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Abstract

Reverse Engineering (RE) requires representing with free forms (NURBS,

Spline, Bezier) a real surface S0 which has been point - sampled. To serve

this purpose, we have implemented an algorithm that minimizes the ac-

cumulated distance between the free form and the (noisy) point sample.

We use a dual-distance calculation point to / from surfaces, which discour-

ages the forming of outliers and artifacts. This algorithm seeks a mini-

mum in a function f that represents the fitting error, by using as tun-

ing variable the control polyhedron for the free form. The topology (rows,

colums) and geometry of the control polyhedron are determined by alterna-

tive geodesic - based dimensionality reduction methods: (a) graph - approx-

imated geodesics (Isomap), or (b) PL orthogonal geodesic grids. We assume

the existence of a triangular mesh of the point sample (a reasonable expec-

tation in current RE). A bijective composition mapping S0 ⊂ R
3 ←→ R

2

allows to estimate a size of the control polyhedrons favorable to uniform-

speed parameterizations. Our results show that orthogonal geodesic grids is

a direct and intuitive parameterization method, which requires more explo-

ration for irregular triangle meshes. Isomap gives a usable initial parame-

terization whenever the graph approximation of geodesics on S0 be faithful.

These initial guesses, in turn, produce efficient free form optimization pro-

cesses with minimal errors. Future work is required in further exploiting

the usual triangular mesh underlying the point sample for (a) enhancing

the segmentation of the point set into faces, and (b) using a more accurate

approximation of the geodesic distances within S0, which would benefit its

dimensionality reduction.
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Glossary

PL Piecewise Linear

B solid object in R
3. B ⊂ R

3 is the closure of a bounded and

connected open set, whose border ∂B is a 2-dimensional man-

ifold.

S0 freeform parametric surface on which a Face of ∂B is mounted

P {p0, p1, ...} unordered point sample of S0

S(u, v) parametric surface, which fits the set P, so S ≈ S0

u, v surface parameters

Ni,p, Nj,q B-spline base functions R→ R,

n,m number of control points of S in u, v directions respectively

Cp control polyhedron for S

k norm degree. |(x1, x2, ..., xn)|k =
k

√
∑i=n

i=1
|xi|k

f function minimized when fitting S to P

di minimum distance between the i -th point pi of P and S

LM Levenberg-Marquardt

RE Reverse Engineering

Gr regular, axis-aligned vertex grid in R
2

G graph (P, E) with vertex set P and edge set E, nearly em-

bedded in S0

D square matrix in which D(i, j) = dist(pi, pj) , with dist() ap-

proaching the geodesic distance on S0 between sample points

pi and pj

T {t1, t2, . . .} triangular mesh of triangles ti with vertices in P

BUV parametric rectangular connected subset of R2

cG PL geodesic curve on T .
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1 Introduction

In this article, we address the following problem: Given a point setP = {p1, p2, ..., pn}

, randomly sampled on a local surface S0 of a physical part B, the Goal is to find

a parametric free form S(u, w) (approximating S0) by minimizing the distance

between S and P.

The point sample P is supposed to be tight enough to capture the smallest

geometrical detail in which the designer is interested. Such a point sample is

called Nyquist-compliant. In it, the point sampling interval must be at most half

times the smallest geometrical detail to be pursued [Nyq28],[Sha49].

Reverse Engineering (RE) is the process of converting (partitions of) P into

a topologically and geometrically correct CAD model [VMC97]. RE is widely

employed in many applications, such as CAD design, data visualization, virtual

reality, medical imaging, movie industries, cultural heritage preservation, etc.

Curve and surface reconstruction are central to RE, in which a material piece

B is available for digitization or scanning, while a suitable CAD model for the

piece is yet to be found. The most common CAD solid modeling schemes are: (1)

Boundary Representation, (2) Constructive Solid Geometry, (3) Enumerations,

and (4) Constraint-based Models. It is not evident which scheme should be used

for a particular point set. However, the mathematical difficulty of fitting CSG or

Constraint-based models is prohibitive, which leaves only Boundary Representa-

tions and Enumerations for practical applications. Enumerations (voXels, octrees,

etc.) are a natural choice when the sampled set is the interior of the object (e.g.

a scalar field). In these cases, it is usual to sample in grid patterns, as occurs in

Computer Tomograms, Magnetic Resonance, etc.

Given a body B, the representation of its boundary ∂B is called the Boundary

Representation (B-Rep) of B. B-Rep is the obvious choice for surface sampling,

since the surface sampled is precisely the boundary of the object, in the topological

sense. However, even if the scheme chosen to model the solid is a B-Rep, there

are plenty of modeling decisions which influence the goodness of the model. A

central decision is the partition (segmentation) of the Shell (a 2-manifold without

border), which bounds the solid, into Faces (connected 2-manifolds with possibly

disconnected border). When the CAD model precedes the object, the CAD soft-
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ware usually avoids defining a Face which is mounted in more than one underlying

parametric surface. That implies that, as an example, a Face will not contain a

subset of a cylinder and other subset of a sphere. When the physical model pre-

cedes the CAD model (as in RE), there is no obvious manner to determine that

a subset of the sampled points represents one Face of the solid model [CWQ+07]

and [VS05]. This occurs because, precisely, the parametric surface carrying the

Face is unknown and it needs, in turn, to be found based on the chosen point set.

