
Meccanica manuscript No.
(will be inserted by the editor)

Graph-Based Structural Analysis of Planar Mechanisms

Sebastián Durango · Jorge Correa · Oscar Ruiz

Received: date / Accepted: date

Abstract Structural analysis of planar mechanisms
deals with the enumeration of distinct mechanisms de-
rived from a kinematic chain and their mobility charac-

terization. The problem of finding the generation prin-
ciple of a mechanism is central to the structural analy-
sis and consists of determining a sequence of kinemat-
ically and statically independent-simpler modules, this

sequence represents the mechanism’s topology and pro-
vides a transferring direction of information for kine-
matics and force analyses. This article presents a struc-

tural analysis of planar mechanisms using graph the-
ory followed by a novel graph-based algorithm to de-
termine the generation principle of planar mechanisms
with closed-loop kinematic structure. The running time

analysis and proof of correctness of the algorithm are
provided and its validation is carried out using a case
study.

Keywords graph · kinematic structure · Assur group

1 Introduction

Modular kinematics and force analyses of mechanisms
are reported to be computationally efficient and adapt-
able since they allow to define in advance a library of

modules that are combined and reused to model wide
families of mechanisms [8, 14]. Although modular ana-
lyses methods have been available in the literature for
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several decades, interest on these kinematic [5–7, 9–
11, 20, 21] and dynamic analyses methods [4, 8, 18, 19]
remains current. Recently, modular kinematic analysis

has been extended to calculation of Jacobian matrices
and quality indexes [2, 3]. Similar to the analysis, syn-
thesis of mechanisms that deals with topological varia-
tions often implements modular approaches [6, 13, 14]

that allow to rebuild instantly the kinematic structure
of the model, therefore, ensuring the continuity of the
design process [19]. In this sense, modules (e.g. Assur

groups) are building blocks or structural genes of com-
plex systems (e.g. mechanisms) [15] used, for example,
for the modeling of biological systems and the designing
of prosthetic devices [16].

The problem of finding the generation principle of
the mechanism or system group classification is central
to modular analysis and synthesis methods [14, 17, 19]
and consists of the determination of the modules that
form a planar mechanism and the sequence in which
those modules are connected. Only two categories of

modules are considered for this work:
Definition 1. Driving-elements group which is formed
by the fixed link and the input links. It represents the
generalized coordinates of the system.
Definition 2. Assur group which is a planar kinematic
chain composed of n = 2k links and j = 3k joints and
with the following characteristics:

a. each joint has one mobility,

b. there are r external joints that connect the group to
an external kinematic chain with mobility M ,

c. the mobility of the expanded kinematic chain (exter-
nal kinematic chain plus Assur group) remains M ,
and

d. it is not possible to decompose the kinematic chain
into simple chains so that all fulfill the same require-
ments.
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The generation principle is determined by the topol-
ogy of the mechanism and its input-motion scheme.
From that point of view, this problem can be consider
as laying in the kinematic-structure problem category,
particularly, in the structural analysis of mechanisms.

Traditionally, the generation principle of the mech-
anism is determined by inspection. However, a system-
atic approach that allows for computer implementation
is required when complex mechanisms are treated. Al-
ternative strategies aimed to perform this task are de-
veloped in [17] and [1]. In spite of the fact that both
alternatives are based on a graph representation of the
mechanism, the functions applied to map mechanisms
to the graphs are quite different. The mapping func-
tion implemented in [1] has a kinematical background,
whereas the function used in [17] is based on rigidity
theory.

This article presents a graph-based formulation of
the generation principle of mechanisms. The formula-
tion has a kinematical background and it includes for-
mal definitions of the graphs representing an Assur

group and a driving-elements group (section 3.2). In ad-
dition, these definitions are implemented in section 3.4
into the design of a novel algorithm to determine the

generation principle of planar mechanisms. The proof
of correctness of the algorithm and its running time
analysis are provided in section 3.5.

2 Literature Review

Main aspects that encompass the kinematic-structure

analysis of mechanisms include mobility analysis and
Degrees of Freedom (DOF), structural synthesis of kine-
matic chains, isomorphism of kinematic chains, struc-
tural analysis, and application to the creative design of
products and systems [12].

