioning of a non-self in-
tersecting shell (a 2-manifold ) in R3 with cutting
planes. In Computer Axial Tomography (CAT), Co-
ordinate Measurement Machine (CMM) samples and
Magnetic Resonance Imaging (MRI), planar curves
must be recovered from noisy unordered point sam-
ples.

Consider a planar curve C0 sampled with a point
set S, which includes a stochastic noise with mean µ.
This article presents implemented algorithms to find
a b-spline curve C, which is a single connected para-
metric approximation for C0. The curve C is deter-
mined by its control polygon P, which we choose to
minimize f = ∑

n
i=1 r2

i . ri is obtained using the dis-
tances between the cloud points pi ∈ S and the curve
C.

1.1 Self-intersecting Curves

A typical scenario for self - intersecting curve recon-
struction appears when a shell M (Fig. 1(a)), is cross
sectioned by planes. When a plane Π cuts the shell
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Figure 1: Rationale for non-manifold curve reconstruction.

M the result is a set of (open or closed) planar curves.
In general, those curves do not self - intersect. How-
ever (Fig. 1(b)), if a horizontal plane Π passing very
near or at the saddle point ps cuts M, (nearly) self
- intersecting curves C0 are produced. If the curves
are point-sampled, the sampling noise blurs their ex-
act geometry and topology. In such conditions it is
irrelevant whether or not the plane Π exactly contains
the saddle point ps: the point sample indicates a self -
intersecting curve (Fig. 1(c)).

Because of this reason, the recovery of self - in-
tersecting curves is relevant. The algorithms imple-
mented in this article are able to recover a self - in-
tersecting curve C -via its control polygon P- that re-
sembles C0 (Fig 1(d), upper). The mutation of C into
1-manifold curve or curves is simple, as shown in the
lower curves in Fig 1(d).

1.2 Non-Nyquist Samples

δmin = 0 δmin = 0
δmin

Figure 2: Examples of Nyquist / Non-Nyquist Shapes.

To recover a curve from point samples it is essen-
tial that the sample be a Nyquist one. This means, suf-
ficiently dense fo the curve at hand ((Nyquist, 1928),
(Shannon, 1949)). In Fig. 2-left, it is possible to
sample the curve to correctly recover it, since δmin
is different from zero. In Figs. 2-center and 2-
right , however, it is impossible to sample the curve
tightly enough to be able to recover it. No samlple is
Nyquist-compliant for the curves at center and right.
Fig. 2-center shows a non-Nyquist curve. Fig. 2-right
a non-manifold (therefore non-Nyquist) curve.

2 Literature Review

The problem of fitting a parametric curve C(u) to
a point cloud S has been addressed by many authors
in recent decades. However, as seen in this section,
there are many open issues in the solutions for such a
problem.

2.1 Objective function

Eq.1 is the general representation of the objective
function in curve fitting problems. Reference (Flöry
and Hofer, 2010) employs first order residuals (w= 1)
while references (Wang et al., 2006; Liu et al., 2005;
Gálvez et al., 2007; Liu and Wang, 2008) use second
order residuals (w = 2).

f =
n

∑
i=1

rw
i (1)

Some references ((Wang et al., 2006; Liu et al.,
2005; Flöry and Hofer, 2008; Flöry and Hofer, 2010;
Flöry, 2009)) add a smoothing term fc to the objective
function in order to adjust the roughness of the curve:

f =
n

∑
i=1

rw
i +λ fc. (2)

The term fc contains information on the curve’s
first and/or second derivatives and λ determines its in-
fluence, penalizing large curvatures. Note that (1) fc
prevents from reconstructing curves with sharp cor-
ners and (2) it is necessary to find the proper value
for λ for each case of study. If the data to recover
presents smooth and sharp-cornered neighborhoods at
the same time, the strategy using λ fc alone will not be
able to recover the proper curve.

Some authors have explored constrained ap-
proaches. Reference (Flöry, 2009) presents con-
strained curve and surface fitting to a set of noisy
points in the presence of regions that the curve or sur-
face must avoid. Reference (Flöry and Hofer, 2008)
considers the problem of curves that must lie on a



2-manifold (surface) with forbidden regions. These
procedures are implemented using a constrained non-
linear optimization strategy.

2.2 Distance measurement

Eq.3 corresponds to the calculation of the distance di,
which is usually used in the objective function in Eq.
1 as the residual ri. In curve fitting algorithms norm b
is usually chosen to be b = 2 (i.e., Euclidean distance)
as in (Wang et al., 2006; Liu et al., 2005).

di = min
C(u)∈C

‖C(u)−Si‖b (3)

However, the exact calculation of di is expensive,
since it is obtained by a minimization procedure at
each fitting iteration. The procedure consists of find-
ing the parameter ui which associates a point on the
curve C(ui) with the i-th cloud point pi such that di is
a minimum. Namely,

‖C(ui)− pi‖b = min
C(u)∈C

‖C(u)− pi‖b (4)

The minimum distance is obtained by performing
an orthogonal projection of the point pi to the curve
C, which occurs when C′(ui) ·di = 0 in Eq. 5.

g(u) =
∣∣C′(u) · (C(u)− pi)

∣∣ (5)

To sort out this problem, one could solve for u in
g(u) = 0 using Newton’s Method ((Piegl and Tiller,
1997; Liu et al., 2005)), or minimize g(u) using nu-
meric methods ((Wang et al., 2006; Liu and Wang,
2008; Flöry and Hofer, 2010; Saux and Daniel, 2003))
or using genetic algorithms ((Gálvez et al., 2007)).