To break this circular argument, a human user first partitions the point set, with

the support of statistical and graphical tools applied to the point sample. These

tools, for example, diagnose whether an analytical form (e.g. a cylinder) fits well

a particular subset of the point sample. In negative case, other analytical form, or

other partition of the point sample are tried.

1.1 Interactivity in Mesh Parameterization and Segmen-

tation

By principle, Computer Aided Geometric Design intends to reduce the need for

human interaction. However, the current state of the art requires the human input

to decide which computer-generated options are best suited for the application at

hand. Manifold Parameterization is not an exception. However, the user interac-

tion present when manifold parameterization fails (which is frequently the case)

is invested in the complementary process of further segmenting or re-segmenting

the Manifold and not directly in re-making of the parameterization. Manifold

Segmentation (see survey in [Sha08]) partitions the main triangular mesh in sub-

meshes. Partition criteria are: (1) tangent plane discontinuities (dihedral angle),

(2) weakness in the triangulation graph, among others. In this article, a desirable

segmentation goal is the quasi-developability of the sub-meshes, therefore facilitat-

ing their parameterization. The Spectrum of the mesh connectivity graph (Graph

Laplacian methods [LZ07]) tends to split the mesh in weakly connected compo-

nents, therefore isolating the limbs, head, tail, etc. (e.g. for an animal shape).

However, the classification of which eigenvalues of the Graph Laplacian contain

the information for the partition is still an open problem, and definitely requires

human interaction. Several Refs. ([JLCW06, LLS+05, Sha08]) present mesh seg-
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mentation software, which allows an intuitive interaction from the user, for the

purpose of Mesh Segmentation for easy parameterization (among other criteria).

The material present in this article corresponds to Fig. 1. Our Reverse Eng.system

receives a triangulation T to segment and parameterize ([Oro14]). Direct user in-

teraction or heuristics (Box 1) are used for either Geometry-driven segmentation

(e.g. Dihedral Angle, Box 2) or Topology-driven (e.g. Laplacian of Graph, Box 3)

Segmentation to produce an initial hint of the set of sub-meshes Ti (i = 1, 2, ..).

The sub-meshes Ti are parameterized (e.g. Geodesics, Box 4, this article). The

user or numerical criteria approve or reject the Segmentation and Parameteriza-

tion (Box 5). In the second case, user or automatic heuristics are added, and the

cycle is repeated.

As a primary precondition for Manifold Parameterization, Manifold Segmenta-

tion requires an interactive set-up. Fig. 15 shows the segmentation of the Frog data

set (i.e. input) fed to our geodesic - based Manifold Parameterization algorithms,

as well as the Manifold Parameterizations (i.e. output).

1.2 Article Focus

In this article we concentrate on the optimized fitting of the surface to the sample

point set, leaving aside the partition of large point samples into subsets which are

specific for the faces of the B-Rep to construct. In this article, section 2 reviews the

relevant existing literature. Section 3 discusses the theoretical background of the

implemented methodology. Section 4 presents the results of the implementation.

Section 5 concludes the article and suggests future work domains.

2 Literature Review

2.1 Data Input

The physical process that samples B has direct influence on the geometric recon-

struction algorithms applied to the collected data: (1) Medical Imaging produces

VoXel data, which can be either directly processed in 3D to produce Exhaus-

tive Enumerations and Octrees, or sliced by cross cuts to produce 2D contours,
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Figure 1: Interactive Workflow for Segmentation, Learning and Parameterization
of Manifolds.
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(a) Point Sample P. (b) Proximity Graph in P.

(c) Isometries to/from R
2.

Figure 2: Manifold Learning applied to initially guessing the control polyhedron
Cp.

which can be lofted to produce triangular meshes [KSS99, RCG+05]. This sampled

reaches internal cavities in natural manner. (2) Optical Scanning produces point

sets in R
3, sampled on the visible part of the object surfaces [BK05]. The 3D

points are usually equiped with triangle connectivity. (3) Coordinate Measuring

Machines (CMMs) produce point sets or sequences sampled by direct contact on

the reachable surfaces of B. This data is structured in polylines or contours in the

case of point sequences. If randomly sampled, the natural structure added to the

points is a triangular mesh.

Although there are hundreds of variations, the subdivision above covers the

basic taxonomy of 3D scaning methods. It must be noticed that all methods

imply a level of stochastic noise. Therefores, unless said otherwise, we asume the

point sample as noisy and random. Likewise, we asume that the point sample is

Nyquist/Shannon-compliant, so the Level of Detail to record is consistent with the

sample interval and the level of noise admissible.

LSM (Least Squares) or non-iterative methods seek to solve the surface fitting

problem in one iteration, by solving an over-sampled Ax = B system. They need
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a base surface for projecting the data points and to assign for each data an initial

parameter value (u, v). This process is also called parametrization [PT01].