Mruthyunjaya [12] presents a comprehensive study
of available literature concerning the research on kine-
matic structure of mechanisms in which the aforemen-
tioned analyses and syntheses aspects are covered. Par-
ticularly, structural analysis deals with the enumeration

of distinct mechanisms derived from a kinematic chain
and the characterization of their freedom type depend-
ing on the input and output motion scheme.

A different category of structural analysis deals with
the concept of generation principle of mechanisms
which is derived from the classical concept of kinematic
structure developed by Leonid Assur in 1914. An Assur
group is a minimal kinematic chain with zero mobil-
ity from which it is not possible to obtain a simpler
kinematic chain with the same mobility, see definition
section 1 definition 2. Usually, a mechanism can be de-

signed as the successive joining of a driving-elements

group (formed by the fixed and input links) and several
Assur groups. The Assur groups that form a mechanism
mechanism and their order of succession determine the
kinematic structure of the mechanism. Assur groups are
statically determined. Thus, they represent a modular
basis for the kinematics and force analysis, and for the
synthesis of mechanisms [18].

Although research on kinematic structure of mech-
anisms remains of interest, there is few literature avail-
able on strategies (algorithms) for the determination of
the generation principle of mechanisms based on Assur-
group decomposition.

Buśkiewics [1] presents a graph-based combinatorial
algorithm in which the Assur groups forming a planar
mechanism are systematically identified. The algorithm
precondition establishes that the internal loops’ com-
binatorial of a graph that represents a mechanism in-
cludes its Assur groups. It is computationally efficient
since practical mechanisms conduct to a small combi-
natorial of internal loops. However, it works under the

condition that the set of independent loops of the rep-
resenting graph is given, which implies a combinatorial
task itself.

Offer Shai and coworkers [17] develop a study in
which Assur groups are characterized as graphs hav-
ing special properties from rigidity theory. The article

establishes the duality between planar (locked) mecha-
nisms and unstable isostatic frameworks, leading to the
implementation of rigidity-theory mathematical tools

into the kinematics and force analysis of mechanisms.
Moreover, a combinatorial algorithm for determination
of the generation principle of a mechanism is developed.
For this purpose, a rather unusual function for map-
ping mechanisms to graphs is implemented, in which
the kinematic pairs are represented by vertices and the
links by edges. Although, the function allows for a di-

rect use of the rigidity theory in the graph-based anal-
ysis, a conflict with a kinematics fundamental arises
for the representation of multiple-joint links: only bi-
nary links are considered in the representation, there-
fore, multiple-joint links are represented as a number of
different binary rigid bodies connected between them,
even though no relative motion is developed.

This work presents an alternative to the determina-
tion of the generation principle of mechanisms. A novel
graph-based algorithm is designed in which mechanisms
are represented by graphs in a conventional manner, re-
sulting in the direct mapping of the kinematic-structur-
al properties to the graph representation. For this pur-
pose, kinematic properties of planar mechanisms and
Assur groups are rigorously defined in both mechanisms
and graphs domain. Section 3 develops the mapping

from mechanisms to graphs, the fundamentals of the
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kinematic-structure analysis, and the algorithm to de-
termine the generation principle of mechanisms.

3 Methodology

3.1 Mapping mechanisms to graphs

The kinematic structure of planar mechanisms can be
represented in several different ways. In this section,
two principal representation methods (structural and
graph representation) are described. For the sake of
simplicity, the following assumptions are made for both
representation methods:

a. Mechanisms with excessive constraints will be rep-
resented without their excessive constraints.

b. All joints are assumed to be binary. Multiple joints
will be replaced by a set of equivalent binary joints.

c. Two mechanical elements with no relative motion
between them will be represented as one link.

d. All joints will be assumed to have only one mobility.

