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Numerical analysis of wave propagation in fluid-filled deformable tubes
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of the solid phase and the fluid phase in the micro-scale are not taken into account. In contrast, the a proposed by
Bernabe does take into account micro-scopic interaction between phases and therefore poses aafintcrgsting alternative to Biot’s

and therefore the study of this geometry is of great interest. By using this geometry, the ; e a al and numencal
results have an easier 1nterpretat10n and therefore can be compared straightforwardegglts inite leference VlSCOClaSth

ie velocities of the simulations
at sub-critical frequencies closely match those of Bernabe’s solution, but at over-crt cies they come closer to Biot’s

solution.
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1 Introduction

approaches can be seen in their equations of moms
at the macro-scale, but Bernabe S equatlon equilibrium at the micro-scale. Furthermore, the constitutive relations

d micro-scale, however, Bernabe focuses on material properties only

2.1 Anal¥tical solutions

Eq. (1) is th i ersion characteristic polynomial ( [3] ) with roots £; and &». From the relation k%’Q = {0, 1t s
possible to fin umber k. The values of the parameters N, A, ), R, P are effective material parameters that can be
detes oratory experiments. The P-wave velocities follow from ¢ = w/Re(k)

ution, the characteristic polynomial is given by eq. (2), with J;(): Bessel function of the first kind, c;:
uid phase, ¢5: wave speed in the solid phase, p/: fluid phase density and p*’*: solid phase density.

0= [PR— Q%)% — [Ppaz + Rp11 — 2Qp12]€ + [p11p22 — p12p12), (1)

_ 4 of 2Nh(kr) p 52 ~ 2Ji(kr)
0=c¢ C (ero(kT) F+CF+20 >+2 <1 ero(kT)> 2)

2.2 Numerical approximation

The geometry of the elastic tube is discretized using a regular three dimensional grid. The inner radius is » = 0.25 mm and the
outer radio is R = 0.7 mm. The material properties of the solid phase are ¢ = 5330 m/s, ¢ = 3145 m/s, p*F = 7900 kg/m?
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(similar to those of steel). The properties of the fluid phase are ¢y = 1920 m/s, pf B = 1258 kg/m3 and nf® = 1.412Pa s
(glycerol under standard conditions).

The time domain is discretized using a second-order finite difference operator. The spatial derivatives are approximated
by fourth-order finite difference operators using a rotated staggered grid (RSG). The time and spatial discretization are solved
explicitely in the the code. The elastodynamic wave equations, extended by anelastic functions, eqs. (3), are solved wi
the finite difference method. In order to enforce the viscoelastic properties of the fluid phase, the approach of [4] is
implementing the anelastic coefficient tensor ffjnj kL Other approximations of the anelastic coefficient tensor appear i
The elastic tube is loaded at one end of the tube with a planar wave. The induced wave is a first time derivative normal
distrubution with a characteristic frequency f..
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Fig. 1: Cross sectional view of the propagating waved dle
plane along the axial direction. f. =150kHz.

1g. 2:" Dispersion relation (from Biot, Bernabe and numerical so-
lutions). The red dots indicate the phase velocities from the simula-

3 Results

The numerical simulation rep:
from the first arrivals of th

nts and cle epicts the microscopic flow process in Fig. 1. Phase velocities can be derived
s between two time steps. It can be seen that at sub-critical frecuencies, the numerical results
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