Given a set of points Q sampled on the surface of an object, and a freeform

weight system expressed by matrix R, the goal of Least Square Minimization

methods (e.g [BAR11]) is to find the control polyhedron P , which satisfies the form

R.P = Q and minimizes f (Glossary). The Least Square solution P for R.P = Q

satisfies also RT .R.P = RT .Q, with the basis R matrix including terms related

to the knot vector, weight degree, parameter values, etc. [BAR11] reports that

the solution of this problem has time complexity O(N2.M) (N : number of control

points, M : number of sampled points) and storage complexity O(M.N +N2). By

exploiting sparsity in the RT .R matrix, the storage complexity may be lowered to

O(N). The LSM methods encompass a large set of individual tasks, such as: knot

insertion, minimizes distance between control polyhedron and surface, penalize the

displacement of control points and, in general, require considerable approximations

to solve RT .R.P = RT .Q (Gauss-Seidel, Cholesky, etc.). In general, LSM methods

require computing effort larger than iterative methods. The later ones minimize

the f functional by iteratively approaching the optimal tuning variables, and are

faster than the LSM ones.

[ZLZY11] uses a recursive decomposition in which large patches are built based

on a recursive construction of smaller ones. At the actual patch reconstruction,

the algorithm assumes to have available curves, contained in the sought surface,

which express the vectors which are normal to the four curve segments which limit

the patch. With this information, the four curve segments are found by indirect

integration of such normal vectors. In our work, we do not count with the normal

curve information. Instead, we start with the basic point sample.

[LAH+09] presents CAD model modification based on the deformation results

of FEA methods. In this context, it is necessary to fit parametric surfaces to

triangular meshes, already segmented. The fitting is focused on surfaces which

are slight deformations of planes. The bending - energy is used to calculate the

parametric surfaces and small features are temporarily ignored to accelerate the

FEA calculations. In our work, by contrast, we address surfaces which cannot

be bijectively projected onto a plane. We use dimensional reduction (Manifold

Learning) to get a rough approximation of such complex surfaces.
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[ZSGS04] proposes the use of the IsoMap method (isometric feature mapping)

to find a set of points in a low-dimensional space that conserves similar distances

to the given set of points in a high-dimensional space and provide an initial param-

eterization of the surface. The strech from the paremeterization is minimized by

an iterative method. If the user specified strech criterion is not fulfilled, a spectral

clustering is performed in order to partition the surface into charts and meet the

criterion. We use the IsoMap method to estimate the control polyhedrons for the

parametrization but we do not focus on any mesh partitions as done in [ZSGS04]’s

work.

[Aza04] discusses the fitting of a parametric surface to a surface point sample,

whenever the four parametric curves which bound the surface are known. The

algorithm also assumes that the point cloud can be always projected onto the

Dynamic Base Surface DBS formed by the four mentioned curves. This basically

is the same assumption of [LAH+09]. [KWLM12] uses DBS enhanced with mirror

and other symmetries to economically fit surfaces to symmetric point sets. Our

algorithm requires that the surface S be quasi - developable, but it does not require

S to allow a 1-1 projection onto some plane.

[PMK12] reports a spatial recursive octree subdivision in a 3D point set sam-

pled on a smooth closed (manifold) surface. Each octant of the octree is subdivided

if the surface fit to the points inside it does not fulfill a minimal value for a func-

tional. This functional expresses the accumulated distance of the point set to the

(radial basis) surface fit inside the octant. The method uses level sets methods

and therefore, the synthesized function solves a differential equation in the given

domain. This Ref. addresses the issue of point set segmentation and does not

address the fitting of free form parametric surfaces.

In the domain of curve reconstruction, [RCAA12] reports the usage of PCA

in local neighborhoods to construct an initial approximation of the sought curve.

Notice that the point sample of a curve admits a total order, in which it is clear if

a point precedes or follows another sample point. In a surface, a total order is not

natural, augmenting the difficulty of surface parameterization. On the positive

side, a triangulation T of the surface point sample provides the neighborhood

information, which is a necessary step in parameterizing S. In our work, triangular

information is central in finding a starting parameterization of S (i.e. an initial
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estimation of the control polyhedron Cp).

The usage of whole of the data points as the control polygon of the initial curve

is presented in [XLM12]. It could be useful only when the sample frequency is high

and when the data points are noiseless.

[LLB11] presents an evolutionary strategy that uses IsoMap for mappingP onto

R
2, and adds vertices to the point sample wherever the point sample is sparse. In

our strategy, we do not affect the original point sample, since we take advantage

of the triangular mesh T , which frequently underlies the point sample P.

