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Abstract

Given a 2-manifold triangular mesh M ⊂ R3, with border, a parameterization of M

is a FACE or trimmed surface F = {S,L0, ..., Lm}. F is a connected subset or region of

a parametric surface S, bounded by a set of LOOPs L0, ..., Lm such that each Li ⊂ S is

a closed 1-manifold having no intersection with the other Lj LOOPs. The parametric

surface S is a statistical fit of the mesh M . L0 is the outermost LOOP bounding F

and Li is the LOOP of the i-th hole in F (if any). The problem of parameterizing

triangular meshes is relevant for reverse engineering, tool path planning, feature detec-

tion, re-design, etc. State-of-art mesh procedures parameterize a rectangular mesh M .

To improve such procedures, we report here the implementation of an algorithm which

parameterizes meshes M presenting holes and concavities. We synthesize a parametric

surface S ⊂ R3 which approximates a superset of the mesh M . Then, we compute a set

of LOOPs trimming S, and therefore completing the FACE F = {S,L0, ..., Lm}. Our

algorithm gives satisfactory results for M having low Gaussian curvature (i.e. M being

quasi-developable or developable). This assumption is a reasonable one, since M is the

product of manifold segmentation pre-processing. Our algorithm computes: (1) a man-

ifold learning mapping φ : M → U ⊂ R2, (2) an inverse mapping S : W ⊂ R2 → R3,

with W being a rectangular grid containing and surpassing U . To compute φ we test

IsoMap, Laplacian Eigenmaps and Hessian Local Linear Embedding (best results with

HLLE). For the back mapping (NURBS) S the crucial step is to find a control polyhe-

dron P , which is an extrapolation of M . We calculate P by extrapolating Radial Basis

Functions that interpolate points inside φ(M). We successfully test our implementation

with several datasets presenting concavities, holes, and are extremely non-developable.
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Ongoing work is being devoted to manifold segmentation which facilitates mesh param-

eterization.

Keywords: triangular mesh parameterization, trimmed surface, manifold learning, NURBS,

RBFs.
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Glossary

LOOP: Closed (Piecewise Linear or Smooth) curve lying on a surface, and bound-

ing a connected region on the surface. In this manuscript, LOOPs are

denoted with Γ or γ.

B-REP: Boundary Representation.

HLLE: Hessian Locally Linear Embedding.

NURBS: Non-Uniform Rational B-Spline.

RBF: Radial Basis Function.

M : Triangular mesh (with boundary), composed by the set of triangles T =

{t1, t2, · · · , tq} with vertex set X = {x1, x2, · · · , xn} (X ⊂ R3).

∂M : Boundary of M , whose connected components are LOOPs (∂M =

{Γ0,Γ1, ...,Γk}).
φ: An homeomorphic map φ : M → R2, implemented here for dimensional

reduction or manifold learning.

U : U = {u1, u2, · · · , un} is the parametric image of vertices of M (U = φ(X),

U ⊂ R2).

∂(φ(M)): Boundary of the parametric image of M . For the sake of simplicity, we

assume that ∂(φ(M)) = φ(∂(M))).

γi: i-th LOOPs of ∂(φ(M)).

λi: Re-sampling of a LOOP γi.

W : Rectangular grid in R2 such that U lies in the convex hull of W .

H(W ): Rectangular point set in R2 being the convex hull of W .

P : Rectangular grid in R3 being the control polyhedron for the parametric

surface f .

f : Function f : W → R3 produces P the control polyhedron of S (P = f(W ))

by calculating an extrapolation of M in R3.

S: S : R2 → R3 is a parametric surface which approximates and extends M

in R3. To simplify notation, S refers here to both: (a) the parametric

mapping (i.e. S()) and (b) the set of points product of the mapping S()

(i.e. S(H(W )) = {S(w1, w2)|(w1, w2) ∈ H(W )}).
Li: Trimming curve in M ⊂ R3 defined as Li = S(λi).

F : Trimmed surface (FACE) such that F = (S, {L0, L1, · · · ).
∂F : Boundary of F approximated by the union of all Li.
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1 Introduction

In this manuscript, M denotes a triangle-based mesh, which is a 2-manifold with border.

Without loss of generality, we consider M as the result of segmenting a larger triangular

mesh M presents a low curvature (i.e. M is near-developable). Therefore, M can also be

referred to as sub-mesh.

