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Abstract

This article describes the implementation of a novel
method for detection and continuation of bifurcations in
non-smooth complex dynamic systems. The method is
an alternative to existing ones for the follow-up of as-
sociated phenomena, precisely in the circumstances in
which the traditional ones have limitations (simultane-
ous impact, Filippov and first derivative discontinuities
and multiple discontinuous boundaries). The topology of
cycles in non-smooth systems is determined by a group
of ordered segments and points of different regions and
their boundaries. In this article we compare the limit
cycles of non-smooth systems against the sequences of
elements, in order to find patterns. To achieve this goal,
a method was used, which characterizes and records the
elements comprising the cycles in the order that they
appear during the integration process. The characteriza-
tion discriminates: (a) types of points and segments, (b)
direction of sliding segments, and (c) regions or disconti-
nuity boundaries to which each element belongs. When
a change takes place in the value of a parameter of a
system, our comparison method is an alternative to de-
termine topological changes and hence bifurcations and
associated phenomena. This comparison has been tested
in systems with discontinuities of three types: (1) im-
pact, (2) Filippov and (3) first derivative discontinuities.
By coding well known cycles as sequences of elements, an
initial comparison database was built. Our comparison
method offers a convenient approach for large systems
with more than two regions and more than two sliding
segments.
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1 Introduction

Physical systems can often operate in different modes,
and due to the time of the transition from one mode to
another mode is small, the transition is considered as

instantaneous [1]. Events such as impact, dry friction,
backlash, hysteresis, saturation and commutation carry
a discontinuity or sudden change. Therefore, they can be
modeled declaring at least two modes. Each mode is rep-
resented by differential equation or mixes of differential
and difference equations. The mathematical modeling of
these systems switches between different modes and they
are classified as piecewise-smooth or nonsmooth system.

Piecewise-smooth systems may be classified according
to the degree of discontinuity that the orbits and vector
fields present [1]. An updated classification by [2] dis-
cusses systems with three degrees of smoothness. In the
zero level, one has jumps in the state variables. They are
typically systems with impact, where the phenomenon is
modeled assuming no deformation and a negligible im-
pact time [3]. In the first degree of smoothness we have
systems described by differential equations with discon-
tinuous right hand terms (Filippov systems) [4]. In these
cases the vector field is discontinuous in the switching
Boundary, as usual in mechanical systems with dry fric-
tion [5]. The second degree of smoothness, includes sys-
tems with continuous vector fields but discontinuities in
the first derivative of the vector field. As an example for
second degree, we might consider a mechanical system
with a single mass, spring, damping element and lim-
iting elastic support [6]. In general, a discontinuity in
the i-th derivative implies that the system is classified as
being i+1 degree of smoothness.

Non-standard bifurcations in nonsmooth systems have
been intensively studied [6],[7], [8], [9]. But, there are
only mathematical tools to analyze phenomena in 2D or
3D systems with two vector fields and one discontinuity
boundary [10],[11]. The names assigned to the bifurca-
tions vary according to the researcher. For example, in
[2] is used Grazing, Switching, Crossing and Multislid-
ing. For the same bifurcations, in [12] is used Touching,
Bucking, Crossing and Adding. Other sliding bifurca-
tion types, recently reported in [8], have been charac-
terized in systems with two DBs. Those bifurcations
have been called Exchanging, Sticking Disappearance and
Nonsmooth Fold.

Article Outline. This article is organized as follows.
Section 2 explains the notation and symbols used. Sec-
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tion 3 summarizes the solutions for the types of nons-
mooth systems. Section 4 describes the well known bi-
furcations as sequences of elements. Section 5 analyzes
the procedure of identification and comparison of the ele-
ments of the cycles versus the elements of an integration.
Section 6 concludes the article.

2 Notation and Symbology for
Points in the DB

The study of nonsmooth systems includes more infor-
mation than a smooth system. The proposed method is
based on the information of each element of the cycle.
Therefore, we had to introduce a notation to see all the
information of the points, segments and orbits. The in-
formation should be fully contained inside the textual or
graphical symbols assigned to each element. Some dis-
tinguished symbols follow.
x : State variable vector, with

x = (x1, x2, . . . , xn).