[GIPP12] reports the implementation of a genetic algorithm to fit b-spline

surfaces to noisy point samples of surfaces. The algorithm first constructs a pa-

rameterization of the point sample. Then, other parameters such as knots and

control points are tuned, to obtain an accurate approximation (low error) of S for

the point set P. Although the authors claim that the method handles all type of

surface topologies, it must be remembered that, simply, not every surface permits

a connected parameterization. The examples shown indeed correspond to surfaces

which are mappings of a rectangular connected parameterization in R
2. [GI12]

presents a similar strategy to the one in [GIPP12], but replacing the genetic algo-

rithms with Particle Swarm Optimization (PSO). In PSO, each particle is equipped

with memory, close and far communications with other particles, velocity, and any

other required attribute needed to evolve to an optima state, according to a so-

cial measure of goodness. Likewise, the surfaces fit by using PSO in ([GI12] are

mappings of a rectangular connected subset BUV ⊂ R
2. Because these surfaces

are self-intersecting, they give the appearance of higher complexity. Should the

non-manifold condition be corrected, it would be impossible to express them as

the mapping of such BUV set. On the other hand, it must be remarked that swarm

strategies considerably increase the overhead of computational expense, since large

amounts of additional data are required per particle.

[RCK11] reports surface fitting to a point sample in the context of ultra-

precision engineering. To solve the fundamental issue of an initial parameteriza-

tion, a bidirectional sampling extracts a rough control polyhedron from the point

sample. Then, an optimization algorithms proceeds, to balance the accuracy fol-

lowing the point samples in the strictest possible manner vs. the smoothness of

the surface. This requirement makes sense, obviously, when the point sample itself
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has an extraordinary precision quality. Our work does not address such samples,

and therefore they do not imposse a condition of local point vs. surface adherence,

but instead a global one.

2.2 Literature Review Conclusions and Contribution of

this Article

The reviewed literature indicates that the control polyhedron Cp is central in

optimizing the fit of a freeform parametric surface to a triangle mesh or point

cloud. We assume throughout that the order and the knot vector of the B-spline

surfaces are fixed so they are not subject to optimization. The impact of Cp

overweights the impact of knots, freeform degree, norm degree, etc. In particular,

finding optimal Cp crucially depends on the quality of the initial guess for the

control polyhedron Cp.

Because of this reason, this manuscript will explore two methods for determi-

nation of initial guesses for Cp: (1) Orthogonal Geodesic Grids, and (2) Geodesic

based manifold Learning (Iso-map). These two approaches differ in that Isomap

assumes that the geodesic distances on S0 can be approximated by the proximity

graph of the point sampleP. Orthogonal Geodesic Grids explicitly seeks orthogonal

PL geodesics on the triangular mesh T and uses them for dimensional reduction.

Dimensional Reduction with Isomap and with Orthogonal Geodesic Grids are

facilitated in developable manifolds. Because of this reason, it is advisable to

avoid large extents of triangular surfaces to parameterize. Smaller meshes are

more appropriate for dimensionality reduction and parameterization. Likewise,

an excessive number of control points (large Cp) tends to create instability and

artifacts in the surface.

3 Methodology

Consider a Nyquist-compliant [Nyq28, Sha49] noisy unordered point set P =

{p1, p2, ..., pn}, sampled on the surface ∂B of a solid B embedded in 3D.

12
DRAFT D

RAFT D
RAFT 



3.1 Minimization Problem

Let S(u, v) be the best (in the statistical sense) surface fitting the point set P.

Given pi ∈ P, the point S(ui, vi) is the closest one to pi, belonging to S. We define

di = dist(pi, S(ui, vi)) = d(pi, S) and f =
∑t

r=1
dwi as the accumulated distances

between P and S. We call f as the residual and w as the order of the residual.

[WPL06] uses w = 2. Notice that di must satisfy the properties of a distance

function. A possible estimation for di would be: di = ||S(ui, vi)−pi||k, the k-norm

with k ∈ R
+ and k being the norm degree). This article minimizes f by tuning

the n×m points in Cp, the control polyhedron of the Parametric Freeform.

3.2 Parametric Freeform

This article addresses B-spline as the parametric freeform surface S to be fit to

the point set P. The parametric freeform has the form S : [0, 1] × [0, 1] −→ R
3

[WMS07] in Eq. 1. The tuning variables are the vertices Pi,j of the control

polyhedron.

S(u, v) =
n∑

i=0

m∑

j=0

Ni,p(u)Nj,q(v)Pi,j (1)

Where:Ni,p(u), Nj,q(v): b-splines basis functions defined by the knot vectors

U, V in Eqs. 2 and 3.

Pi,j : control point in i-th row and j-th column.

n,m: number of control points in u, v directions respectively.

p, q: surface degree in u and v direction respectively. Typically, degrees are

p = q = 3.

U = (0, ..., 0
︸ ︷︷ ︸

p+1

, up+1, ..., ur−p−1, 1, ..., 1
︸ ︷︷ ︸

p+1

) (2)

V = (0, ..., 0
︸ ︷︷ ︸

q+1

, vq+1, ..., vs−q−1, 1, ..., 1
︸ ︷︷ ︸

q+1

) (3)

With: r = n+ p+ 1, and s = m+ q + 1
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In this article we will consider the control polyhedron Cp as the set of variables

to minimize f . The degrees for the base functions (p, q), the knots vectors (U , V )

and the norm degree (k) will be considered as parameters of the minimization, and

therefore fixed. For more information on the sensitivity of f to those parameters,

see [RCAA12].

