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Numerical analysis of wave propagation in fluid-filled deformable tubes
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The theory of Biot describing wave propagation in fluid saturated porous media is a good effective approximation of a wave
induced in a fluid-filled deformable tube. Nonetheless, it has been found that Biot’s theory has shortcomings in predicting the
fast P-wave velocities and the amount of intrinsic attenuation. These problems arises when complex mechanical interactions
of the solid phase and the fluid phase in the micro-scale are not taken into account. In contrast, the approach proposed by
Bernabe does take into account micro-scopic interaction between phases and therefore poses an interesting alternative to Biot’s
theory. A Wave propagating in a deformable tube saturated with a viscous fluid is a simplified model of a porous material,
and therefore the study of this geometry is of great interest. By using this geometry, the results of analytical and numerical
results have an easier interpretation and therefore can be compared straightforward. Using a Finite Difference viscoelastic
wave propagation code, the transient response was simulated. The wave source was modified with different characteristic
frequencies in order to gain information of the dispersion relation. It was found that the P-wave velocities of the simulations
at sub-critical frequencies closely match those of Bernabe’s solution, but at over-critical frequencies they come closer to Biot’s
solution.
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1 Introduction

According to Biot’s theory ( [1, 2] ) low frequency acoustic wave propagation across porous media is dominated by viscosity
(Poiseuille flow). At high frequencies, the viscosity loses significance and the fluid separates from the solid walls. As a
consequence, two P-waves coexist, and the wave at the fluid side has the form of plug flow. Likewise, Bernabe’s approach ( [5]
) has two characteristic frequency domains. The ranges of these domains match those proposed by Biot. A difference in their
approaches can be seen in their equations of momentum equilibrium. Biot suggests that the equilibrium condition is fulfilled
at the macro-scale, but Bernabe’s equations point to an equilibrium at the micro-scale. Furthermore, the constitutive relations
of Biot have material properties involving the macro and micro-scale, however, Bernabe focuses on material properties only
in the micro-scale.

The dispersion relation is the raion between the wave speeds of a propagating wave against its frequency. We will compare
the dispersion relations of Biot’s theory, Bernabe’s theory and the numerical simulation, and conclude which theory is more
appropiate for each frequency domain.

2 Methodology

2.1 Analytical solutions

Eq. (1) is the simplified dispersion characteristic polynomial ( [3] ) with roots ξ1 and ξ2. From the relation k21,2 = ξ1,2, it is
possible to find the wave number k. The values of the parameters N,A,Q,R, P are effective material parameters that can be
determined by laboratory experiments. The P-wave velocities follow from c = ω/Re(k).

In Bernabe’s solution, the characteristic polynomial is given by eq. (2), with Ji(): Bessel function of the first kind, cf :
wave speed the fluid phase, cSs : wave speed in the solid phase, ρfR: fluid phase density and ρsR: solid phase density.

0 = [PR−Q2]ξ2 − [P ρ̂22 +Rρ̂11 − 2Qρ̂12]ξ + [ρ̂11ρ̂22 − ρ̂12ρ̂12], (1)
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2.2 Numerical approximation

The geometry of the elastic tube is discretized using a regular three dimensional grid. The inner radius is r = 0.25 mm and the
outer radio isR = 0.7 mm. The material properties of the solid phase are cPs = 5330 m/s, cSs = 3145 m/s, ρsR = 7900 kg/m3
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(similar to those of steel). The properties of the fluid phase are cf = 1920 m/s, ρfR = 1258 kg/m3 and ηfR = 1.412 Pa · s
(glycerol under standard conditions).

The time domain is discretized using a second-order finite difference operator. The spatial derivatives are approximated
by fourth-order finite difference operators using a rotated staggered grid (RSG). The time and spatial discretization are solved
explicitely in the the code. The elastodynamic wave equations, extended by anelastic functions, eqs. (3), are solved with
the finite difference method. In order to enforce the viscoelastic properties of the fluid phase, the approach of [4] is used
implementing the anelastic coefficient tensor Ỹ ijkl

m . Other approximations of the anelastic coefficient tensor appear in [6–8].
The elastic tube is loaded at one end of the tube with a planar wave. The induced wave is a first time derivative of a normal
distrubution with a characteristic frequency fc.

σij = Cijklεkl −
ij∑
m

ξijm, ξ̇ijm + ωmξ
ij
m = ωmỸ

ijkl
m εkl. (3)

Fig. 1: Cross sectional view of the propagating wave in the middle
plane along the axial direction. fc =150kHz.
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Fig. 2: Dispersion relation (from Biot, Bernabe and numerical so-
lutions). The red dots indicate the phase velocities from the simula-
tions.

3 Results

The numerical simulation represents and clearly depicts the microscopic flow process in Fig. 1. Phase velocities can be derived
from the first arrivals of the waves between two time steps. It can be seen that at sub-critical frecuencies, the numerical results
are closer to Bernabe’s solution, Fig 2. At over-critical frequencies the numerical results resemble Biot’s solution. It is
observed that in the high frequency domain, the flow is indeed that of a plug flow.

4 Conclusions and Future work

We compare here the wave propagation models by Biot and Bernabe by using a finite differences approach. In the low
frequency domain, the approach of Bernabe is more accurate predicting the phase velocities. In the high frequency domain,
Biot’s model is better to calculate the phase velocities. Future work aims to compare the velocity profile of the fluid phase
between the numerical simulations and the analytical solutions, simulation of 2 and 3 dimensional lattices and the simulation
of viscous solid materials.
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