3.1.1 Structural representation of mechanisms

In a structural representation, each link of a mechanism
will be illustrated by a polygon whose vertices represent
the kinematic pairs. In this manner, a binary link is

represented by a line with two end vertices standing for
their kinematic pairs, a ternary link is represented by a
triangle with three vertices, a quaternary link is repre-
sented by a quadrilateral with four vertices (see Fig. 1),

and so on. Furthermore, in structural representation of
a mechanism, the links are numbered, particularly, the
fixed link is numbered with zero.

(a) Binary link (b) Ternary link (c) Quaternary link

Fig. 1 Structural representation of links

Figure 2 presents the structural representation of a
four bar mechanism.

3.1.2 Mapping function

A mechanism is a set of links connected by a set of
joints. Therefore, it can be conveniently represented as
a graph. This usually simplifies the structural analysis
since many graph properties can be applied directly and

Fig. 2 Structural representation of a four-bar mechanism

graph theory may be used as an aid for computer im-
plementation. For this purpose, we define the mapping
function g in (1) such that it takes a kinematic chain
K and returns a graph G in the following manner:

g :K −→ G,

g(N, J) =(V,E) = (V (N), E(J)),
(1)

where:

N is the set of links of the mechanism,
J is the set of joints of the mechanism,
V is the set of vertices of the graph, and
E is the set of edges of the graph.

In graph representation, the vertices of the graph
denote the links of the mechanism and the edges denote
the joints. Particularly, a joint connecting links u and v
is represented by the edge e = (u, v). In such a case, u

and v are called the end points of e. The correspondence
between the graph vertices and their respective links is
straight forward.

3.1.3 Graph representation of mechanisms

The edge connecting two vertices in graph representa-
tion corresponds to the pair that connects two links.
The degree of a vertex (number of edges incident with
that vertex) represents the classification of its corre-
sponding link. In this manner, we call a vertex of degree
two a binary vertex (representing a binary link), a ver-
tex of degree three a ternary vertex, and so on. We also
call the graph representing a mechanism G = (V,E).
The joints connecting the driving links with the fixed
link or other driving-elements are represented by thicker

edges. Figure 3 shows a mechanism (Fig. 3.a) and its
graph representation (Fig. 3.b).
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(a) Mechanism consisting of 9 links and 13 joints
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(b) Graph representation of Fig. 3(a)

Fig. 3 Mechanism consisting of 9 links and 13 joints together
with its graph representation

3.2 Structural analysis of planar mechanism

3.2.1 Domain and range of mapping

The herein developed structural analysis concerns those

mechanisms that have a closed-loop kinematic structure
and their input links connected either to the fixed or
to another input link. According to this assumption, a

graph obtained after mapping such type of mechanism,
by the use of (1), presents the following characteristics:

a. It is a connected graph. This means that every vertex
in the graph is connected to every other vertex by
at least one path.

b. It is a block. This is, the graph is connected and
has no cut points or bridges. A cut point is a vertex
whose removal results in an increase in the num-

ber of components. In addition, a bridge is an edge
whose removal results in an increase in the number
of components. Bridges and edges often arise when
representing a mechanism with excessive constraints
in graph form.

c. It has no parallel edges or slings as only binary joints
are accounted for and two links with no relative mo-
tion between them are represented as one link.

3.2.2 Degrees of freedom and independent loops of a
mechanism

The first concern in the study of a mechanism’s kine-
matic structure is the DOF. For a graph G = (E, V )
which represents a mechanism M that meets conditions
stated in section 3.1.2, the DOF W of a mechanism can
be written as (2):

W = 3(|V | − 1)− 2 |E| , (2)

where:

W is the DOF of the mechanism,
|V | is the number of vertices, equivalent to the number

of links of the mechanism, and
|E| is the number of edges, equivalent to the kinematic

pairs of the mechanism.

The term (|V | − 1) results from taking vertex zero out

the DOF count. In addition, it is possible to determine
the number of independent loops L in the graph of a
mechanism by considering the equation of Euler (3):

L = |E| − |V |+ 1. (3)

3.2.3 Structure and generation principle of planar
mechanisms

Several methods focused on the analysis of planar mech-

anisms rely on the study of their kinematic structure,
particularly, on their division into simple parts or
groups of elements called driving-elements group and
Assur groups.