3.3 Levenberg - Marquardt (LM) Minimization

We use here the Gauss-Newton iterative method for solving non-linear optimization

problems, which approximates the Hessian H by using the Jacobian J (i.e., H =

J ∗JT ). Let us define x as the decision (or tuning) variables vector. x in iteration

k+1 is a function of x in iteration k, as per Eqs. 6 where rk is the residuals vector

at iteration k.

xk+1 = xk −H−1 ∗ J (4)

H ≈ J ∗ JT (5)

⇒ xk+1 ≈ xk − (J(xk)
T ∗ J(xk))

−1 ∗ J(xk)
T ∗ rk (6)

If f is not strictly convex, J might be singular at some iterations, causing

the algorithm to diverge. This problem can be solved by using the Levenberg-

Marquardt (LM) Method [Lev44, Mar63]:

xk+1 = xk − (J(xk)
T ∗ J(xk) + µ(k) ∗ I)−1 ∗ J(xk)

T ∗ rk (7)

where µ(k) ≥ 0 is the LM (damping) parameter and I is the identity matrix.
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3.4 Initial Estimation of Control Polyhedron

Figure 3: Geodesic Grid vs. IsoMap - based Initial Guess for Control Polyhedron

Cp.

The optimization process described in section 3.1 requires an initial guess of the

control polyhedron Cp. As with any optimization process, the quality of the initial

guess is critical for the convergence to an optimal point. For the estimation of Cp,

we require a bijective mapping S0 ↔ R
3. For this purpose, we will present two

alternatives (Fig. 3): (a) creation of an 2D geodesic grid on T , (b) dimensionality

reduction from T ⊂ R
3 to R

2.

3.4.1 Orthogonal Geodesic Grids for Initial Guess of Control Polyhe-

dron Cp.

Orthogonal PL Geodesics

In a fully developable surface S, parallel geodesic curves [c1(u), c2(u), ...] remain

always at the same geodesic distance (on S) from each other (Fig. 4). Likewise,

parallel geodesic curves [c1(w), c2(w), ...] perpendicular to the ci(u) ones will remain

perpendicular to them in all the surface S. Fig. 5 shows that the intersections

between the ci(u) and the cj(w) geodesic curve families form a vertex grid. For

developable surfaces (Fig. 4), this geodesic grid provides an exact procedure for

an iso-metric flattening of the surface and it is a high quality Control Polyhedron
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for the free form smoothing of T . In this article, we consider quasi - developable

surfaces. They are not strictly developable, but they allow us to build a geodesic

grid in which the ci(u) (and the cj(w)) geodesics will not cross among themselves.

Fig. 4(a) shows the ci(u) (blue) and cj(w) (red) geodesics on a cone.

U
+

1

U
+

2
V
+

1

U
-

1

V
-

-1

U
+

-1U
+

-2

u

v

V
+

0

(a) Partial Grid. (b) Full Grid.

Figure 4: Grid of Orthogonal Geodesic Curves on a Developable Surface (cone).

To parameterize T , we seek a flattening function f : T → R
2 as follows:

f(p) = (u, w) with (u, w) being the coordinates of p ∈ T under a grid of geodesic

curves ci(u) and cj(w) on T (Fig. 5). We seek that the geodesic curves ci(u)

and cj(w) be orthogonal to each other on T , and the curves ci(u) be parallel

to each other on T (likewise for cj(w) curves). The ci(u) should not cross each

other, and each ci(u) should intersect each cj(w) in perpendicular manner. T

being developable is a precondition for this ideal situation. However, we aim to

quasi - developable T . This expectation (also present in ML) is a reasonable

one in Reverse Engineering by applying Manifold Segmentation. By using this

mapping f , a family of (u, w) parameterizations of T is reachable, which allows us

to develop a trimmed surface representing T (an important landmark in Reverse

Engineering).

Geodesics on Triangular Meshes

Fig. 6 displays our approximation of a PL geodesic curve cG embedded in a

triangular mesh T . The World Coordinate System is Sw = [Xw, Yw, Zw, Ow]. A

geodesic curve cG on a surface S0 has a second derivative with respect to its curve

length s (acceleration ∂2cG/∂s
2) which is always normal to the surface S0. Eqs. 8

describe the transition of a PL geodesic curve cG whose velocity is v1 at triangle
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C1(u) 

C2(u) 
C3(u) C3C

C4(u) 

C2(w) 

C3(w) 

C1(w) 

Figure 5: Origin of a Geodesic Curve Grid on a Triangular 2-Manifold T .