The mentioned approaches have drawbacks inher-
ent to numerical methods, such as the need of a good
initial guess, poor convergence and stagnation at lo-
cal minima. These may lead to poor approximations
of the distance di yielding unsatisfactory results of the
fitting procedure.

Different methodologies to measure the point-to-
curve distance have been proposed: (i) Point distance,
which preserves the Euclidean distance between the
cloud point and the paired point of the curve ((Wang
et al., 2006; Flöry and Hofer, 2008)), (ii) Tangent
distance, which only preserves the distance between
the cloud point and the tangent line projected at the
paired point (Blake and Isard, 1998), and (iii) Squared
distance, which is a curvature-based quadratic ap-
proximation of d2

i ((Wang et al., 2006)). Reference
(Liu and Wang, 2008) presents a comparison of these
methodologies.

It should be noticed that using only point-to-curve
distances to calculate f allows the formation of spuri-
ous curls and outliers (Fig. 8). Because of this reason,

we include also curve-to-point distances in f . This
double estimation allows us to avoid curls and out-
liers.

In the literature reviewed, we have not found the
usage of a PL approximation of a curve C to esti-
mate the distance between a point and C. Although
this is an intuitively simple procedure, it seems that it
has been turned down in favor of more sophisticated
methods. In this article, however, we discuss and im-
plement its usage.

2.3 Initial guess

In the present article the term initial guess refers to
a PL or smooth curve which approximates (possibly
with errors) the global point cloud. Numerical opti-
mization strategies require an initial guess to set the
decision variables. This set of values are chosen to
produce a reasonably good value of the function to
optimize, to then start the iterations. A good initial
initial guess has the capacity to offset the difficulties
posed by non-convex functions. If the initial guess
falls in a neighborhood in which the function is lo-
cally convex and a solution exists, the minimization
algorithms will be able to reach such solution, regard-
less of non-convexities of the function elsewhere.

References (Lee, 2000; Cheng et al., 2005; Furferi
et al., 2011) provide methods to find a proper initial
guess of C when reconstructing simple curves from
noisy point clouds. However, in domain of self - in-
tersecting curve fitting to noisy point clouds there are
very few references that address this issue.

References (Flöry and Hofer, 2010; Wang et al.,
2006) start with a user - defined initial guess of the
curve sought. On the other hand, reference (Wang
et al., 2006) proposes to compute the quadtree parti-
tion of the point cloud and then extracts a sequence
of points which approximates the target shape. These
points are then used as initial control points of the fit-
ting curve. However, the autors do not report the im-
plementation of such method.

Ref. (Zhao et al., 2011) mentions the usage of
a 2D grid of uniform cells (i.e., not a quadtree), on
which the cloud points fall. The curve, therefore,
must lie on the set of cells which receive sampled
points. The centers of these cells are calculated and
interpolated to obtain the initial curve. However, the
strategy to order these center points is not presented.
It must be noted that the fitting of a PL or smooth
curve is precisely the problem of introducing a total
order among points which are representative of local
neighborhoods (either quadtree-based or cell-based)
of the point sample. The total order issue is partic-
ularly pressing for self-intersecting and non-Nyquist



curves.

2.4 Complexity Analysis

Liu et al. in (Liu and Wang, 2008) argue that the
computation of the Hessian using direct second order
derivatives of the parametric curve is a very expen-
sive operation. Because of this, they classify different
approaches to calculate the point-to-curve distance,
based on the usage or avoidance of the second deriva-
tives of C (see section 2.2). This reference does not
calculate the complexity of the different approaches
used. The other literature reviewed ((Park and Lee,
2007), (Flöry, 2009), (Flöry and Hofer, 2010), (Song
et al., 2009), (Liu et al., 2005), (Wang et al., 2006))
reports the execution times but does not conduct a for-
mal complexity discussion.

It is the case that pre-processings (e.g. initial
guess findings) are usually assessed in terms of O(n)
while minimizations are assessed in terms of εk (ad-
missible convergence error). In order to correctly esti-
mate the computational expenses for optimized curve
fitting to point clouds, we require the description of
the computational expenses for: (i) pre-processing
(initial guess generation) and (ii) optimization, on the
same grounds (either convergence speed of εk or com-
plexity O(n)). Such an integration is not a trivial task.

In this article we present an algorithm which con-
ducts pre-processing (i.e., initial guess for P) and the
optimization of P. The expensive pre-processing is
fully justified by the topological and geometrical cor-
rectness of the result, and the increased speed of the
optimization process.