Being a 2-manifold, M admits a 2-variable parameterization, which is a homeomorphism

between M and a connected subset of R2. However, to be usable in Reverse Engineer-

ing, CAD, CAM, or visualization, the parameterization must be accompanied by a trimmed

FACE, which approximates the triangular mesh M . A trimmed FACE consists of a para-

metric surface S : R2 → R3 and a set of LOOPs or closed curves Γi ⊂ M , which bound a

connected sub-region of M .

Trimmed Surfaces are indispensable in Boundary Representations and therefore in Com-

puter Aided Geometric Design. In a Trimmed Surface, S() is usually based on a rectangular

control polyhedron P . Triangular topology for P is very unusual because it produces undef-

inition in tangent and normal vectors, rendering S() and FACE F unusable.

M is a connected triangular mesh M = (X,T ), with a border described by the set of

LOOPs {Γ1,Γ2, · · · ,Γm}. The Γi LOOPs are piecewise linear closed 1-manifolds, which do

not intersect each other. Given M , a trimmed parametric surface F = (S, {L0, L1, · · · , Lm})
is pursued, with S being a smooth surface that approximates a (conveniently defined) superset

of M . The set of curves {L1, L2, · · · , Lm} of the trimmed parametric surface F approximates

the boundary ∂M on the surface S.

In this article we propose a procedure for computing the trimmed surface F , as follows:

(i) Compute a mapping φ : M ⊂ R3 → U ⊂ R2 which describes a 2D parameter space for M .

(ii) Compute a back-mapping (NURBS or RBFs) S : W → R3, with W being a rectangular

region in R2, s.t. W is superset of U . (iii) Compute via S() a FACE boundary approximating

∂M .

The remainder of the article is organized as follows: Section 2 reviews the relevant liter-

ature. Section 3 describes the implemented methodology. Section 4 presents and discusses

some results. Section 5 concludes the paper and introduces what remains for future work.

2 Literature Review

In most engineering applications, the sole parameterization of the triangular mesh M does

not suffice, and a Trimmed Parametric Surface (S, {L0, L1, ...}) approximating M is required.

The first process builds a function φ : R3 → R2. The second process builds a back mapping
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Figure 1: Parameterization of Mesh M with a Trimmed Surface (FACE F ).
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S : R2 → R3.

When parameterizing triangular meshes, the parameterization of the individual trian-

gles may be sufficient whenever no parametric space common to all triangles in the mesh is

required. For example, smooth parametric surfaces fit to separate triangular control poly-

hedra give as result C0-, C1-, or C2-smooth triangular patches ([1, 2, 3, 4, 5, 6, 7]), which

do not share a common parametric space. In contrast, ref. [8] presents a geodesic-based

Piecewise Linear parameterization common to the complete triangular mesh M . Although

very intuitive, this approach presents intersection of PL geodesics in high Gauss - curvature

surfaces.

2.1 Dimensional Reduction φ : R3 ⊃M −→ R2

This section discusses the existing algorithms for dimensional reduction φ : M → R2 (Fig.

1(a)), which finds a 2D underlying parameter space in the 2-manifold triangular mesh M ⊂
R3. This parameter space U is the image of the mesh points X under the map φ (i.e.

U = φ(X)). The algorithms for dimensional reduction may be classified according to the

properties that they preserve, as they synthesize (φ, U):

1. Angle-preserving algorithms: Conformal maps seek to preserve the angles formed

by intersecting curves. The function φ is devised to minimize angle deformations [9,

10, 11, 12, 13]. An angle-preserving φ would not, in general, preserve areas or lengths,

causing a strong warping in the back-mapping S.

2. Area-preserving algorithms: An authalic map φ :→ R2 would satisfy A(ti) =

A(φ(ti)) for triangle ti ∈ T . Area distortions are minimized over fixed 2-Dimensional

primitives (e.g. disk or rectangle [14, 15]). Authalic maps may result in large angle

distortions which in turn would produce important distortions in the back-mapping S.

3. Distance-preserving algorithms: An isometric map φ :→ R2 would preserve dis-

tance among points. This means that dM(p, q) = d(φ(p), φ(q)), for p, q ∈ M , with

dM() being a distance measured on M (refs. [16, 17, 18, 19, 20]). Isometric maps do

not present distortions in the back-mapping S : R2 → R3. However, unlike angle- and

area-preserving ones, they require M to be highly developable (i.e. with low Gaussian

curvature).