t1 = [a, b, c], to a neighboring triangle t2 = [b, d, c] that hosts the next geodesic

segment of cG, with a new velocity v2. The geodesic cG intersects edge bc (common

to triangles t1 and t2) at On. Triangles t1 = [a, b, c] and t2 = [b, d, c] have normal

vectors n1 and n2, respectively. The normal vector n̂ at the point of transition

On is approximated as the average of n1 and n2. The acceleration vector of the

geodesic cG at On ∈ bc is vacc = v2 − v1 and it must be parallel to n for a geodesic

curve. An orthogonal, right handed (i.e. Special Orthogonal SO(3)) coordinate

system is defined at On as Sn = [vtg, vtrv, n̂, On], with vtg and n̂ being tangent and

perpendicular to the geodesic cG at On, respectively. The transverse vector vtrv is

coincident with the edge bc and vtg × vtrv = n̂. The entry vector v1 solved in the

Sn system has coordinates [α, β, γ], while the exit vector v2 will have coordinates

[α,−β, γ] in Sn. Finding v2 enables to track the geodesic curve to the next triangle

t3 (not shown), incident in this example to edge bd.
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d
tg

v2
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v1

acc

Xw

OnOnOn

n2
n

n1

trvc

Zw

a

Ow
Yw

(a) Upstream View of Geodesic
Flow.

0
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10
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Ow

Zw
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n1n

trv

n2

OnOnOn

Xw

acc

v1

b

v2

tg

d

(b) Downstream View of
Geodesic Flow

Figure 6: Geodesic Continuation between neighboring triangles.
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n̂ = (n1 + n2)/||n1 + n2||

vtg = (n2 − n1)/||n2 − n1||

vtrv = n̂× vtg

α = v1 • vtg

β = v1 • n̂

γ = v1 • vtrv

v2 = α ∗ vtg − β ∗ n̂+ γ ∗ vtrv

vacc = (v2 − v1) = k ∗ n̂

n̂ • vtg = 0 (8)

Converging Geodesics in Non-Developable Surfaces

When surface S0 (or in the discrete case, triangular mesh T ) is not developable,

initially parallel geodesics ci(u) will eventually intersect each other (Fig. 7(a)). In

mild cases (quasi - developable surfaces) we break the intersecting curves (at the

intersection, Fig. 7(b)) and swap the pieces, therefore producing non-intersecting

curves that lose the geodesic property only at a finite number of points.

(a) Defective Geodesic Grid.

!

(b) Correction for defective (crossing)
Geodesics.

Figure 7: Defect and Repair of Geodesic Grid on Quasi-developable T .
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3.4.2 Manifold Learning for Initial Guess of Control Polyhedron Cp.

Manifold Learning, also called nonlinear dimensional reduction [TDSL00, CC01],

pursuits the goal of mapping data originally lying on (or nearly on) an unknown

manifold embedded in a high dimensional euclidean space, into a low dimensional

euclidean space, while preserving some desired characteristics. The Manifold

Learning community has developed a variety of methods that suit different sit-

uations. IsoMap, Locally Linear Embedding, Laplacian Eigenmaps, Semidefinite

Embedding are among the more prominent ones. IsoMap, the oldest of all, assumes

that the data lie on (or nearly on) the image under an unknown isometric embed-

ding of an unknown region in d-dimensional euclidean space. Roughly speaking,

the idea of the method is to first compute the distance matrix D between any

two data points as the length of a shortest polygonal path, within S0, connecting

them. This path has only data points in P as vertices. Using the matrix D one

produces a set of points in d-dimensional euclidean space whose mutual euclidean

distances are also given by D.

Here is a very broad view of how the method discussed in the present article

proceeds:

1. A point set P sampled on a manifold of dimension 2 (i.e. a surface) S0

embedded in R
3 is given.

2. S0 is assumed to be developable, i.e. there exists a bounded, connected open

set A ⊂ R
2 and a one to one C1 isometric function g1 : A → R

3 such that

S0 = g1(A). The fact that g1 is isometric means that the length of g1(C) is

the same as that of C for each curve C in A.

3. A and a g1 as in the previous step are found [TDSL00, CC01].

4. A is transformed by an appropriate rigid motion g2 : R
2 → R

2 which achieves

a minimal 2D bounding box for A′ = g2(A).

5. An n×m regular grid Gr in R
2 approximately enclosing A′, is created.

6. g−1

1 (g−1

2 (Gr)) is taken as an initial guess for the control polyhedron Cp of S

(the approximation of S0).
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Fig. 2 presents our approach of using of Manifold Learning for the synthesis of

an initial guess for Cp, the control polyhedron for the sough surface S.

The process is as follows:

1. Start with the point set P sampled on S0 ⊂ R
3 (Fig. 2(a)).

2. Build a graph G = (P, E) representing neighborhood information within P

(Fig. 2(b)). There are two alternatives:

(a) Build the edge set E with the nodes satisfying the k-nearest criterium

within P: the edge pi, pj ∈ E if pi is one of the k points of P nearest

to pj.

(b) Use T = {t1, t2, . . .} the available triangular mesh of P. The edge

pi, pj ∈ E if a triangle in T contains pi and pj.

3. Interpret each e ∈ E as a chord of S0 (which is true if the sample P is

Nyquist - compliant for S0).

4. Approximate the geodesic curve between any two vertices pi and pj in P as

the shortest path formed with edges e of G, joining pi and pj (Fig. 2(c)).