2.5 Conclusions Literature Review and
Contribution of this Article

According to the taxonomy conducted in this litera-
ture review, there are several issues that remain open
in optimized curve fitting to point clouds. These as-
pects include: (a) Finding of topologically correct ini-
tial guesses to offset the fact that possibly f and / or
the minimization region are non - convex. (b) Usage
of a function f which efficiently fits the point set, al-
lowing for self - intersections and non-Nyquist sam-
ples. (c) Decimation of the number of control points
for C given that m control points imply a minimiza-
tion space of dimension R2m. (d) Formal assessment
of the computational time and space required for the
solution (e.g. O(n) analysis).

In response to the previous considerations, this
article reports the implementation of: (i) An initial
PCA-based initial guess for P and therefore C, which
is topologically faithful to the point set, being able to

follow self - intersections and non-Nyquist samples.
(ii) Decimation of excessive control points by the im-
plementation of a curvature-based re-sampling, to re-
duce the dimension of the search space. (iii) A dis-
crete calculation of the distance point-curve by using
a re-sampling of the curve. (iv) A double penalization
included in the objective function, based on the dis-
tances cloud-point-to-curve and curve-to-cloud-point,
therefore avoiding the existence of spurious curls and
outliers in C.

It must be pointed out that, although a significant
amount of work is required in the study of computa-
tional complexity, we do not intend to make a contri-
bution in such an aspect.

3 Methodology

The methodology used comprises the following
stages: (1) data pre-processing and (2) optimization
procedure. Stage (1) leads to a PL approximation of
the data to obtain a topologically correct initial guess
of the b-spline control polygon. Stage (2) implements
a Gauss-Newton optimization algorithm to minimize
the distance between the curve and the points S using
a penalized objective function. Fig. 3 summarizes the
procedure.

3.1 Data Preprocessing

Given the S point set, an initial guess L for P (and
hence for C) is required, which is a rough PL approx-
imation of the curve C sought. This initial guess is
fundamental for the success of the optimization algo-
rithm that seeks C. L has correct topology (produces
the same number of self-intersections as in C0), al-
though it might not precisely follow C0. This initial
guess is calculated by a PCA pre-processing stage of
our algorithm.

Our approach is an extension of the work by (Ruiz
et al., 2011). The algorithm in (Ruiz et al., 2011) es-
timates the tangent to C at a particular point p of C
by running a PCA (i.e., generalized linear approxi-
mation Λ(λ) = pcg + λ.v̂ with starting point at pcg,
direction v̂ and parameter λ) on the sample points of
such neighborhood. Those points are the subset of
S contained in a small circular ball B(r, p) based on
p. The goodness of the PCA can be evaluated using
a variation of the linear regression correlation coef-
ficient ρ. In a ’normal’ (i.e., 1-manifold conditions)
curve neighborhood, the linear approximation is very
good, and therefore ρ≈ 1.0. In self - intersecting (i.e.,
non-manifold) or non-Nyquist curve neighborhoods,
the linearity falls and ρ ≈ 0. At such neighborhoods,
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Figure 3: Block diagram of the proposed methodology.

the support region choosing the points to participate
in the PCA mutates from circular into an elliptical
one. This is a key feature of the algorithm because
it permits to deal with self-intersections. The pro-
cess continues with the adjacent neighborhoods until
a dead end is found (i.e., no more points are available
in the current direction of search), and another region
is explored. The procedure is repeated until S is com-
pletely traversed, delivering a set of disconnected PL
curves, Sc = {c1,c2 . . . ,ch}, which approximates S.

Notice that regardless of the initial curve being
connected or disconnected, any curve reconstruction
algorithm must be prepared to integrate different frag-
ments which are intermediate results of the recon-
struction. In the present article, we improve (Ruiz
et al., 2011) by adding a novel integration strategy
for the cis to obtain a single connected approxima-
tion of C0, defined as L. Let ci,c j,ck,cl be PL curve
fragments to be merged, which happen to have their
endpoints close to each other (see Fig. 4(a)). In this
case, the distance criterium is obviously insufficient
to decide which curve fragments should join. There-
fore, an additional criterium is used, namely the simi-

larity of tangent vectors at the curve endpoints. Based
on it, it is concluded that the pairs to join are (ci,ck)
and (c j,cl) for the example shown in Fig. 4(b). In
the general case, however, the ci curve fragments in-
tegrate unambiguously. This procedure is a heuristic
one and therefore it has no theoretical guarantee for
correction.

cj

ci

ck

cl

R= δ

(a) Geometrically close endpoints.

ûi

ûj

ûk

ûl

(b) Similar end-tangents.
Figure 4: Criteria for integration of curve fragments ci

The PL curve, L, integrating the cis is topologi-
cally equivalent to C0, meaning that L has self inter-
sections if C0 does. However, L is not a good approxi-
mation of C0 in the geometrical sense (i.e., it does not
lie in the ’center’ of the point set S). Therefore, L by
itself does not solve the problem.