Zi : i-th smooth region of the space state.

α : Parameter of the physical system

(α ∈ R).

Fi(x, α) : Vector field on region Zi.

DB : Discontinuity Boundary.

Σij : Discontinuity Boundary between

regions Zi and Zj .

Σij = Z̄i ∩ Z̄j = {x ∈ Rn : Hij(x, α) = 0}.
Hij(x, α) : Smooth scalar function defining the DB

between regions i and j.

Hij(x, α) : Rn+1 −→ Rn.

Hijx(x, α) : Gradient of Hij(x, α).

Hijx(x, α) =
(
∂Hij(x,α)

∂x1
, . . . ,

∂Hij(x,α)
∂xn

)
.

Ω−Ii : i-th component of x before impact.

Ω+
Ii : i-th component of x after impact.

γ : Impact restitution coefficient

γ = |Ω̇−I /Ω̇
+
I |.

xi : Point at the end of i-th integration step.

Gij(x, α) : Vector field that acts on the DB

between regions i and j, for sliding.

Cycle equations include indicators, separators and el-
ements (for cycles: points or segments). Cycles are iden-
tified with a letter C accompanied by a subscript num-
ber (e.g. C4: 4-th cycle). If the cycle contains sliding
segments they appear as S superscript preceding the C
letter (e.g. SC5: cycle 5 has sliding segments). In the
equations, the symbol Φ is used to represent a composed
segment, determined by a sequence of points of a com-
mon type (e.g. Φ5: a composed segment in region 5).
The points are identified with the letter Ω with super-
indices (- or +) indicating whether the point is an initial

(-) or endpoint (+) of a sliding segment S. The symbol /
notes a separator between consecutive elements.

The indicator � shows that the elements of the equa-
tion in an evolution are continuously repeated (e.g.
Φi/ �: segment Φi in region i is continuously repeated).
Equations that describe the elements of Bifurcations (cy-
cles) are identified by the symbol β. Sliding bifurcations
are identified with a super-script S that precedes the β
symbol and an alphabetic sub-script that indicates the
bifurcation type (e.g. Sβc is a sliding crossing bifurca-
tion).

3 Background of the nonsmooth
solution

Typically, nonsmooth systems are modeled as piecewise-
smooth systems (PWS) where the state space contains
four kinds of spaces: Smooth Zones, undefined Zones as-
sociated to regions behind of impact boundaries, Discon-
tinuity Boundaries with dynamics represented by convex
combinations of the solution of the ODEs of each vector
field and Impact boundaries with dynamic represented
by algebraic equations. Eq.(1) shows the state-space rep-
resentation of the simplest nonsmooth system with the
three types of dynamics.

ẋ =



Fi(x, α)
if x ∈ Zi = {x ∈ Rn : H(x, α) > 0}
Fj(x, α)
if x ∈ Zj = {x ∈ Rn : H(x, α) < 0}
G(x, α)
if x ∈

∑
i,j =

{
x ∈ Rn−1 : H(x, α) = 0

}
I(x, α)
if x ∈

∑
(i,j,k) =

{
x ∈ Rn−1 : HI(x, α) = 0

}


(1)

In Eq.(1) Fi and Fj are smooth vector fields; Zi and Zj
are the corresponding regions and α ∈ R1 is a parameter.
The state space regions are determined by the smooth
scalar function H(x, α) and the boundary of impact of
Zi or Zj regions is determined by the scalar function
HI(x, α).

3.1 Zero degree of smoothness systems

In electro-mechanical nonsmooth systems the impact
phenomena is highly dynamical, then can be declared
using an algebraic relation due to the impact time is neg-
ligible in relation with the time constant of mechanical
systems. In this relation, γ is the restitution coefficient

and Ω̇
(−)
I , Ω̇

(+)
I are respectively the approximation and

bounce speed.