Surfaces which are strongly non-developable may be partitioned into smaller, more

developable ones. The issue of Manifold Segmentation, however, is outside the scope of

the present manuscript, and is the subject of our future efforts.
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2.2 Parametric Surface S : R2 → R3

Since this article aims to parameterize a mesh M with a Trimmed Surface or FACE (in CAD

sense), the dimensional reduction φ : M → R2 must be followed by the computation of a

parametric surface S : R2 → R3 and a connected subset within it, which resembles M (with

concavities, holes, etc.). This goal is illustrated in Fig. 1(d).

Ref. [21] describes a method in which an isometric rectangular surface is computed, but

requires the input mesh to be already of this rectangular nature (i.e. a triangular mesh of a

rectangular patch) which strongly constraints the algorithm.

Ref. [22] presents an initial parameterization of φ : M → U . The Coons back mapping S

has domain in a subset of the parametric space U , which cannot present holes or concavities.

As a result, S can only fit a rectangular subset of M , leaving out the possibility of M having

holes or concavities.

2.3 Conclusions of Literature Review

Our Literature Review has found several approaches for mesh parameterization. However,

they do not address meshes with concavities and holes. To enable them, it is necessary to

complement the sole mesh parameterization with the synthesis of a Trimmed Surface, which

smooths M and expresses the holes and concavities, besides producing a parameterization.

Consequently, we present here our approach, in which a triangular mesh (with boundary

and holes) M ⊂ R3 is approximated by a trimmed surface F = (S, {L1, L2, · · · , Lm}).
First, a parameterization U of M is computed using dimensional reduction (Fig. 1(a)).

Then, a rectangular superset of U , H(W ), is mapped back to R3, via a parametric surface

S(Fig.1(b)) : H(W ) −→ R3 which fits a superset of M (Fig. 1(c)). FACE boundaries are

drawn on S, to trim a FACE, with holes, which resembles M (Fig. 1(d)). The calculation

of a superset of M in R3 is, of course, a very sensitive operation, for which we apply a

combination of NURBs and Radial Basis Functions.

3 Methodology

Consider M = (X,T ), a connected 2-manifold in R3 with holes and border. The set of all

LOOPs bounding M is noted as ∂M = {Γ0,Γ1, · · · ,Γm}. Our goal is to find a FACE F or

Trimmed Surface F = (S, {L0, L1, · · · , Lm}), composed by a parametric surface S : R2 → R3

and a set of boundaries on S ( ∂F = {L0, L1, · · · , Lm} such that ∂M ≈ ∂F .

In order to achieve this goal, we follow the procedure in Fig. 1, which appears as Data

Flow in Fig. 2.
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Figure 2: Construction of a trimmed parameterization of the triangular mesh M . R3 → R2

mapping (up) and R2 → R3 back-mapping (down).
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1. Computation of the B-REP of M : In this pre-processing, a boundary representa-

tion of the triangular mesh M is computed in order to extract each of LOOPs Γi that

bound M .

2. Computation of the mapping φ : M → R2 (Fig. 1(a)): A manifold learning

algorithm is applied in this step in order to extract the parameterization U that char-

acterizes the manifold and each LOOP γi in the parameter space. The procedure was

tested using either: i) Isomap, ii) Laplacian Eigenmaps or iii) HLLE.

3. Construction of the rectangular grid W ⊂ R2: (Fig. 1(b)) A rectangular grid W

is built in R2 such that U lies inside the convex hull of W (U ⊂ H(W )).

4. Synthesis of a Control Polyhedron P for S (Fig. 1(b)): A control polyhedron

P = f(W ) is required for the parametric surface S of the Trimmed Face F . In Fig.

1(b), P is represented as a grid of round-icon and square-icon vertices. Round-icon

vertices f(w1, w2) fall inside M since (w1, w2) ∈ U . Square-icon vertices fall outside

M since (w1, w2) /∈ U , and therefore f(w1, w2) must be estimated. A Radial Basis

Function f : W −→ R3 is created by using the condition f(U) = X, since the pairs

(xi, ui) = (xi, φ(xi)) are known. f(H(W ))is then used to extrapolate M as needed.

5. Representation of M by a trimmed surface F = (S, {L0, ...Lm}): Once the con-

trol Polyhedron P for S is estimated, the actual calculation of the parametric surface

S proceeds using a NURBs formulation. The boundary of F , ∂F = {L0, ...Lm}, is

achieved as Li = f(λi), where λi is the re-sampling of the straight-edge LOOP γi.

The algorithms implemented for the above procedure are briefly discussed below.