The initial guess of the control polygon P for C
is obtained by re-sampling L, since one wants to use
the bare minimum necessary control points that re-
tain the topology of C. The re-sample of L is con-
trolled by the curvature: low curvature (large curva-
ture radius) regions can be represented by fewer con-
trol points, and vice versa. Given a point pi of L, the
local radius of curvature, Rpi may be approximated
by the radius of the circumference defined by three
adjacent point samples, pi−1, pi, pi+1. The curvature,
Kpi is given by Kpi =

1
Rpi

. The larger the Kpi , the
tighter of the re-sample of L. The initial and final
points of L are always included in the resulting re-
sampling. This curvature-based re-sampling strategy
strongly contributes to lower the computation time in
the subsequent optimized fitting since less variables
need to be estimated (see Fig. 5).

We name as P the re-sampled version of L. Also
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(b) Re-sampled version of L.
Figure 5: Curvature-based control point decimation to esti-
mate the initial control polygon.

to keep notation simple, we use P to note the different
instances of itself (P1, P2, .., Pk, ...), formed as its ver-
tices are relocated during the optimization iterations
k. Notice also that P is the control polygon for curve
C.

3.2 Optimization Problem

The control polygon P resulting from the data pre-
processing in section 3.1 determines the topology of
C. The geometrical quality of P is, as expected, poor.
This means, the parametric curve controlled by poly-
gon P is not a principal curve for the point set S (i.e.,
does not cross the ’center’ of S). Therefore, the con-
trol points of P must now be used as decision vari-
ables to minimize the summation of the squared dis-
tances from the cloud points (i.e., points in S) to the
candidate curve C(u). A Gauss-Newton algorithm is
used to minimize the f function which expresses the
distances between the point cloud S and its approxi-
mating curve C.

The minimization problem is stated as follows:
GIVEN: A noisy point sample S = {p1, p2, ..., pn} of
a planar parametric smooth (possibly self-intersecting
and with non-nyquist neighborhoods) curve C0.
GOAL: To determine the control polygon P that pro-
duces a b-spline curve C, minimizing

f =
n

∑
i=1

r2
i (6)

�
where ri is the residual or distance between cloud
point pi and the curve C. Informally, ri depends on
the distances from the cloud points in S to the curve
C and on the distances from the curve C to the point
clouds in C. As discussed later, these distances dif-
fer. Depending on the definition of ri, two different
strategies to minimize f arise, as discussed next.
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Figure 6: Distances Cloud Points to/from Curve.

3.2.1 Strategy 1. Distance from Cloud Point to
Curve

We define the residuals as

ri = ||pi−C(ui)|| (7)

where ui is the parameter in the domain of C which
defines the point C(ui) closest to pi. The term ri rep-
resents the distance measured from each cloud point
to the curve C (see Fig. 6(a)). This calculation of
the distance between a point and an algebraic curve is
a very expensive proposition because it implies the
calculation of common roots of a polynomial ideal
(see (Ruiz and Ferreira, 1996), (Kapur and Lakshman,
1992)). Notice that the vector pi−C(ui) is normal to
the curve C at the point C(ui).

To address this problem, we approximate C(u)
in PL manner and calculate ri simply by an it-
erative process. We sample the domain for
C(u), ([0,1]) getting U = [0,∆u,2∆u, ...,1.0] and ap-
proximate the current C curve with the poly-line
[C(0),C(∆u),C(2∆u), ...,C(1.0)]. Calculating an ap-
proximation of C(ui) for a given pi simply entails
to traverse [C(0),C(∆u),C(2∆u), ...,C(1.0)] to find



the C(N∆u) closest to pi. This is an O(n) process
(n=number of points), which is sufficiently accurate
and avoids the high computational expenses and nu-
meric precision required to solve an algebraic system
of equations (O(een

), n=number of polynomials, (Ka-
pur and Lakshman, 1992)). Also, we avoid dealing
with the problem of finding the cloud point-to-curve
distance as a new minimization problem, which is the
most adopted method in literature.

Fig. 6(a) displays the distance from a particular
(emphasized) cloud point pi to its closest point C(ui)
on the current curve C. Such a distance has influence
in f as per Equation 6. Notice, however, that pi and
C(ui) (and hence f ) do not change if large legs and
curls appear in the synthesized C. Therefore, con-
sidering only the distance from cloud points to the
curve in Equation 6 permits the incorrect formation
of outlier legs and curls. The following section cor-
rects such a shortcoming.

3.2.2 Strategy 2. Inclusion of Distance from
Curve to Cloud Point

This section discusses how to include in the ri resid-
uals the distances from the curve points Ci to the
cloud points pi (see Fig. 6(b)) to penalize in f the
growth of spurious outlier legs and / or curls just de-
scribed. If one can make spurious legs and curls to
inflate the objective function f , the minimization of
f avoids them. For any point p ∈ Rn, the distance of
this point to S is a well defined mathematical function:
d(p,S) = min

p j∈S
(||p− p j||). For the current discussion

the points p are of the type C(ui) (i.e., they are points
of curve C). The ui parameters to use are the sequence
U = [0,∆u,2∆u, ...,1.0], already mentioned.