The DOF of a mechanism can be written as:

W = W + 0 + 0 + . . .+ 0. (4)

According to (4), a mechanism can be divided into sep-
arate parts or kinematic chains. The simpler kinematic
chain, whose DOF W is equal to the DOF of the whole
mechanism is denoted as the driving-elements group.
Those kinematic chains whose DOF is equal to zero
and which cannot be disaggregated into simpler kine-
matic chains with the same property are denoted as

Assur groups, see section 1, definitions 1 and 2. In this
sense, a planar mechanism can be considered as con-
sisting of a driving-elements group and a number, one
or more, of Assur groups. We call a graph representing
an Assur group GA = (VA, EA), where GA ⊂ G. The
Assur groups forming a mechanism and the order in
which those groups are connected between them deter-
mine the generation principle.
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3.2.4 Driving-elements group

The driving-elements group consists of one fixed ele-
ment and one or more free elements called primary
elements. The primary elements are connected either
with the fixed element or with another primary element
and the DOF W of the mechanism is equal to its num-
ber of primary elements. The graph that represents a
driving-elements group is called GD = (VD, ED), where
GD ⊂ G, and its characteristic is that every vertex is
connected with vertex zero by one path. Table 1 shows
different types of driving-elements groups consisting of
one and two primary elements together with their graph
representation.

Table 1 Primary-elements groups and their graph representa-

tion

Primary-
elements

number

Structural

representation

Graph

representation

1

1

2

2

21

0

2

2

1

0

3.2.5 Assur groups

The graph representing an Assur group GA = (VA, EA)
is a connected graph and its DOF can be determined

based on (2). For this purpose, it is necessary to con-
sider that every element of the group is movable as
a result of incorporation of the fixed element into the
driving-elements group. The relation between the edges
and vertices of a graph representing an Assur group is

given by (5) since the DOF of the Assur group is zero
with respect to the links that join to this group:

3 |VA| − 2 |EA| = 0. (5)

Both numbers |VA| and |EA| must be natural, thus, the
product 2 |EA| will always be an even number. As a re-
sult, the product 3 |VA| must also be an even number
and, |VA| must be a multiple of 2 that can be repre-
sented as |VA| = 2k. We call k the group class. Substi-
tuting the value of |VA| into (2) the following relations
(6) are obtained:

|VA| = 2k, |EA| = 3k, (6)

where k is a natural number. In this manner, different
Assur groups are obtained by assigning different values
to k. Reference [13] presents a specific algorithm for
the synthesis of Assur groups. The simpler Assur group
(see Table 2, for k = 1) consists of two elements or
vertices and three kinematic pairs or edges. The edge
connecting vertices 1 and 2 is called inner. The edges

that connect the group with other Assur groups or the
driving-elements group are called external.

The class of an Assur group can be defined according

to the number k. In this manner, the Assur group with
two vertices (k = 1) will be called a group of the first
class; the group of four vertices (k = 2) will be called

a group of the second class; the group of six vertices
(k = 3) will be called a group of the third class and so
on. It is also common to define the order r of an Assur
group as the number of external edges of its represent-

ing graph. It should be noted that two or more Assur
groups sharing the same class k may have a different or-
der r as it can be seen in Table 2. The dashed vertices

of the Assur groups graph representation do not belong
to the Assur groups themselves, but to those groups or
driving-elements group they might connect with.

If the class k of an Assur group and its order r are
known, then the following information is obtained from
(3), (5) and (6):

|VA| = 2k, the number of vertices of the group,
|EA| = 3k, the number of edges of the group,
r, the number of external edges of the group,
L = k + 1, the number of independent loops, and
Lc = k + 1− r, the number of closed loops.

3.3 Goal of decomposition

The goal of decomposition of the presented algorithm
is formally stated in this section. For this purpose, the
required graph operations are first defined and imple-

mented into a mathematical definition of the generation
principle of mechanisms.
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Table 2 Different types of Assur groups

k e v r L Lc

Structural
representation

Graph representation

1 3 2 2 2 0

1 2

2 6 4 3 3 0

2

1 3 4

2 6 4 2 3 1
1

4

3

2

3 9 6 4 4 0

13 2

4 65

3.3.1 Graph operations

Merge vertices: a couple of vertices vi and vj of a
graph G are said to be merged, if the vertices are re-
placed with a new one, such that every edge incident
with vi or vj , or with both is incident with the new
vertex.