3.1 Manifold Learning

In the aim of finding S, the parameterization (φ, U) that underlies the original surface must

be found. Such parameterization should also be an homeomorphism to R2 or equivalently: i)

the points keep the same connectivity through the mapping (continous map) and ii) triangles

do not overlap in the parameter space (bijective map). For finding U several manifold

learning techniques have been developed in the literature. However, we focus on three specific

ones that were implemented for the procedure described in fig. 2: i) Isomap, ii) Laplacian

Eigenmaps and iii) HLLE.
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3.1.1 Isomap-based parameterization

Isomap was first proposed by Tenembaum et al. [20]. The idea behind it is to assume that

U comes from an isometric map. With this in mind, a geodesic estimator G is constructed

recursively on M :

Gij =

‖ xi − xj ‖ if xj ∈ Ni

min {Gik +Gkj|xk ∈ Ni} otherwise
(1)

where ‖ · ‖ corresponds to the euclidean norm and Ni is the neighborhood of xi as indicated

by T .

The authors then propose to apply Classical Multidimensional Scaling (CMDS) on G for

computing U i.e. solve the following equation:

G = UTU (2)

Such equation can be easily solved solved by a singular decomposition of G.

3.1.2 Laplacian Eigenmaps-based parameterization

There exists a problem with Isomap: building G can be time consuming. Laplacian Eigen-

maps [12] is a much faster algorithm however, only conformality is guaranteed for the map-

ping. Laplacian Eigenmaps poses the following optimization problem:

min
∑
i,j

aij‖ ui − uj ‖2 (3)

where each aij is the adjacency weight (locality measure) between the points xi and xj in the

original mesh.

If D is a diagonal matrix defined as dii =
∑

j aij and L is a symmetric matrix defined

as L = D − A, then eq. (3) can be solved (under adequate constraints) by computing the

following eigenproblem:

LU = ΛDU (4)

where Λ is a diagonal matrix containing the eigenvalues of L. The matrix L is known as the

Laplacian of the mesh graph because it is closely related to the Laplace-Beltrami operator

on manifolds.
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3.1.3 HLLE-based Parameterization

Another alternative would be to construct a Hessian estimator as described in [23]. Since

the Hessian can be seen as a measure of curvature, minimizing it would be like flattening the

manifold. However, such minimization cannot guarantee any isometry.

By local alignment of each neighborhood, a pair of orthogonal linear functions in R2 must

be found. Since these functions live in the plane, their curvature in the direction normal

to that plane must be zero. The Hessian functional H is therefore constructed in order to

measure such curvature:

H = UTKU (5)

The objective of the algorithm is to minimize this functional. Under adequate constraints

eq. (5) becomes an eigenvalue problem. The matrix K is known as the HLLE kernel and is

computed by locally estimating a tangent Hessian at each xi.

3.2 Surface Representation

After the parameterization U has been found, we propose to compute a rectangular grid W .

The convex hull of this grid has to contain every point of U as illustrated in fig. 3(b) in order

to represent the whole surface.

To approximate the surface such grid must be mapped back to R3. Inner points (i.e. points

of the grid that overlap with the 2-Dimensional triangulation) can be easily interpolated

using barycentric coordinates. However, outer points must be extrapolated. We call this

back-mapping f : R2 → R3 and the image of W under f is the control polyhedron P .

We propose three different alternatives for computing the back-mapping f and the pa-

rameterization S of the whole surface:

3.2.1 NURBS Interpolation/Extrapolation

A tensor product surface is a parametric surface defined as:

S(w) =
∑
ij

gi(vx)hj(w2)pij (6)

where w1 and w2 are the coordinates of w in the parameter space, the basis functions gi and

hj are known as weights and pij are known as control points. In this case P works as the

control surface containing such control points and small patches of P are used to fit surfaces

of the form defined in eq. (6). Usually these patches consist of 3 × 3 or 4 × 4 subgrids.

Common basis functions used for interpolation are the well-known NURBS such as Bézier
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and B-Splines.

Here we propose to build P by iteratively extrapolating a smaller tensor product surface

as described below:

1. Locate a subgrid W (loc) inside W such that every w
(loc)
ij lies inside the triangulation in

the parameter space.

2. Compute P (loc) using the barycentric coordinates of W (loc).

3. Extrapolate the grid P (loc) by extending the domain of a local surface described by

eq. (6) in every direction (w1 and w2). This extension must preserve the rectangular

structure (i.e. must be a bigger grid).

4. If any of the extrapolated values of W (loc) lies inside the original triangulation, replace

its mapped value as described in step 2.

5. Update both W (loc) and P (loc) given the extended grid.

6. Repeat steps 3-5 until W (loc) = W .

7. Let P = P (loc).

After finding the control surface P , compute the parametric surface S using the scheme

defined in eq. (6).