I(x, α) =

{
Ω

(+)
I = Ω

(−)
I

Ω̇
(+)
I = γΩ̇

(−)
I

(2)
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The first row of Eq. 2 expresses that the position be-
fore and after the impact are identical. The second one
expresses that the rebound velocity (+) equals the im-
pact velocity (-) multiplieed by the restitution coefficient
γ.

3.2 First degree of smoothness systems

Filippov systems, a set of first-order ordinary differential
equations with a discontinuous right-hand side are a sub-
class of discontinuous dynamical systems. The trajectory
of a sliding orbit remaining partially inside the disconti-
nuity boundary may be calculated by the Filippov con-
vex method as in [4]. Systems with multiple regions and
DBs are treated in [13], where an extended equation for
Filippov systems is described in order to deal with the
intersection of several discontinuity surfaces.

In Filippov systems, between Zi and Zj in the discon-
tinuity boundary, we assume that there is a region

∑
i,j ,

which are a vector field of Rn−1 dimension conformed by
three types of points: crossing (ΩC), sliding (ΩS) and
singular (ΩSO), and each one with subtypes. The scalar
function σ(x) is used to determine the point type, ac-
cording to the geometric condition of the vectors in the
x point of analysis. Eq. 3 describes the geometric condi-
tions of an sliding point. Eq. 4 helps to determine which
is the nature of the point, according to the value of σ(x)
and the neighboring vector fields at x.

σ(x) = {〈Hx(x),Fi(x, α)〉 〈Hx(x),Fj(x, α)〉} (3)

x ∈ Σi,j :



ΩC ⇒ σ(x) > 0

ΩSO ⇒
(σ(x) = 0) ∧ (〈Hx(x),Fj(x)− Fi(x)〉 = 0)

ΩS ⇒ σ(x) < 0

(4)
Crossing points (ΩC), characterized by σ(x) > 0, are

points which the evolution of the trajectory will not re-
main in the DB. Instead, it crosses from the region in
which has been previously evolving to the other.

Singular sliding points (ΩSO), characterized by σ(x) =
0, are points having the associated vectors with the nor-
mal component 〈Hx(x),Fi〉 equal to 0. This is because
the vectors are tangential to the DB or vanishes. At
such points: (a) Fi and Fj are tangent to the DB, (b)
either Fi or Fj vanishes while the other is tangent to
the DB, or (c) Fi and Fj vanish. To avoid the lack of
definition of the Filippov solution for these points, in the
examples, we adopt the methods presented in [14] which
coincide with the topology of the normal forms VV, VI
and II presented in [12].

Sliding points (ΩS) are characterized by σ(x) < 0.
When a sliding motion is presented in the discontinu-
ity boundary, the Filippov method gives as a solution a

tangent vector to the DB which is a convex combination
G(x, α), of the vector fields Fi and Fj at a point x ∈ Σi,j
(Eq. 5).

G(x, α) = λFi(x, α) + (1− λ)Fj(x, α) (5)

λ =
〈Hx(x),Fj(x, α)〉

〈Hx(x),Fj(x, α)− Fi(x, α)〉
(6)

λ is a scalar function defined through the projections
of the vector fields in the direction of the normal vector
(Hx(x)) to the discontinuity boundary. According to the
direction of the normal components of the vectors, the
sliding points are stable (or attractor) (ΩSS), or unstable
(or repulsive) (ΩSU )(Eq. 7).

x ∈ Σi,j :


ΩSS ⇒

(〈Hx(x),Fi〉 > 0) ∧ (〈Hx(x),Fj〉 < 0)
ΩSU ⇒

(〈Hx(x),Fi〉 < 0) ∧ (〈Hx(x),Fj〉 > 0)
(7)

From Eq.(4) the crossing set is open but the sliding set
is closed, it is the union of the sliding segments, singu-
lar points and isolated or special sliding points. In this
paper, the terms special points or isolated points refer to
points whose neighbor points belong to a different class.