Graph union : let G1 = (V1, E1) and G2 = (V2, E2) be
two sub-graphs of a graph G = (V,E). The union of the

sub-graphs G1 and G2, G1 ∪ G2, is another sub-graph
G3 = (V3, E3) such that V3 = V1∪V2 and E3 = E1∪E2.
The following properties are applied to the graph union
operator ∪.

a. Commutative property. This is, G1 ∪G2 = G2 ∪G1.
b. Left-associative property. This is, G1 ∪ G2 ∪ G3 =

((G1 ∪G2) ∪G3).

Graph subtraction : let GA = (VA, EA) be a sub-
graph of a graph G = (V,E). The subtraction of the
graphs G 	 GA is another sub-graph GB = (VB , EB)
such that VB = V −VA is the set resulting from deleting
all the vertices VA from V and EB = E −EA is the set

resulting from deleting all the edges EA from E. The
Left-associative property is applied to the graph sub-

traction operator 	. This is, G1 	 G2 	 G3 = ((G1 	
G2)	G3).

3.3.2 Generation principle of mechanisms

Let G = (V,E) be the graph representing a planar
mechanism and GD = (VD, ED) be the graph represent-
ing the driving-elements group. There exists a sequence
of Assur groups [GA1, GA2, . . . , GAn] such that the re-
sult of joining the driving-elements
group GD = (VD, ED) with the sequence of its Assur
groups is G. This sequence represents the kinematic
structure of the mechanism and it is the generation
principle. It is expressed through the graph union op-
eration as shown in (7):

G = GD ∪

{
n⋃

i=1

GAi

}
, (7)

where n is the number of Assur groups present in the
mechanism. Note that the generation principle of a
mechanism depends on the selection of its

driving-elements group. Furthermore, there are cases in
which the sequence is partial since two or more groups
share the same hierarchy in the generation principle.

3.4 Algorithm for graph-based generation principle of
mechanisms

The result of application of the algorithm 1 to a graph

G = (E, V ) meeting conditions described in section
3.2.1 is a sequence of Assur groups that satisfies its
generation principle (see (7)).

The statement S = CandidatesForClass(G, k) (algo-
rithm 1, line 11) is a combinatorial function that gen-
erates a set S containing all the sub-graphs of G that

have a number of vertices is equal to 2k. The statement
Condition = AssurCondition(G,GA) (algorithm 1, line
14) is a boolean function that checks whether the graph
GA represents an Assur group or not. Two conditions
are verified:

a. If GA is connected and its number of edges |EA|
equals to 3k.

b. If W (G	GA) = 0.

If conditions a and b are satisfied, then (4) and (5) are
verified and GA represents a sub-graph (Assur group)
of the generation principle.

3.4.1 Running time of the algorithm

The number |V | of vertices of the graph G is a mea-
sure of input size. Each of the inner loop statements
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Algorithm 1 Decomposition of planar mechanisms into Assur groups

Require: G = (V,E) Graph representing the planar mechanism.

GD = (VD, ED) Sub-graph of G representing the primary-elements groups of G

Ensure:
Assur decomposition = [GA1, GA2, . . . , GAn] Assur decomposition is a sequence such that the

graphs GAi are sub-graphs of G and G = GD ∪
{⋃n

i=1GAi

}
1: % Merge each of the driving-elements group vertices (VD) of G and vertex zero
2: G← MergeVertices(G,GD)

3: Assur decomposition← [ ]

4: % Let Φ be the graph having only vertex zero and no edges
5: while G 6= Φ do

6: % Search starts with Assur class 1
7: k ← 1

8: Assur gr found← FALSE

9: while k ≤ |V |−1
2

and Not Assur gr found do
10: % Generate a set of sub-graphs of G candidates for being Assur groups of the class k