Notice that d(p,S) = ||p j − p|| for some cloud
point p j ∈ S. Let us define the point set A j (on the
curve C) as:

A j = {C(u) | u ∈U ∧ d(C(u),S) = ||p j−C(u)||}
(8)

The set A j contains those points in the sequence
[C(0),C(∆u),C(2∆u), ...,C(1.0)] that are closer to the
point p j ∈ S than to any other point of S. We note with
Z j the cardinality of A j. Observe that some Z j might
be zero, since p j could be far away from be curve C
and no point on the curve would have p j as its closest
in S. The set of all A js could also be understood as a
partition of the curve C.

With the previous discussion, a new definition of
the residuals ri, to be used in Eq. 6, is possible:

ri = ||pi−C(ui)||+(
1
Zi
) Σ
Cω∈Ai

||Cω− pi|| (9)

The ||pi − C(ui)|| in Eq. 9 considers the dis-
tance from cloud points in S to the curve C. The
term ( 1

Zi
) Σ
Cω∈Ai

||Cω− pi|| expresses distances from the

curve C to the cloud points in S. This term penalizes
the length of the curve, by increasing f .

p2

p1

C1
C2

C3

C4
C5

C6
C7 C8 C9 C10 C11

C12 C14C13

p7

p6

p5

p4
p3

C16

C15

Figure 7: Clusters of Distances form Curve to Cloud Points.

Fig. 7 presents a simplified materialization of the
situation. The previous discussion applied to Fig. 7
implies the calculations shown in Table 1. Observe
that Ci =C(ui), the point on C closest to pi is not the
exact one but the approximation mentioned in previ-
ous paragraphs (using a tight PL approximation of C).

3.2.3 Jacobian in the Gauss-Newton Method

The Gauss Newton method uses the Hessian approx-
imation H ≈ J ∗ JT , which works well in the cases in
which the function or region Ω are not convex. Be-
cause in our case f is not convex, we choose this
method for the minimization. The Gauss - Newton
method presents better convergence with small resid-
uals ri (Chong and Żak, 2008). Because of this rea-
son, we use a good quality initial guess (in this case,
a PCA-based one), which indeed produces low values
in the residuals.

The Gauss-Newton optimization procedure em-
ploys an approximation to the Hessian matrix H. The
calculation of H implies several aspects: (i) it is ex-
pensive, (ii) it is actually a discrete approximation,
(iii) its usage in the search algorithm may mislead
it. Because of these reasons, for the present article
the Hessian matrix will be approximated as H ≈ JT J,
where J is the Jacobian of the residuals with respect to
the decision variables. This approximation produces a
faster convergence of the decision variables to a local
minima than using the exact Hessian. The variables
to tune f are the x and y coordinates of the control
points (qi = (xi,yi)) contained in the control polygon
P = [q1,q2, ...,qm]. The Jacobian of residuals is cal-



pi Ai Zi C(ui) ri

p1 {C1,C2,C3,C4} 4 C2 ||p1−C2||+ 1
4 (||p1−C1||+ ||p1−C2||

+||p1−C3||+ ||p1−C4||)
p2 {C5,C6,C7} 3 C6 ||p2−C6||+ 1

3 (||p2−C5||+ ||p2−C6||
+||p2−C7||)

p3 {} 0 C8 ||p3−C8||
p4 {C8,C9} 2 C9 ||p4−C9||+ 1

2 (||p4−C8||+ ||p4−C9||)
p5 {C10,C11} 2 C10 ||p5−C10||+ 1

2 (||p5−C10||+ ||p5−C11||)
p6 {C12,C13} 2 C12 ||p6−C12||+ 1

2 (||p6−C12||+ ||p6−C13||)
p7 {C14,C15,C16} 3 C14 ||p7−C14||+ 1

3 (||p7−C14||+ ||p7−C15||
+||p7−C16||)

Table 1: Calculations using curve to cloud-point distances for example in Fig. 7.

culated as follows:

J =


∂r1
∂x1

∂r1
∂y1

∂r1
∂x2

∂r1
∂y2

· · · ∂r1
∂xm

∂r1
∂ym

∂r2
∂x1

∂r2
∂y1

· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · ·
∂rn
∂x1

∂rn
∂y1

∂rn
∂x2

∂rn
∂y2

· · · ∂rn
∂xm

∂rn
∂ym

 (10)

The dimension of the J matrix is (n× 2m) where
n= number of cloud points and m= number of points
in the control polygon. The calculation of each com-
ponent of the Jacobian is made numerically, using the
approximation of the partial derivative ∂rn

∂x = ∆rn
∆x . No-

tice that the variation of all decision variables are the
same ∆x.

The transformation of the control polygon is made
using the Jacobian of the residuals with the expression

Xk+1 = Xk−
(
JT J
)−1 JT r (11)

The dimensions associated with Eq. 11 are: X
(2m× 1), r (n× 1). X = [x1,y1,x2,y2, ...,xm,ym]

T is
just a convenient form for writing P. Notice that r =
[r1,r2, ...,rn]

T .