Special points define important dynamics in the sliding
segments of 2d systems or areas in 3D systems. These
points are: (a) Equilibria points, in which both vec-
tors Fi and Fj are attractive, transversal to the DB
and are at the end of two sliding segments pointing each
other. (b) Quasi-equilibria points with both vectors Fi
and Fj attractive transversal or anti collinear and which
are at the start of two sliding segments pointing away
each other. The contrary case have also quasi equilibria
points: repulsive, transversal points which are at the end
of two sliding segments pointing each other. (c) Bound-
ary equilibria points, in which one of the vector Fi or Fj
vanishes. (d) Tangent points, in which one of the vectors
Fi or Fj is tangent to the DB. In [15] is done a more
strict classification giving the characterization of 42 types
of points with the objective of differentiate topologies in
order to detect bifurcations.

3.3 Second degree of smoothness sys-
tems

The second degree of smoothness systems are represented
as variable structure systems having different dynamics
in each zone or region. The dynamics of the system does
not allow sliding or stops on the boundary zone, all points
are crossing and hence, there is not a particular dynamics
defined in the limit zone, instead there is a change of the
region equations set.
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3.0.4 Adding or Multisliding bifurcation

The sequence of changes for the Adding or Multisliding bifurcation is related
to the addition or destruction of a second sliding segment in the discontinuity
boundary as is described in [11]. Other sliding bifurcations recently reported
are those including more than two discontinuity boundaries that are moving
due to variations of a parameter. Those ones were introduced in [3] using an
example.
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Figure 1: Grazing (a,b,c), Switching (c,d,e) and Crossing (e,f,g) bifurcations.

4 The implementation of the sequences as a

method of comparison

Next we will describe the tool which were developed to get the result ob-
tained in the previous section. Additional to the numerical integrator, there
are some databases, procedures and methods working in parallel. They per-
form the evaluation of information collected previously, and the information
acquired in real time, when the system is evolving. These tools are:
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4 Sequences of well known bifur-
cations

In this and the following sections, we will present the
cycles of the most referenced sliding bifurcations as se-
quences of elements. In each cycle are presented the
constituent elements assuming that its presence was de-
tected, in the same order, in the evolution of a dynamical
system. In next equations the symbol Φ is used to rep-
resent segments composed by the same type of point.
Arrows indicate the direction of the sliding segments re-
lated to the DB.

4.1 Grazing Bifurcation

The Grazing Bifurcation (sβG) occurs in the following
sequence of changes. First, there is an orbit of a limit
cycle C1 evolving in only one of the regions i or j, without
hitting the boundary, as shown in Fig. 1(a).

C1 = Φi/ � (8)

Then, when the parameter α changes, for example,
from α1 to α2, the cycle grows or moves toward the dis-
continuity and has a tangent contact with the last point

of a sliding segment Ω
(+)
s . The structure presented cor-

responds to a sC2 type cycle.

sC2 = Φi/Ω
(+)
s / � (9)

Subsequently, as the parameter is moved further, the
limit cycle changes again as is depicted in Fig. 1(c). The
structure presented corresponds to a sC3 type cycle.

sC3 = Φi/Φ
→
s /Ω

(+)
s / � (10)

The orbit of the limit cycle sC3 has now two different
pieces: one without touching the discontinuity boundary
and the other one, corresponding to a sliding segment
Φ→s that starts in any intermediate point of the discon-

tinuity and ends at a tangent point Ω
(+)
s . The equation

describing the sequence of cycles is:

sβG = (C1) [sC2] (sC3) (11)

Impact systems also present grazing bifurcations. An
orbit that is evolving in a region, due to a change in a
parameter, makes contact with a boundary in only one
point. This point has approximation speed equal to zero.
Consequently, the bouncing speed is also zero. If the
physical parameter continues changing, the approxima-
tion and rebound points separate. The corresponding
cycles are:

C1 = Φi/ �
iC2 = Φi/Ω

(+−)
I / �

iC3 = Φi/Ω
(+)
I /Ω

(−)
I �

(12)

4.2 Switching Bifurcation

The sequence of changes for a Switching Bifurcation
(sβS) is as follows: the sliding piece of a limit cycle of

type SC3 grows until it reaches the first point Ω
(−)
S of

the sliding segment. See Fig. 1(d). The type of struc-
ture presented, corresponds to a cycle sC4. In general,
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the second cycle always characterizes the bifurcation type
and it is only presented for one value of the parameter or
a very narrow range in the numerical calculation terms.