3.2.2 Radial Basis Function Surface

An RBFs surface is a surface of the form:

f(w) =
n∑

i=1

αiΦ (‖ w − ui ‖) + P(w) (7)

where ui are allocation points which must satisfy f(ui) = xi, Φ(ri(w)) are RBFs, αi are

weights that can be estimated by least squares and P(w) is a stabilizing polynomial. Notice

how this approach allows to build a global scheme from an unsorted (non-degenerated) set of

points which will define the complete surface even out of the bounds defined by the boundary

∂(φ(M)) in the parameter space.

We propose to approximate S directly using the scheme defined in eq. (7). In this case

the grid W must be more refined since the representing surface S is the direct result of such

grid i.e. S(w) = f(w).
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3.2.3 NURBS+RBFs Representation

Here we propose to build the parametric surface by using the approximation qualities of

RBFs while keeping the structure of NURBS. This two-step procedure should be followed:

1. Approximate the control polyhedron P using the RBF scheme in eq. (7).

2. Compute S by fitting a NURBS (eq. (6)) over the control polyhedron P .

The proposed representation presents several advantages over the other two approaches:

1. RBFs present better results when extrapolating the surface since NURBS takes only

into account one of the parametric directions (w1 or w2) at the time of the extrapolation.

2. NURBS extrapolation is a local iterative method which makes it sensitive to initial

guesses while the RBFs extrapolation is a global one.

3. NURBS surface requires storing only the control points while the RBFs surface require

storing each point of the original mesh and their corresponding weight.

4. Computing a point in a NURBS is usually faster than in the RBFs since distances must

be computed in the latter one.

5. NURBS are a standard in CAD CAM CAE tools for representing surfaces.

3.3 Surface Trimming

In order to trim the surface S, a set of curves {L0, L1, · · · , Lm} must be put on the parametric

surface such that the boundaries of the original mesh are represented by such curves. The

procedure for computing each Li is described below:

1. A B-REP of M allows us to find each LOOP Γi ⊂ ∂M .

2. Compute each LOOP γi bounding the parameterization φ(M). Since the connectivity

of the mesh must be preserved under the homeomorphism φ, γi can be calculated by

making γi = φ(Γi)

3. A re-sampling λi of γi is carried in R2 as illustrated in fig. 3(b).

4. Map back each λi. The back-mapping is computed by evaluating the points of each

LOOP under the map S which was found in section 3.2. Each resulting curve Li is a

trim curve of F .
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4 Results

We now discuss some results of the described procedure for several datasets. For all the cases,

NURBS interpolation and extrapolation was computed over bicubic (4 × 4) Bézier patches.

Additionally, thin plate splines were chosen as basis functions for computing the RBFs:

Φ(r) = r2 ln(r) (8)

Such basis functions have good properties for surface representation given the fact that

they minimize the bending energy functional E in R2 [24]:

E(f) =

∫∫
R2

(
∂2f

∂w2
1

)2

+ 2

(
∂2f

∂w1∂w2

)
+

(
∂2f

∂w2
2

)2

dA (9)

Eq. (9) is closely related to the Hessian of f which basically results in a minimization of

curvature on the reconstructed surface (and in consequence a smooth surface). Additionally,

unlike other RBFs, thin plate splines are parameter-free splines making the algorithm less

parameterizable which is highly desirable. A linear polynomial P is used for stabilization of

the algorithm (eq. (7)) since it lies in the kernel of E (i.e. E(P) = 0).

We also implemented the Floyd’s shortest-path algorithm in order to compute the geodesic

distances between points as described in eq. (3) for the Isomap algorithm.

4.1 Face Dataset Results

Here we present results of the proposed procedure on the Face model (fig. 3(a)). The param-

eterization φ is first computed as described in section 3.1. Results of the parameterization

can be seen in fig. 4. In order to show the impact of the implemented manifold learning

algorithm in the final representation, the NURBS+RBFs approach was used for the three

cases (figs. 4(d), 4(e) and 4(f)).

Fig. 4(a) shows the parameterization U estimated with the Isomap algorithm. In this case,

such parameterization is highly isometric and resembles the original mesh. This isometry

is highly desirable since NURBS and RBFs will not see high distortions at the time of

interpolation and extrapolation. The resulting trimmed surface F = {S, L0, L1, L2} can be

seen in fig 4(d) where a smooth representation of the original surface is achieved with no

visual distortion.