3.2.4 Criteria for Algorithm Termination

The Gauss-Newton procedure will continue finding
new control polygons until either of the following
conditions is met: (a) the variation of the objective
function from iteration k to k+1 falls under a thresh-
old (| fk+1− fk| ≤ fL), (b) the values of the decision
variable do not significantly change between iteration
k and k+1 (|Xk−Xk+1|< δmin), (c) the iterations ex-
ecuted surpass a limit: (Niter > Nmax).

4 Results and Discussion

4.1 Case Study 1. Simple Curves

4.1.1 Strategy 1. f Based on Distance
Cloud-to-curve

The input data in this case of study corresponds to
a simple curve, as per Fig. 8(a). The initial (naive)
guess for the control polygon P is a straight segment.
It is obtained from an overall linear regression using
all cloud points. A sequence of points is sampled on
such a straight segment which constitutes the initial
control polygon P. The rationale for this initial guess
is that the optimization process will, progressively, re-
locate the control points, until the parametric curve C
resulting from P, approximating C0 is achieved. The
mathematical problem solved has the form discussed
in section 3.2.1.

Notice that the case currently discussed uses the
simple form of the f function, in which only distances
from S to C are considered (excluding distances from
C to S), as per Eq. 7. The results, in Fig. 8(b), show
that the b-spline curve tends to follow the shape of the
cloud points at some regions, but its endpoints are lo-
cated far away from their correct positions and some
curls appear. As discussed before in section 3.2.1 and
displayed in Fig. 6(a), such curls and otulier legs ap-
pear because the extent of C is not penalized in Eq.
7.

4.1.2 Strategy 2. f Suplemented with Distance
Curve-to-cloud

With point set S as per Fig. 9(a), the minimized curve
fitting is carried out now by adding curve-to-cloud
distances to the f objective function, as specified by
Eq. 9. This run uses the naive initial guess for P (i.e.,
sequence of colinear points). The resulting curve C is
correct, suppressing the curls and keeping the curve
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Figure 8: Case Simple Curve C. Optimization uses naive initial guess and adds curve-to-cloud distance factor.

attached to the ends of the input data. It is observed
that very few iterations are needed to yield satisfac-
tory results, showing fast convergence.

4.2 Case Study 2: Self-intersecting
curve

The point set for this run series appears in Fig. 10(a).
As seen, it comes from a self - intersecting curve C.
The goal of this section is to evaluate the effects of a
smart initial guess for P, on the curve reconstruction
results. From now on, the form of the f function fo
minimize is the one in Eq. 9. This means, the dis-
tances cloud-to-curve and curve-to-cloud are used.

4.2.1 Naive Initial Guess for P

Fig. 10(a) shows the naive initial guess for the con-
trol polygon P (i.e., sequence of colinear points). No-
tice that a sufficient number of points must be sam-
pled on the segment. Too few sampled points ob-
viously prevent following the topological evolutions
of the curve. Too many control points considerably
degrade the performance of the minimization algo-
rithm, since this number of points equals the dimen-
sion of the solution space. Fig. 10(b) shows that with
this naive guess, the reconstruction of C0 dramatically
fails, even if a sufficient number of control points are
provided on the straight segment of Fig. 10(a). Fig.

10(c) shows the evolution of f along the iterative pro-
cess.

4.2.2 PCA-based Initial Guess for P

The goal of this run is to test the effect of having a
topologically correct initial guess for P, the control
polygon of C. Fig. 11(a) shows the point set sam-
pled on a self-intersecting C. This figure also shows
an initial guess for the control polygon P found by the
PCA-based pre-processing. Observe that this initial P
captures the correct topology, although not the right
geometry, of C. Therefore, one requires a minimiza-
tion stage to relocate the vertices of P. The resulting
control polygon P and its corresponding curve C ap-
pear in Fig. 11(b). Fig. 11(c) shows the history if f
as the iterations take place.

4.3 Case Study 3: Sharp-cornered curve

Fig. 12(a) presents a point sample for a curve that has
only C0 continuity. The Nyquist principle ((Shannon,
1949),(Nyquist, 1928)) applied to geometry sampling
requires that at this point the sampling distance raises
to infinity and the sampling interval drops to zero,
implying that an infinitely tight sample would be re-
quired to recover all the geometric information of the
original curve C0. The obvious compromise indicates
that, since only a finite sample is available, part of
the needle is amputated in the curve-reconstruction.
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Figure 9: Case Simple Curve C. Optimization uses naive initial guess and adds curve-to-cloud distance factor.
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(b) Final control polygon P and its fit
curve C.
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Figure 10: Open Curve with Self - intersection. C fit without PCA pre-processing.
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(b) Final control polygon P and its fit
curve C.
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Figure 11: Open Curve with self-Intersections. C fit using a PCA-based initial guess.
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Unfortunately, even accepting such an amputation, is
very likely that in such cases (of non-Nyquist sam-
ples), the topology of the curve cannot be recovered.
The present example represents a very difficult (non-
Nyquist) data set.