sC4 = Φi/Ω
(−)
s /Φ→s /Ω

(+)
s � (13)

With a further change in the parameter the orbit has
now three segments: two of them, Φi and Φj are in two
different regions separated by the discontinuity bound-
ary, and the third piece is on the sliding region moving
to the right. See Fig. 1(e). The structure presented
corresponds to a sC5 type cycle.

sC5 = Φi/ΩCi,j
/Φj/Φ

→
s /Ω

(+)
s / � (14)

The equation describing the sequence of cycles is:

sβS = (sC3) [sC4] (sC5) (15)

4.3 Crossing Bifurcation

A Crossing Bifurcation (sβC) occurs when the sliding
piece of a cycle SC5 gets smaller and smaller. At a pa-
rameter value α6, the piece of trajectory Φj hits the slid-
ing region just at the last point of the sliding segment

Ω
(+)
s . See Fig. 1(f). The structure presented corres-

ponds to a sC6 type cycle.

sC6 = Φi/ΩCi,j
/Φj/Ω

(+)
s / � (16)

As the parameter further changes at some value α7,
the limit cycle has now two pieces without sliding. The
structure presented corresponds to a sC7 type cycle.

C7 = Φi/ΩCi,j
/Φj/ΩCj,i

/ � (17)

The equation describing the sequence of cycles is:

sβC = (sC5) [sC6] (sC7) (18)

4.4 Adding or Multisliding bifurcation

The sequence of changes for the Adding or Multisliding
bifurcation is related to the addition or destruction of a
second sliding segment in the discontinuity boundary as
is described in [12]. Other sliding bifurcations recently
reported are those including more than two discontinu-
ity boundaries that are moving due to variations of a
parameter. Those ones were introduced in [8] using an
example.

5 The implementation of the se-
quences as a method of compar-
ison

Next we will describe the tool which were developed to
get the results obtained in the previous section. Ad-
ditional to the numerical integrator, there are some
databases, procedures and methods running in parallel.
They perform the evaluation of information collected pre-
viously, and the information acquired in real time, when
the system is evolving. These tools are:

5.1 Collection of points

The collection of the values of the points is done in a vec-
tor, called vector of states. The new point includes
the values of the states, the amount of time since the
integration started and the data of the vector fields in-
volved in the dynamics. As shown in Fig.3(a), after each
iteration of the numerical integration, one point is added
to the vector of states and the graphic of the space states.

5.2 Database of point characteristics

Each point, additional to the characterization given by
the states is classified by the region or DB it belongs.
The orientation of the two vector fields for points in the
DB determines types as anticollinear, transversal, tan-
gent, also the attractiveness or repulsiveness and the di-
rection relative to the DB. The magnitude of the vec-
tors might tend to zero. The equation 4 determines if is
a crossing or sliding point. Finally the equation 1, that
represents its dynamics indicates if is an impact point.
All points and their characteristics are listed in a 2x2 ar-
ray called matrix of points, where the first column is
the list of points and each row are the list of attributes
that each point should to fulfill [15]. Other points pre-
senting themselves in the evolution belonging only to one
region, are the nodes and focus, stable and unstable.

5.3 Recognition of Points

From the states of the points and vector fields involved,
secondary information is estimated. For a point in the
DB is evaluated if it is impacting or normal. Then is
evaluated if the point is crossing or sliding. If a point
is crossing, it is evaluated to which vector field the evo-
lution will move. The evolution of sliding points has
direction tangent to the DB, spanning 42 possible sub-
types [15]. Summarizing, each point should match all
attributes listed in a row of the point matrix. The de-
tected points are stored in vector of elements (Fig. 2).

• While the vector of elements is being filled out other
functions are debugging the information. Each point
in a cell of the vector of elements is compared with
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Vector of elements

Figure 2: General method of comparison of sequences of cycles and bifurcations.

the point that was met immediately before. Data of
points having equal identity are removed from the
vector. Instead, the repetition of points turns the
first point in the repetition into a piece of curve of
the same type. This procedure is carried out with
the objective of avoiding a situation in which the
vector is filled or saturated with the same data.