Fig. 4(b) shows the parameterization estimated by the Laplacian Eigenmaps algorithm.

The resulting parameterization presents high geometric distortions degenerating near the

boundary. Interpolation and extrapolation are highly affected by such degeneration arising
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(a) Mask dataset M ⊂ R3. (b) Border of φ(M) ⊂ R2 with φ=
HLLE. Border ∂(φ(M)) = {γ0, γ1, γ2} (3
LOOPs). Rectangular Parameter Grid
W covering φ(M).

Figure 3: Mask dataset M and Parametric Grid W associated with Hessian Local Linear
Embedding (φ).
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(a) Isomap parameterization. (b) Laplacian Eigenmaps pa-
rameterization.

(c) HLLE parameterization.

(d) Isomap trimmed surface. (e) Laplacian Eigenmaps
trimmed surface.

(f) HLLE trimmed surface.

Figure 4: Parameterization φ of the Mask dataset for the implemented manifold learning
techniques (up) and their respective trimmed surface F (down).
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(a) NURBS interpola-
tion/extrapolation.

(b) RBFs surface. (c) NURBS+RBFs representa-
tion.

Figure 5: Trimmed Surfaces F = {S, L0, L1, L2} of the Mask dataset for the three back-
mapping approaches: i) NURBS, ii) RBFs and iii) NURBS+RBFs.

singularities in those areas as can be seen in fig. 4(e) where the trimming curves present

irregular behaviour and the resulting representation presents several undesired folds as well

as less smoothness than the Isomap trimmed surface (fig. 4(d)).

Fig. 4(c) shows the parameterization estimated by the HLLE algorithm. Less geomet-

ric distortions than the Laplacian Eigenmaps are introduced in this parameterization. We

believe that the quality of the mesh (i.e. homogeneous size and shape of the triangles) is im-

portant for having a low distorted parameterization when parameterizing with HLLE. Such

argument is based in the fact that the local alignment made by the HLLE algorithm does

not consider relative distances between points. A smooth representation (comparable to the

Isomap representation) is achieved as can be seen in fig. 4(f).

In fig. 5 the results of the application of the three surface representation methodologies

(NURBS, RBFS and NURBS+RBFs) on the Mask dataset are presented. The HLLE algo-

rithm for parameterization was used in all the cases in order to make the results comparable.

Fig. 5(a) shows the trimmed surface F resulting by back-mapping the HLLE parameter-

ization U using the NURBS interpolation/extrapolation. The resulting surface accurately

resembles the original mesh. However, the extrapolated areas present undesired folds due

to the fact that extrapolation is made through only one of the parametric directions (as

discussed in section 3.2.3).

Fig. 5(b) shows the trimmed surface obtained by back-mapping U with RBFs. The

resulting surface also approximates accurately the surface however, extrapolation is smoother

in every direction compared to the NURBS extrapolation and less folds in extrapolated areas

arise.

Fig. 5(c) shows the trimmed surface obtained by the NURBS+RBFs back-mapping of

U . The resulting surface is very similar to the RBFs one. Such similarity is because the

fact that the control surface for the NURBS extrapolation is taken from the RBFs approx-
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(a) Trimmed surface F of the
Teddy dataset.

(b) Trimmed surface F of the
Partial-Venus dataset.

(c) Trimmed surface F of the
Beetle dataset.

Figure 6: Trimmed surface F of several datasets. Isomap was used for the R3 → R2 mapping
while NURBS+RBFs were used for the back-mapping.

imation. Therefore the final surface obtained by RBFs representation and the obtained

by NURBS+RBFs coincide at the same points of the control surface. However, inside the

NURBS patches the behaviour is different from the RBFs which can be seen in the resulting

surfaces where between patches there is C0 continuity in the NURBS+RBFs case (fig. 5(c))

contrary to the RBFs surface which presents C2 (more smoothness) through the whole surface

(fig. 5(b)).

4.2 Results for Other Datasets

The described procedure was also tested in several datasets in order to illustrate the usefulness

of it as well as its flaws. Fig. 6 shows the resulting trimming surface F for highly developable

datasets such as the Teddy dataset (fig. 6(a)), the Partial-Venus dataset (fig. 6(b)) and the

Beetle dataset. Isomap was used for computing the parameterization U while NURBS+RBFs

were used for computing the back-mapping in all the three cases. Results show accurate

resemblance of such surfaces with the original ones while extrapolated areas present smooth

behaviour and small folds.

We observed however that Isomap may present very wrong results in specific cases even

if the surface is highly developable. This fact is illustrated in the S dataset as shown in fig.