Fig. 12(a) presents the initial guess for the con-
trol polygon P originated using PCA. Fig. 12(b) dis-
plays the C the parametric curve finally achieved by
the minimization algorithm. Fig. 12(c) shows the his-
tory of the minimized f as function of the iteration.
As seen, since the application of PCA pre-processing
is able to correctly recover the topology of the curve
C, it is relatively straightforward for the minimization
process to tune up the vertices of P for the correct
placement of C. This efficiency is evident from the
fast convergence in very early iterations in Fig. 12(c).

4.4 Discussion

4.4.1 Initial Guess and Globality

The Hessian matrix for the problem in Eq. 6 is:

H =


∂2 f
∂x2

1

∂2 f
∂x1∂y1

∂2 f
∂x1∂x2

· · · ∂2 f
∂x1∂ym

∂2 f
∂y1∂x1

∂2 f
∂y2

1

∂2 f
∂y1∂x2

· · · ∂2 f
∂y1∂ym

· · · · · · · · · · · · · · ·
∂2 f

∂ym∂x1

∂2 f
∂ym∂y1

∂2 f
∂ym∂x2

· · · ∂2 f
∂y2

m

 (12)

with the minimum search domain Ω being a subset
of R2m. If the eigenvalues of H are all positive in Ω,
one would be in presence of an overall convex func-
tion f and the minimization algorithm would rapidly
find the solution, guaranteed to be a global minimum.
Unfortunately, f as per Eq. 6 is not globally convex.
Notice that H in Eq. 12 is not available and we use
H ≈ JT J instead. This replacement obviously does
not change the non-convexity of f .

Fig. 10 illustrates the effect of not having a glob-
ally convex function f . The initial guess for the poly-
gon P is not a sensible one, which means that the ini-
tial location in the Ω space is far from the minimum.
A poor initial guess for P produces a worng fitting

result, as shown in Fig. 10(b). This wrong result ex-
plains our need of the PCA-based pre-processing. Fig
10(c) shows that the solution is a local minimum. f
is indeed minimized in a wrong neighborhood, and
the solution for P (and C) is equally wrong. Fig. 13
shows that, precisely because the non-convexity of f ,
an intelligent initial guess for P is required for the
minimization algorithm to find a global minimum for
f . We claim here that the PCA-based pre-processing
improves the chances for an initial guess sufficiently
close to the global minimim and therefore partially
offsets the inherent difficulty represented by the non-
convexity of f .

4.4.2 Distance Curve to Point Cloud

As mentioned, the minimization using Eq. 7 per-
mits the formation of curls and leg outliers as per Fig.
8(b). This calculation of f includes only the distance
from the cloud points pi to the curve C. To prevent
these spurious formations we include in the f func-
tion the distance from the curve C to the point clouds
pi. The distance cloud-point-to-curve and curve-to-
cloud-point are not the same. Including the second
one (Eq. 9) makes f increase when outliers and curls
appear. This is a preventive rather than corrective
strategy, which ensures a correct topology and geom-
etry of the curve C.

4.4.3 Comparative Convergence

Fig. 14 displays, for a simple curve, a comparison
between convergence speeds achieved using only dis-
tance cloud-point-to-curve (Eq. 7) versus including
also distances curve-to-point-cloud (Eq. 9). The
two cases are called without and with penalization,
respectively. Fig. 14(a) shows that using the two
distances produces a faster reduction of the f fac-
tor. Fig. 14(b) indicates that the reduction in f
values more monotonous when penalization is used.
In other words, the optimization algorithm converges
faster to the solution. Notice that the convergence
when double-distance penalization is used (blue line),
the number of iterations required is 60% of the ones
required when only distance cloud-point-to-curve is
used (green line).

Fig. 15 illustrates, for a self - intersecting curve,
the comparison of convergence speeds by (1) using
PCA-based initial guess for the control polygon P and
by (2) abstaining from it. Fig. 15(a) indicates that, for
self - intersecting curves, the usage of a PCA-based
initial guess dramatically improves the convergence
speed of the optimization algorithm. Fig. 15(b) also
shows that the trend of the convergence is definitely
more monotonous when a PCA-based initial guess is



0 2 4 6 8 10 12
0
1
2
3
4
5
6
7
8
9
10

x

y

(a) Point cloud S and PCA-based ini-
tial control polygon P.

0 2 4 6 8 10 12
0
1
2
3
4
5
6
7
8
9
10

x

y

(b) Final control polygon P and its fit
curve C.

2 4 6 8 10 12 14 16 18
0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

f

Iteration

(c) Objective Function f as function of
iteration number.

Figure 12: Non-Nyquist point set. C fit using a PCA-based initial guess.
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Figure 14: Simple Curve Case. f as a function of iteration count. Influence of double-distance penalization.

used. As in the discussion related to usage of double-
distance penalization of f , in this case (blue line) the
usage of PCA-based initial guess has an number of
iterations being 71% of the one required (green line)
when no sensible initial guess is used.