5. Form the square matrix D whose entry D(i, j) is the geodesic distance on S0

between vertices pi and pj in P.

6. Calculate, by using D, a bijective isometric map g1 : P→ R
2 (Fig. 2(c)).

7. Rotate and translate (within R
2) the set g1(P) ⊂ R

2 by using a rigid trans-

formation g2 which minimizes the 2D bounding box BUV containing the set

g2(g1(P)).

8. Sample the bounding box BUV with a regular, equispaced grid Gr, of size

n×m.

9. Map Gr ⊂ R
2 back to R

3 by using h = g−1

1 ◦ g
−1

2 .

10. h(Gr) is an initial guess for the control polyhedron Cp of S.
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As we devised this application of Manifold Learning to our problem, we initially

tried alternative 2-a above. However, this alternative produced a poor initial guess

for Cp, which in turn produced a poor S approximating S0 (Fig. 13(c)). Because of

this reason, we replaced the k-nearest citerium for forming E by the connectivity of

the triangle mesh T (alternative 2-b above) which is reasonably available in RE).

We have not found such alternative formulated in the relevant literature. Fig.

13(e) displays the improved result for the initial guess CP by using alternative

2-b.

The g2()R
2 → R

2 rigid rotation function helps to define a U-V parameterization

such that the initial guess h(Gr) for the control polyhedron Cp is approximately

aligned with the surface S. Figs. 11(a) and 11(c) show that the iso-parametric

lines are slanted when only g1() is used. When function g2() is used, the iso-

parametrics are aligned as in Figs. 11(b) and 11(d). Figs. 12(a) and 12(c) display

the initial guesses of the control polyhedron Cp, calculated with the help of g2().

Figs. 12(b) and 12(d) show the final control polyhedra and surfaces found with

the optimization process.

Notice that almost all surfaces are not developable. However, ∂B can be seg-

mented into small parts (Faces, mounted on surfaces S0) which are close to be

developable, because ∂B is 2-manifold.

4 Results

4.1 Initial Guess with Geodesic Grids

Fig. 4 shows early and finished status of the geodesic grid for a developable surface

(e.g. cone), where an orthogonal geodesic mesh is possible. Fig. 7(a) shows a

defective grid, resulting from a non-developable manifold. In this case, geodesic

curves ci(u) (or curves cj(w)) intersect. In such a case, we use a heuristic remedy

to force the separation of the ci(u) and cj(w) by re-defining them as per Fig. 7(b).
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10 5 0 5 10

(a) Grid on Parametric

Space.

(b) Geodesic Grid on Cat Triangulation.

Figure 8: Highly non-developable (Cat) Data Set.

Fig. 8 shows an attempt for parameterization of mesh T (Cat data set) with

orhtogonal geodesic grids. It is evident that Orthogonal Geodesics cannot attack

the problem of non-developable data sets.
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(a) Defective Geodesic Grid on Tape

Data Set.

(b) Defective Geodesic Grid

on Trimmed Tape Data Set.

(c) Defective Geodesic Grid on Trimmed

Tape Data Set.

Figure 9: Defective Geodesic Grid.

Fig. 9(a) illustrates that the Tape data set causes the ci(u) (or the cj(w))

geodesic curves to intersect each other. This local inconvenience can be corrected

by disentangling the curves as per Fig. 7(b). The run for Tape data set also

presents the need to rotate either (a) the geodesic grid on T ⊂ R
3 or (b) the lower

dimension set on R
2 by using a rigid transformation g2 : R

2 → R
2 (Fig. 2(c)).

In contrast, when the T Tape data set is trimmed (Figs. 9(b) and 9(c)) the

geodesic grid becomes insufficient to ensure a consistent back mapping g−1

1 ◦ g
−1

2 :

R
2 → R

3 (Fig. 2(c)) , therefore producing erratic portions of the control polyhe-

dron Cp. This behavior is evident also in Fig. 10 applied on the Frog Back data
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set.

(a) 2D Grid from Geodesic Grid. (b) 3D Back Map from 2D Grid.

Figure 10: Frog Back Data Set. Parameterization and Outliers.
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(a) Back Data. Iso-
parametrics without
Rotation in R

2

(b) Back Data. Iso-
parametrics with Rotation
g2() in R

2

(c) Nostril Data. Iso-
parametrics without Ro-
tation in R

2

(d) Nostril Data. Iso-
parametrics with Rota-
tion g2() in R

2

Figure 11: Iso-parametric curves without and with the use of a minimized bounding
box in R

2.
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(a) Back Data. Initial
Guess of Cp

(b) Back Data. Final Posi-
tion of Cp

(c) Nostril Data. Initial
Guess of Cp

(d) Nostril Data. Final Po-
sition of Cp

Figure 12: Initial Guess and Final Status of Control Polyhedron Cp
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4.2 Initial Guess with Manifold Learning

(a) Forearm Point

Sample P

(b) k−neighbor Con-

nectivity Graph in P

(c) Final Surface

with Initial Guess

from basic Manifold

Learning

(d) Triangular-mesh

Connectivity Graph

in P

(e) Final Surface

with Initial Guess

from Triangle mesh

- enhanced Manifold

Learning

Figure 13: Optimized surface fitting by using initial guess of the control polyhedron

Cp found with triangle-mesh based Manifold Learning.
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Fig. 12 presents two examples (back and nostril) of surface S fit to the point sample

P by using and initial guess of the control polyhedron Cp which is found using

our variation Manifold Learning (k-nearest graph replaced by the graph derived

from the triangular mesh underlying the point set P), plus an additional rotation

of Cp (via g2() in Figs. 11(b) and 11(d)) to avoid the problems shown in Figs.