• While picking elements for the matrix, events with
wrong result can be found and should be corrected.
For example, it is impossible to accept the sequence
Φi/Φj because implies a change of region Zi to Zj .
In the change, a crossing point must be found, and
an admissible sequence would be Φi/Ωij/Φj . Thus,
a function to correct the sequences of elements is
necessary. In [16] are listed 51 rules to correct errors.

5.4 Database of cycle elements

Each cycle as presented in the previous section, has a
set of elements which could be points or segments of

points. The order of the elements also determines the
cycle. In order to have a wider data base all papers
in the literature should be analyzed and the cycles pre-
sented must be converted in sequences of elements. The
information is stored in a bidimensional array, called
matrix of cycles, in which each row are the identities
of the elements of a cycle.

5.5 Comparison of cycles

In this step the comparison between the matrix of cy-
cles and the vector of elements is performed. We wish to
know whether inside the vector of elements there exists
a sub-vector of consecutive and ordered elements that
matches with some row of the matrix of cycles. The
sequence in the appearance of cycles (and other dynam-
ics) in this step is recorded in a vector called vector of

cycles. The result in the vector of cycles, for a given
set of parameters, admits the presence of (a) equilibrium
points, (b) limit cycles, and (c) chaotic behavior. For
time-varying parameters, the system evolution might be
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(a) Process of filling the vector with elements
appearing in the numeric integration.

(b) Searching process for a specific cycle.

(c) Cycle tracking process for bifurcations detec-
tion.

(d) Cycle continuation process.

Figure 3: Implementation of Cycle Bifurcation.

a sequence of n cycle types, whose order is dictated by
the system nature (Figs. 3(b) and 3(c) ).

To prevent that a repetition of a cycle be mistaken
as a single cycle, a function running in parallel with the
integrator performs the evaluation and the correction.
When a sub-sequence of the vector of elements, begin-
ning in the position nb1, is equal to the sub-sequence
beginning in the position nb2 = nb1 + lj and lj is the
number of elements of the cycle, it is concluded that a
cycle is repeating. A cycle is completed when a sequence
of elements is continuously repeated and the time Γ to
repeat becomes constant. Let us assume, as illustration,

a sequence with a grazing cycle Φi/Ω
(+)
s . After some

time 3Γ, the matrix of elements would contain a cycle

with the sequence Φi/Ω
(+)
s /Φi/Ω

(+)
s /Φi/Ω

(+)
s , which is

not correct.

If the search is for a specific cycle, the procedure is
slightly different. In this case, the number of elements
in the cycle under consideration is a date and then it is
reserved the same amount of cells to store the elements
during the integration process. When a new element
appears, a comparison is carried out until all the elements
of the stored cycle are identical to the elements that are
picked up from the integration (Fig.3(b)).

5.6 Change in parameter and storing of
cycles

When a cycle is already stored in vector of cycles

and it is continuously repeating, a programmed distur-
bance is introduced in a physical parameter, to continue
searching the bifurcations. The previous processes are
repeated, and recorded in vector of cycles.

5.7 Database of cycles sequence

Each bifurcation is constituted by three ordered cycles,
the first and third are presented for a wide range of
the parameter but the second is only presented for a
value of the parameter. The information of the bifur-
cations is then stored in a bidimensional array, called
matrix of bifurcations, in which each row are the
identities of the three cycles of the bifurcation.

5.8 Comparison of cycles sequence

The objective of the comparison is to identify if inside
the vector of cycles there is a sub-vector of three con-
secutive and ordered cycles which matches a row of the
bifurcation matrix (Fig. 3(c)). Here we are looking for
a specific sequence that corresponds to a known bifurca-
tion. To achieve this, a double comparison must be per-
formed: the first part is the comparison of elements that
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forms cycles, and the other part is referred to the com-
parison of the behavior of cycles in a specific sequence,
until a full match is detected. When the phenomenon
is poorly understodd, the comparison could be used to
identify sequences of cycles which occur when a param-
eter is modified within a range. For this purpose, the
integrator uses the vector of cycles to store information
regarding the cycles which have been found during the
time that the method has been active. Each time the in-
tegrator detects a repeated sequence of elements, stores
the information of the cycle, and changes the parameter
value in order to continue with the next identification.