5 Complexity of the algorithm

We do not report execution times because they are
an unreliable indicator, wich depends on many vari-
ables (HW, SW, etc). Instead we discuss the compu-
tational expenses of our algorithm in terms of com-
plexity analysis (O(n)).
Pre-processing: In Fig. 3, this stage refers to the
finding of an initial quess for P (and therefore C). A
sensible initial guess is found by (a) applying a PCA
algorithm to find PL fragments ci, (b) joining the dis-
connected ci fragments into one (L), and (c) re - sam-
pling the L to obtain a PL approximation for P. If we
assume that the number of cloud points is n, the com-
plexity of the ellipse-based PCA is O(n4) ((Ruiz et al.,
2011)). This complexity is dominant and therefore in-
cludes the integration of PCA-based curve fragments
and the curvature-based re-sample of the initial guess
for P.
Optimization: In Fig. 3, this stage refers to the

minimization of the f function by tunning the deci-
sion variables (i.e., control points of P) so that C fits
the point cloud S. This algorithm is controlled by a
while loop that stops when ε reaches a low value.
The calculation of the Jacobian, the update (which
implies a PL approximation) of the curve C and the
update of the function f together cost O(n2). There-
fore, the optimization stage costs O(g(ε)∗n2). Since
typically, g(ε) ∝ 1/(ε2), the complexity of the opti-
mization stage is O((n/ε)2).

Contributions of other authors (Piegl and Tiller,
1997; Liu et al., 2005; Wang et al., 2006; Liu and
Wang, 2008; Flöry and Hofer, 2010; Saux and Daniel,
2003) typically use iterative methods for solution of
simultaneous non - linear equations to find the dis-
tance point-curve. As a consequence, their computa-
tional expense is multiplied by the term (1/ε2

i ), with
εi being the error of convergence prescribed to stop.
This expense is in addition to the one caused by the
calculation of an initial guess for the distance point-
curve. On the other hand, our method does not require
the solution of non-linear equations for point-curve
distance calculation, and in particular, does not need
of initial guesses for such an estimation.

According to the previous discussion, the over-
all complexity of our algorithm in Fig. 3 is O(n4 +
(n/ε)2) = max(n4,(n/ε)2). Additional work is re-
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Figure 15: Self - intersecting Curve case. f as a function of iteration count. Influence of PCA-based initial guess.

quired to determine which one of n4 and (n/ε)2 is
dominant. A valid question to be posed is whether the
pre - processing might be removed, and its computa-
tional cost (O(n4)) spared. The answer is negative,
since a good quality initial guess for P is essential for
the optimization algorithm to converge to a topologi-
cally and geometrically valid solution. Fig. 10 illus-
trates the result for a run lacking a good quality initial
guess for P.

In the previous discussion, it must be pointed out
that the complexities considered are worst case ones.
Therefore, we present here a very conservative esti-
mation. For complexity estimation expected values
are also used.

6 Conclusions and Future Work

This article has presented the implementations of
algorithms to synthesize a parametric planar curve C
as an optimized fit for a point cloud S sampled from
an unknown initial curve C0. The curve C is therefore
an approximation for C0.

The implemented method presents several nov-
elties with respect to the existing contributions by
other authors: (1) It is successful in recovering
self-intersecting and non-Nyquist curves. (2) It
implements a Principal Component Analysis pre-
processing which finds a topologically faithful PL ap-
proximation for P, the control polygon of C. (3) This
initial guess for P is optimized in the sense of using a
very reduced number of vertices, which are chosen
according to the local curvature of P. (4) The al-
gorithm avoids the expensive calculation of distance-
point-curve, which implies algebraic roots, by calcu-
lating a PL approximation of curve C in each iteration
and solving the distance-point-curve with this proxy
approximation. (5) The algorithm penalizes f by con-
sidering not only the distances of cloud points pi ∈ S
to C but also the distances from curve points Ci to S.

Since C is finite, theses distances are not equal. By
doing so, the implemented method avoids the genera-
tion of spurious curls and outlier legs. Finally, (6) the
implemented algorithms lower the computation time
required to solve the problem by introducing features
(2), (3), (4), above.

Our approach avoids the appearance of loops and
erratic excursions, while keeping the capability to re-
construct sharp features without the use of a term to
penalize the curvature of the fitting curve. In this way,
we can perform the reconstruction of complex data
sets containing smooth and sharp features.

In the present article we use a PL approxima-
tion of a curve to estimate the point-to-curve and
curve-to-point distances. In building a PL approxi-
mation PL(C) of a curve C, it is mandatory to respect
the Nyquist criterion. A condition sufficient to use
a thinner sample of the curve occurs when a point
pi ∈ PL(C) is nearer to a point q ∈ PL(C) than to
its predecessor(pi) or its successor(pi) in PL(C). In
such a case, the Nyquist criterion has been violated,
and a finer re-sample is needed.

Ongoing work includes exploration of other mini-
mization algorithms (Quasi-Newton for large values
of residuals), usage of different objective functions
to obtain faster convergence, improvement in self-
tunning of the algorithms, usage of unequal weights
in the residuals of Eq. 9 and a more aggressive strat-
egy to minimize the number m of the control points of
P. Since the search space is R2m, lowering m consid-
erably cuts the computing time for the minimization
of f .
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