7. Such dataset is highly developable but since the underlying parameterization presents a

lot of non-convexities then the geodesic estimator fails to recover adequately the geometry

in the parameter space. In fig. 7(b) the boundary overlaps and the whole mesh overlaps in

R2 degenerating the resulting trimmed surface as can be observed in fig. 7(d)).

For partially overcoming such problem, HLLE presents a better parameterization of the

S dataset which highly resembles the geometry of the mesh on the parameter space as can

be seen in fig. 7(c). The resulting trimmed surface presents the S letter inscribed inside a
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(a) S dataset.

(b) Failed Isomap parameterization φ of the S
dataset.

(c) Successful HLLE parameterization φ of the S
dataset.

(d) Failed back-mapping R2 → R3 of the Isomap
parameterization.

(e) Successful back-mapping R2 → R3 of the
HLLE parameterization.

Figure 7: Results of the algorithm for the S dataset under the RBF+NURBS approach using
Isomap (left) and HLLE (right).
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(a) Partial-Glove dataset. (b) Trimmed surface F of the
Partial-Glove.

(c) Self-intersection of the
trimmed surface.

Figure 8: Results for the Partial-Glove dataset. HLLE was used for the R3 → R2 parame-
terization while RBFs+NURBS were used for the back-mapping.

big rectangular patch as expected.

Fig. 8 shows the results for a less-developable dataset. The Partial-Glove mesh (fig. 8(a))

presents higher curvatures as well as several saddle-points between the fingers. HLLE was

used for computing the parameterization U while NURBS+RBFs were used for computing the

back-mapping. The resulting trimmed surface FS, L0 approximates adequately the original

mesh M (fig. 8(b)) however, the surface self-intersects outside the original domain. A close

view of the self-intersection can be appreciated in fig. 8(c).

5 Conclusions

We presented a procedure for parameterizing a connected triangular mesh M with borders

using trimmed surfaces. This procedure maps first the triangular mesh to R2 using manifold

learning techniques and then maps back a rectangular grid on the parameter space to R3 by

interpolating and extrapolating the original surface.

For the implementation, three manifold learning algorithms were tested: i) Isomap, ii)

Laplacian Eigenmaps and iii) HLLE. Additionally, the back-mapping S : R2 → R3 was

computed by following i) a NURBS interpolation/extrapolation approach, ii) an RBFs surface

approach or a NURBS+RBFs representation approach.

The surface trimming {L0, L1, · · · , Lm} was achieved by re-sampling the LOOPs bounding

the mesh in the parameter space and then mapping back such re-sampling to the parametric

surface. In order to get the LOOPs of the original surface, a B-REP of M is first computed.

Several datasets were used for testing the algorithm. Isomap and HLLE presented in gen-

eral good results for developable meshes since low geometric distortions are induced through

the mapping to R2. On the other hand, Laplacian Eigenmaps presented visually bad results

due to high distortions of such mapping. However, we showed how Isomap could fail in
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some cases of high developability if the underlying parameterization presents a lot of non-

convexities.

Finally, we illustrated how less-developable datasets could present self-intersections of

the final trimmed surface which it is not desirable in CAD CAM CAE applications since

manifoldness of the representation is lost.

Two problems still remain in the context of mesh parameterization: i) our procedure

does not guarantee that the resulting trimming surface is a 2-manifold and ii) since most

triangular surfaces are not developable, algorithms for automatic segmentation of the surface

may be considered.
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vasi, M. Gavrilova, V. Kumar, A. Laganà, H. Lee, Y. Mun, D. Taniar, and C. Tan, eds.),

vol. 3480 of Lecture Notes in Computer Science, pp. 776–785, Springer Berlin Heidelberg,

2005.

[7] A. Vlachos, J. Peters, C. Boyd, and J. L. Mitchell, “Curved PN triangles,” I3D ’01:

Proceedings of the 2001 Symposium on Interactive 3D Graphics, pp. 159–166, 2001.

[8] D. Acosta, O. Ruiz, S. Arroyave, R. Ebratt, C. Cadavid, and J. Londono, “Geodesic-

based manifold learning for parameterization of triangular meshes,” International Jour-

nal on Interactive Design and Manufacturing (IJIDeM), pp. 1–14, 2014.

[9] J. Tierny, J. Daniels II, L. G. Nonato, V. Pascucci, and C. T. Silva, “Interactive Quad-

rangulation with Reeb Atlases and Connectivity Textures,” Visualization and Computer

Graphics, IEEE Transactions on, vol. 18, pp. 1650–1663, Oct. 2012.

