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Abstract As alternative to time-consuming and expensive physical experiments
numerical calculations of effective hydraulical, thermal, electrical and mechanical
properties of porous materials are getting of interest in geophysical, manufacturing,
bio-mechanical and environmental applications, among other fields. Because of
the dependency of effective physical properties (e.g. permeability, conductivity
and elastic moduli) on morphological details on the pore scale such as shape and
size of pores and cracks and with respect to large necessary Representative Volume
Elements, numerical simulation techniques have to be optimized in order to obtain
reliable results. The current state of the art in the field of numerical investigations
of effective permeabilities of porous materials, based on Lattice-Boltzmann, Finite
Volumes, Explicit Jump Stokes Methods still presents limitations in the size of
the numericaly analyzed domain. In response to these shortcomings, we propose
an efficient and reliable numerical method to calculate intrinsic permeabilities
of porous materials directly from voxel-based data obtained from 3-dim imaging
techniques like x-ray microtomography. We present a modelling framework based
on a parallel Finite Differences solver, allowing the calculation of large domains.
We validate the presented method in a diverse selection of materials, obtaining
accurate results for a large range of porosities, wider than the ranges previously
reported. Ongoing work includes the estimation of other effective properties of
porous media.
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2 Maria Osorno et al.

Glossary

u Fluid velocity on pore scale, [m/s]
ds Sphere diameter, [m]
ks Intrinsic permeability , [m2]
p Pressure, [Pa]
rt Radius of capillary tube, [m]
Re Reynolds number
um Volume averaged velocity, [m/s]
∆p Pressure drop in the medium, [Pa/m]

ηfR Dynamic viscosity, [Pa s]
φ Porosity of the material, [ - ]
Ω Domain of investigated material in R3.

1 Introduction

The experimental characterization of the hydraulical properties of porous materi-
als could be expensive and a time consuming process. For high-porous materials
like e.g. metall foams, viscous drag forces are small and therefore, pressure drop
is low. In experimental investigations, this results in an experimental challenge as
even large fluid fluxes are combined with low pressure gradients which are complex
to measure with appropriate signal-to-noise ratio. For low-porous materials the ex-
perimental challenge is opposite: Pressure gradients can be even high but still fluid
fluxes are small and complicated to measure accurately. Because of these demands
but also motivated by additional causes, numerical approaches for calculating ef-
fective permeability based on pore-scale Computational Fluid Dynamics (CFD)
are more and more applied in industry and science [1]. Numerically calculating
permeability present several advantages: a) only one (digitized) material sample
is needed for the calculation of numerous pyhsical properties (elastic moduli, hy-
draulic properties, thermal properties etc.), b) microtomographic imaging takes
relatively short time, and c) environmental variables that in real experiments are
often difficult to maintain are controllable. In this investigation we focus on the
numerical calculation of intrinsic permeability as discussed e.g. in [2]. For the sake
of brevity we shall use permeability to mean intrinsic permeability.

Permeability is a critically relevant property affecting flow through porous
media and it is strongly dependent on the morphology of the porous material. In
order to sample the medium, some authors use industrial Computer Tomography
(CT) scans [3]. In other cases the media geometry is generated artificially [4]. In
the present investigation we work with both kinds of geometrical models. Our
artificial geometry is generated as a voxel-based image setup on a cartesian grid,
therefore emulating the CT-scan format. One of the main difficulties in the field of
calculating effective properties of porous media from microstructural information,
is the simulation of domains which have to be large enough to be representative
for the material. Several authors have proposed to divide the domain and calculate
the effective property as the average of the results obtained in the subdomains.
The averaging method arises problems because the obtained results depend on the
domain size, the chosen subdomains and the boundary conditions which have to
be applied in general to such non-periodic (sub-)domains. In this contribution, we
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FD Calculation of Permeability in Large Domains in a Wide Porosity Range 3

propose a method that allows to calculate large domains, avoiding variations in
the estimated permeability because of the domain size.