11(a) and 11(c).

Fig. 13(a) shows an example in which the point data is sampled on a surface S0

which is similar to a cylinder. In this case, an initial guess for its control polyhedron

Cp obviously cannot be produced with PCA. We use instead Manifold Learning

as discussed in section 3.5 to find an initial approximation for Cp. The k-nearest

graph based on P is displayed in Fig. 13(b) as per alternative 2-a in section 3.5.

In such a case, the initial guess for h(Gr) ≈ Cp in step 10 appears in Fig. 13(c).

In contrast, alternative 2-b in section 3.5 produces the connectivity graph G in

Fig. 13(d). In this alternative, the triangular mesh connectivity replaces the k-

nearest one (step 2-b in section 3.5), with evident advantage. The initial guess for

the control polyhedron Cp is approximated by h(Gr) in step 10. Because in the

optimization the quality of the starting point is critical in non-convex scenarios,

this approximation for Cp enables the minimization process in such cases.

Fig. 14(a) presents the Frog data point sample. The segmentation of this

general set in smaller point samples P was carried out by a human user, as the

scope of our article does not include point set segmentation. Fig. 14(b) shows

the several results S of the optimized surface fitting for those P sets, emphasiz-

ing the iso-parametric lines. Fig. 14(c) displays the same free surface partition

without the iso-parametric lines. The eye data sets were treated with another sur-

face optimization algorithm, specific for analytic surfaces (in this case, ellipsoids

[RAA13]).

Figs. 15(a) and 15(b) show the results of the surface fitting algorithm in upper

and bottom views, respectively. We do not attempt, at this time, the blending

among the surfaces.
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(a) Frog Data Set. Point Sample (b) Iso-parametric Curves in Fit Surface

(c) Set of Fit Surfaces

Figure 14: Results in the ’Frog’ Data Set.

(a) Iso-parametric Curves in Fit Surface.

Upper view.

(b) Iso-parametric Curves in Fit Surface.

Bottom View.

Figure 15: Upper and Bottom Views. Results in the ’Frog’ Data Set.
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5 Conclusions

This article presented the implementation of an algorithm for optimized fitting

of a free form surface S to a point sample P of the original material surface S0,

so S ≈ S0. The surface S minimizes the functional f =
∑t

r=1
dwi , which is the

summation of distances di between pi ∈ P and S. The implemented algorithm

uses both, the distance from pi to S and the distance from S to pi (they differ

since S is finite).

In this work, the functional f is minimized by choosing the control polyhedron

Cp of the free form S. The size m × n of Cp and the initial guess of Cp are

determined by using a bijective map g2 ◦ g1 : P→ R
2, which is quasi-isometrical.

g1 is implemented using Dimensionality Reduction by either: (1) generating a

geodesic grid on T and using the intersections among ci(u) and cj(w) geodesic curve

families as tentative vertices of the control polyhedron Cp, or (2) approximating

the geodesics on S0 by using the graph implicit in triangulation T and using Isomap

to find a parameterization in R
2. The function g2 is a rotation within R

2, which

minimizes the bounding box of g2(g1(P)) ⊂ R
2.

Although the direct calculation of a geodesic grid (curve families ci(u) vs.

cj(w)) on T is intuitively appealing, it must be perfected for the cases of an ir-

regular or pierced triangular mesh T . Because of this reason, we presently prefer

Isomap for the calculation of an initial guess for the control polyhedron Cp.

Isomap normally calculates an approximation (based on the k-neighbor graph)

of the geodesic distance dS0
(pi, pj), within S0, between points pi and pj of the

sample P. In our algorithm, the geodesic distance is based on the triangular-mesh

graph among points pi ∈ P, typical from a reverse engineering 3D point scanning

process. In our algorithm, these two Dimensionality Reduction methods are alter-

natively used to find an initial guess for the control polyhedron Cp (minimization

tuning variables).Our algorithm chooses a dimensionality reduction function which

builds an initial parameterization (hence Cp) that agrees with the aspect ratio of

the point sample. Therefore, we correct slanted parameterizations such as the ones

shown in Fig. 11(a) and 11(c).
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6 Future Work

Additional work is needed in these aspects: (1) With Geodesic Grids, it is necessary

to handle their interruptions when there are holes or concavities in the mesh T .

(2) To use the quality of the Dimensionality Reduction to guide the segmentation

of the point set, by clustering in one face those triangles which represent quasi-

developable portions of T .
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