11: S ← CandidatesForClass(G, k)
12: while S and Not Assur gr found do

13: GA ← First(S)

14: if AssurCondition(G,GA) then
15: Assur gr found← TRUE

16: % Update the generation principle

17: Assur decomposition← [Assur decomposition,GA]
18: % Update graph G, the symbol 	 stands for graph subtraction

19: G← G	GA

20: else
21: % Remove GA from the set S

22: S ← S −GA

23: end if
24: end while

25: k ← k + 1
26: end while

27: end while

12 - 24, including the conditional and looping state-
ments, requires a constant amount of time O(1). By
the sum rule, the combined running time of this group
of statements is O(max(O12, . . . , O24)) = O(1).

In the next steps, we assume the worst-case scenario
complexities. The number of iterations of the loop of
lines 12 - 24 is assumed to be |S|. By the product rule,

the time spent in this loop is O(|S|×1) which is O(|S|).
S is the set of sub-graphs of G having a number of
vertices equal to 2k and its size |S| is given by (8):

|S| = (|V | − 1)!

(2k)!(|V | − 2k − 1)!
, (8)

where the term (|V | − 1) corresponds to the number of
vertices of G when vertex zero is not included.

Regarding the loop of lines 9 - 26, statement 11
generates the set of sub-graphs of G having a num-
ber of vertices equal to 2k and therefore, it requires

an amount of time O(|S|). Statement 25 requires an
amount of time equal to O(1). Finally, statements 12 -
24, corresponding to the inner loop, require an amount
of time O(|S|), as stated before. By the sum rule, the
combined running time of this group of statements is

O(max(O9, . . . , O26)) = O(|S|), which is the total
amount of time the loop body takes for each iteration.
Hence, the number of operations of the loop is given by
(9):

|V |−1
2∑

k=1

|S| =

|V |−1
2∑

k=1

(|V | − 1)!

(2k)!(|V | − 2k − 1)!

=

|V |−1
2∑

k=1

(
|V | − 1

2k

)
.

(9)

The total running time of the loop can be bounded
above by (10):

|V |∑
k=0

(
|V |
k

)
. (10)

By the implementation of the binomial theorem of
Newton, it can be proved that the total amount of time
of the loop (lines 9 - 26), takes a time proportional to
the power of the number of vertices (|V |) of the graph
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G (see (11)):

|V |∑
k=0

(
|V |
k

)
= 2|V |. (11)

Let us consider the outer loop of lines 5 - 27. Each of
the statements 7, 8 takes an amount of time O(1), while
statements 9 - 26 take an amount of time O(2|V |) as
stated in (11). By the sum rule, the combined running
time of this group of statements is
O(max(O5, . . . , O27)) = O(2|V |).

The outer loop is executed a number of times equal
to the number of Assur groups present in the generation
principle of G. Since we are looking for the worst-case
running time, we assumed a maximal number of Assur
groups forming G. This is, that all groups are assumed
to have class k = 1 and therefore, each having 2 vertices.
According to this, for a total number of free vertices
equal to (|V | − 1), the total number of Assur groups of

the first class is (|V | − 1)/2. By the product rule, the
time spend in the outermost loop is O(2|V | × (|V | −
1)/2), so the total operations number of the program is

bounded by O(|V | 2|V |).

3.5 Proof of correctness

For the outermost loop between lines 5 - 27, the invari-
ant Inv that describes the state of the program when
iteration j starts is (12):

{Inv : Gj = (Vj , Ej) ∧ 3(|Vj | − 1) = 2|Ej |}, (12)

equation (12) means that the mechanism at the start of

iteration j is described by the graph Gj and it has zero
DOF, or 3(|Vj | − 1) = 2|Ej |. The term (|V | − 1) results
from taking vertex zero out of the count of the DOF of
G. The algorithm starts with a graph G representing

the mechanism in iteration 1 (G = G1). In each itera-
tion, Gj (j = 1, ...) becomes smaller because an Assur
group graph GAj is subtracted from it until eventually
Gj equals Φ, the empty graph. The algorithm stops
in a finite number of iterations. In each iteration, Gj

satisfies the invariant Inv in (12). The decomposition
[GA1, GA2, ...] of the original G has been calculated.