5.9 Continuation

To continue a bifurcation the parameters are adjusted
corresponding to the central cycle of a previously de-
tected bifurcation. Next, two additional parameters are
slightly changed as per the rules of continuation. The
first parameter is disturbed and the second changes ac-
cordingly, to keep the dynamics of the central cycle. This
controlled disturbance of the two parameters is repeated,
such that it determines a trajectory in a continuation-
plot. The change of parameters could be done using
methods like predictor-corrector described in [17] or [18].
In this cases the predictive function is the cycle that gen-
erates the bifurcation, and the previous and posterior
cycles to the bifurcation are used for correction.

Fig. 3(d) shows an example of how is used the method
of comparison. The first step is a sensibility analy-
sis that indicates to which cycle, the system evolves
when the parameters are increased or decreased. For
example, the bifurcation SC2 has a sequence of cycles(
SC3

) [
SC4

] (
SC5

)
. Assume that a direct proportional

sensibility exists for parameter α1. This implies that a
small increment in the parameter value tends to change
the cycle into SC5 and a small decrement tends to change
the cycle into SC3. Changing α1, the cycle SC4 is ob-
tained. Then, the second parameter α2 is decreased (in
this case the initial point has a high value). After the
change in parameter α2, the cycle SC4 changes to SC3 or
to SC5. In the first case, the continuation algorithm in-
creases α1 until the cycle type SC4 is found again. In the
second case, the algorithm acts conversely. The process
is continuously iterated until the prescribed final value
of parameter α2 is reached.

Two objectives of an application for automatic bifur-
cation detection are: (1) to perform the detection task
without a close supervision, and (2) to track bifurcations
through continuation. The procedures developed here
can be used to achieve these goals.

6 Conclusion

This article presents an alternative method for detecting
bifurcations of limit cycles in non-smooth systems. We

focused on complex systems, which defy boundary-value
methods. The comparison method, reported in this ar-
ticle, is not intended to focus in the same achievements
of other methods. Instead, it addresses open issues left
by them, such as multiple sliding segments and disconti-
nuity boundaries (DB). The comparison method differs
from other approaches in the identification and manipu-
lation of the system information. While the methods in
[10] and [11] consider a system as one entity to be solved
by a group of equations, the comparison method uses
previously collected information in a data base of points,
cycles and bifurcations. This information allows com-
parisons and decision making. To enable the method for
nonsmooth systems, the cases when the evolution crosses
the DBs of systems having simultaneously the three de-
grees of smoothness (impact, Filippov and first derivative
discontinuities) was analyzed. To achieve the goal was
used the method that characterizes and records the ele-
ments comprising the cycles in the order they appear in
the integration process. The cycles were characterized as
sequences of elements (points and segments). It must be
noticed that the sequence of cycles has the topological
changes (e.g. bifurcations) implicit. Some of the types
of data considered as topological characteristic and col-
lected during the evolution are: (a) number of elements of
the cycle, (b) order in which the cycle elements are gener-
ated, (c) position of the sliding elements in the sequence
of cycle generation, (d) way (e.g. extreme or interior) in
which the cycle reaches and leaves the sliding segment,
(e) discontinuity boundary to which the element belongs,
(f) direction (CW, CCW) in which the cycle evolves. In
this article we also report a textual notation to describe
the elements of the cycles. The comparison method is
also able to handle continuation of sliding bifurcations.

The method of comparison could be implemented us-
ing tools of the sequence theory, suffix-trees and string-
matching, which offer procedures to drive a large number
of elements and allow us to discriminate subsets with low
computing time investment. The procedure of compar-
ison fulfill the two tasks required by an application for
automatic bifurcations detection: perform the detection
task without a closed supervision and track bifurcations
through continuation.
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