[10] H. Yu, T.-Y. Lee, I.-C. Yeh, X. Yang, W. Li, and J. J. Zhang, “An RBF-Based Repa-

rameterization Method for Constrained Texture Mapping,” IEEE Transactions on Vi-

sualization and Computer Graphics, vol. 18, no. 7, pp. 1115–1124, 2012.

[11] Y. Guo, J. Wang, H. Sun, X. Cui, and Q. Peng, “A novel constrained texture mapping

method based on harmonic map,” Computers & Graphics, vol. 29, no. 6, pp. 972–979,

2005.

[12] M. Belkin and P. Niyogi, “Laplacian Eigenmaps and Spectral Techniques for Embedding

and Clustering,” in NIPS, pp. 585–591, 2001.

[13] A. Sheffer and E. de Sturler, “Parameterization of Faceted Surfaces for Meshing using

Angle-Based Flattening,” Engineering with Computers, vol. 17, no. 3, pp. 326–337, 2001.

22

DRAFT D
RAFT D

RAFT 



[14] X. Zhao, Z. Su, X. D. Gu, A. Kaufman, J. Sun, J. Gao, and F. Luo, “Area-Preservation

Mapping using Optimal Mass Transport,” IEEE Transactions on Visualization and

Computer Graphics, vol. 19, no. 12, pp. 2838–2847, 2013.

[15] G. Zou, J. Hu, X. Gu, and J. Hua, “Authalic Parameterization of General Surfaces Using

Lie Advection,” IEEE Transactions on Visualization and Computer Graphics, vol. 17,

no. 12, pp. 2005–2014, 2011.

[16] N. Pietroni, M. Tarini, and P. Cignoni, “Almost Isometric Mesh Parameterization

through Abstract Domains,” IEEE Transactions on Visualization and Computer Graph-

ics, vol. 16, no. 4, pp. 621–635, 2010.

[17] L. Liu, L. Zhang, Y. Xu, C. Gotsman, and S. J. Gortler, “A Local/Global Approach

to Mesh Parameterization,” Computer Graphics Forum, vol. 27, no. 5, pp. 1495–1504,

2008.

[18] X. Sun and E. R. Hancock, “Quasi-isometric parameterization for texture mapping,”

Pattern Recognition, vol. 41, no. 5, pp. 1732–1743, 2008.

[19] M. Desbrun, M. Meyer, and P. Alliez, “Intrinsic Parameterizations of Surface Meshes,”

Computer Graphics Forum, vol. 21, no. 3, pp. 209–218, 2002.

[20] J. B. Tenenbaum, V. de Silva, and J. C. Langford, “A global geometric framework for

nonlinear dimensionality reduction,” Science (New York, N.Y.), vol. 290, pp. 2319–2323,

2000.

[21] N. Pietroni, C. Massimiliano, P. Cignoni, and R. Scopigno, “An Interactive Local Flat-

tening Operator to Support Digital Investigations on Artwork Surfaces,” IEEE Trans-

actions on Visualization and Computer Graphics, vol. 17, no. 12, pp. 1989–1996, 2011.

[22] X.-F. Zhu, P. Hu, Z.-D. Ma, X. Zhang, W. Li, J. Bao, and M. Liu, “A new surface

parameterization method based on one-step inverse forming for isogeometric analysis-

suited geometry,” The International Journal of Advanced Manufacturing Technology,

vol. 65, no. 9-12, pp. 1215–1227, 2013.

[23] D. L. Donoho and C. Grimes, “Hessian eigenmaps: Locally linear embedding techniques

for high-dimensional data,” Proceedings of the National Academy of Sciences, vol. 100,

no. 10, pp. 5591–5596, 2003.

[24] F. L. Bookstein, “Principal warps: thin-plate splines and the decomposition of defor-

mations,” Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 11,

pp. 567–585, Jun 1989.

23

DRAFT D
RAFT D

RAFT 


	Introduction
	Literature Review
	Dimensional Reduction : R3 M -3muR2
	Parametric Surface S:R2 R3
	Conclusions of Literature Review

	Methodology
	Manifold Learning
	Isomap-based parameterization
	Laplacian Eigenmaps-based parameterization
	HLLE-based Parameterization

	Surface Representation
	NURBS Interpolation/Extrapolation
	Radial Basis Function Surface
	NURBS+RBFs Representation

	Surface Trimming

	Results
	Face Dataset Results
	Results for Other Datasets

	Conclusions