Let GAj = (VAj , EAj) be the Assur group graph
identified in the j-th iteration of the inner loop (algo-
rithm 1, line 12). Being GAj an Assur group, it sat-
isfies that 3|VAj | = 2|EAj |. The algorithm then sub-
tracts GAj from Gj , resulting in the new graph Gj+1 =
Gj	GAj (algorithm 1, line 19). To prove that the loop

correctly maintains the invariant Inv, we must show
that the mechanism remaining after the subtraction,

Gj+1, still has zero DOF (i.e. it satisfies 3(|Vj+1|−1) =
2(|Ej+1|). The proof is in the equations (13) to (15):

|Vj+1| = |Vj | − |VAj | ⇒ |Vj | = |Vj+1|+ |VAj |, (13)

|Ej+1| = |Ej | − |EAj
| ⇒ |Ej | = |Ej+1|+ |EAj

|, (14)

3(|Vj | − 1) = 2|Ej | ⇒
3|Vj+1|+ 3|VAj

| − 3 = 2|Ej+1|+ 2|EAj
| ⇒

3|VAj
| = 2|EAj

| ⇒ 3(|Vj+1| − 1) = 2|Ej+1|,
(15)

therefore, reaching the invariant for iteration j + 1. We
have proved that each iteration j preserves the invariant
Inv of the loop.

Equations (13) and (14) reflect the fact that the size
of the graph Gj decreases in each iteration by exactly
the size of the Assur group graph GAj subtracted from
Gj . Equation (15) uses the fact that Gj has zero DOF
(3(|Vj | − 1) = 2|Ej |) and the decrement in size of sets
Vj and Ej . Equation (15) also uses the Assur character

of GAj (3|VAj | = 2|EAj |) to prove that the new graph
Gi+1 has, again, zero DOF. The reader interested in
graph subtraction properties may wish to refer to Sec-

tion 3.3.1.
It is clear that both inner loops are correct. In the

loop of statements 5 - 26, the function
CandidatesForClass generates a set of Assur candidates

with class k. After that, if an Assur group is not found,
then the loop increases the value of the class by one.

Since k is upper bounded by the number
(
|V |−1

2

)
, we

guarantee that this loop is executed a finite number of

times. As for the loop of statements 12 - 24, the func-
tions First and AssurCondition carry out the extraction
and evaluation of each candidate in the set. The loop

ends when all candidates have been evaluated or when
a candidate graph meets the Assur group condition.

4 Results

In this section, we use algorithm 1 to determine the
generation principle of a 12-bar mechanism with one
DOF. The mechanism is also used in [1] as a test ex-
ample of the structural analysis of mechanisms. Figure
4 shows the structural representation of the aforemen-
tioned mechanism, together with its representing graph

G = (V,E).
The notation Si represents the set S in the i-th it-

eration of the loop in lines 9 - 26. The first step in al-
gorithm 1 merges the driving-element group with ver-
tex zero. Figure 5 shows the result of this operation.
Now the algorithm starts searching for Assur groups
with class k equals to 1. At this point, the function
CandidatesForClass generates a set S1 of candidates
GA for being Assur groups, each having a number of
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(a) Structural representation
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(b) Graph representation of Fig. 4(a)

Fig. 4 12-bar planar mechanism presented in [1]

vertices |VA| equal to 2. Table 3 summarizes the set S1.

The number of candidates of S1 is given by
(|V |−1

2k

)
and is equal to 45. The last column of Table 3 corre-
sponds to the output of the function AssurCondition
after each candidate GA is evaluated.

Table 3 Generation-principle analysis of a 12-bar mechanism:
Set S1 of Assur candidates with k = 1

GA 11 10 9 8 7 6 5 4 3 2 |VA| |EA| AC(a)

1 0 0 0 0 0 0 0 0 1 1 2 4 F

2 0 0 0 0 0 0 0 1 0 1 2 5 F

3 0 0 0 0 0 0 0 1 1 0 2 5 F

..

.
..
.

..

.
..
.

..

.
..
.

..

.
..
.

..

.
..
.

..

.
..
.

..

.
..
.

45 1 1 0 0 0 0 0 0 0 0 2 4 F

(a) AssurCondition (AC)

The algorithm increases the value of the Assur class
by 1 and starts searching for Assur groups with class
k = 2, since none of the candidates in S1 meets the
AssurCondition. The new set S2 of Assur group candi-
dates is generated by the function CandidatesForClass

(a) Structural representation

011

10

9

3

4

7

6 5

8

2

(b) Graph representation of Fig. 5(a)

Fig. 5 12-bar planar mechanism: Merge of the driving-elements
group with vertex zero

(see Table 4). Each of the candidates in S2 has a num-
ber of vertices equal to four. The last candidate of the
set S2 (Table 4, candidate number 210), consisting of
vertices 8, 9, 10 and 11 meets the AssurCondition, and
therefore it is an Assur group.

Table 4 Generation-principle analysis of a 12-bar mechanism:
Set S2 of Assur candidates with k = 2

GA 11 10 9 8 7 6 5 4 3 2 |VA| |EA| AC

1 0 0 0 0 0 0 1 1 1 1 4 7 F

2 0 0 0 0 0 1 0 1 1 1 4 9 F

3 0 0 0 0 0 1 1 0 1 1 4 8 F

...
...

...
...

...
...

...
...

...
...

...
...

...
...

15 0 0 0 0 1 1 1 1 0 0 4 7 F

...
...

...
...

...
...

...
...

...
...

...
...

...
...

210 1 1 1 1 0 0 0 0 0 0 4 6 T

The Assur group found in line 15 is subtracted from
the graph G and the algorithm starts again search-
ing for Assur groups with class k = 1. The function
CandidatesForClass generates a new set S3 of Assur
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group candidates. However, none of the candidates of
S3 meets the AssurCondition and the Assur class value
increases by 1. Therefore, the algorithm searches Assur
groups with class k = 2.

A set S4 of Assur group candidates with class two is
generated by the function CandidatesForClass. In this
case, candidate number 15 presented in Table 5, consist-
ing of vertices 4, 5, 6 and 7, meets the AssurCondition
and it is subtracted from the graph G.

The procedure is iterated until all the Assur groups
are subtracted from G, which eventually becomes the
trivial graph Φ. Table 6 illustrates the progress of the
algorithm towards termination.

Table 5 Generation-principle analysis of a 12-bar mechanism:

Set S4 of Assur candidates with k = 2

GA 7 6 5 4 3 2 |VA| |EA| AC

1 0 0 1 1 1 1 4 7 FALSE

2 0 1 0 1 1 1 4 9 FALSE

3 0 1 1 0 1 1 4 8 FALSE

...
...

...
...

...
...

...
...

...
...

15 1 1 1 1 0 0 4 6 TRUE

The output of the algorithm is a sequence consist-

ing of three Assur groups. The first two elements have
class k = 2 meanwhile the last one has class k = 1.
The generation principle of this mechanism is obtained
through the graph union of such groups starting from

the last founded group and ending with the first one.

5 Conclusions and Future Work

A new graph-based algorithm for the decomposition of
planar mechanisms into Assur groups has been imple-
mented. Unlike other procedures, neither previous data
manipulation nor visual inspection is required. In this
manner, the algorithm can be systematically applied to
complex mechanisms. The number of operations of the
algorithm execution is bounded by O(|V | 2|V |), where
|V | is the number of links. Since in actual mechanisms
the number of links is rarely numerous, then the exe-
cution stands for a realistic solution.

Applying the algorithm to a graph not only pro-
vides information about the Assur groups within its
representing mechanism, but also about the sequence in
which those groups are connected. This is useful when
attempting to perform a modular approach for the kine-
matic and force analysis of the mechanism.

Future work will address the application of the pro-
posed algorithm to planar mechanisms with floating in-
put links.

Table 6 Generation principle of a 12-bar mechanism: Summary

of the analysis by means of algorithm 1

i Structural representation Graph representation
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