In a recent contribution of Gerbeaux et al. [5], experimental and x-ray mi-
crotomography-based numerical permeability investigations have been performed
for high-porous open-cell metallic foams with porosities larger than 90%. The nu-
merical calculations are performed with a Lattice-Boltzmann and a Finite Volume
solver. This work combines microtomography-based geometric modelling with nu-
merical solution techniques of transport equations to estimate volume-averaged
foam permeability. The authors report that the numerically estimated intrinsic
permeability varies with the chosen size of the calculation domain. This implies,
that the chosen domain seem to be not large enough to be representative for such
high porous materials like open-cell foams.

Xu and coworkers [6] performed Finite Volume-based calculations for generic
open-cell foams based on the tetrakaidecahedron structure of the microstructure
of the foam. Their approach allows to analyse the effect of porosity on effective
intrinsic permeability. Nevertheless, Xu et al. [6] have chosen very small periodic
unit cells for their domain of calculation which minimizes calculation times espe-
cially for higher Reynolds numbers. Boomsma et al. [7] discusses similar numerical
investigations of fluid flow through periodic open-cell foam samples. It has to be
pointed out, that the methods presented in [6] and [7] were only tested with peri-
odic open-cell foams with high porosity larger than 90%.

In the contribution of Manwart et al. [8] typical reservoir sandstones have
been numerically analysed. Again, x-ray microtomographes of a Fontainebleau
sandstone with a porosity of around 13% are the basis of flow simulations in
order to calculate the effective intrinsic permeability. The authors apply Finite
Difference and Latice-Boltzmann methods to solve the Stokes equations in their
investigations. Comparing the two numerical methods, the authors conclude that
the Finite Difference method has a lower requirement of memory by a factor of
2.5. Furthermore, the permeability computed for the Fontainebleau sandstone is
compared with estimated permeabilities of two stochastically-generated porous
domains with same porosity and specific surface area as the digitized sample of
the Fontainebleau sandstone. According to the results of Manwart et al. [8], it is
possible to conclude that for obtaining accurate results of permeability is necessary
to handle the digitized model with care as the quality of the calculated effective
permeability depend on the chosen size of the calculation domain, boundary con-
ditions, numerical method and last but not least on the quality of the workflow
including microtomography scan and image segmentation. The mentioned aspects
are carefully studied in a recent digital rock physics benchmark [9,10]. Various
groups compared their workflow of digital rock physics, i.e. x-ray imaging, digi-
tizing the pore space and the solid matrix of the rock and numerically analyzing
effective material properties like permeability, elastic moduli etc. Andrä et al. [10]
calculate effective properties of typical porous rock samples, e.g. Fontainebleau
sandstone, Berea sandstone, carbonate and sphere packs, including effective in-
trinsic permeability. These hydraulic properties are calculated from segmented
3-dim x-ray microtomographes, applying Lattice-Boltzmann and Explicit Jump
Stokes methods for simulation fluid flow through the pore space of the porous
rock. It is worth to mention, that the authors comment again that the size of the
calculation domain has to be chosen carefully as the sizes causes variations in the
calculation results.
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Investigating x-ray microtomographes of reticulate porous ceramics, Petrasch
et al. [11] determines hydraulical properties such as porosity and effective per-
meability applying Finite-Volume calculations. The proposed technique is applied
to porous ceramics, but it can be applied in any porous structure that admits
tomographic samples. It has to be pointed out, that their numerical method are
grid-based, thus a tetrahedral mesh has to be generated from the imaging data.
Summarizing the results of the literature it has to be pointed out, that numeri-
cally calculated effective hydraulic properties like intrinsic permeability strongly
depends, besides the overall framework of imaging and segmentation, on the size
of the calculation domain. The requirement of a representative unit cell leads,
especially for flow simulations in the pore space of porous materials, to the de-
mand of efficient numerical techniques. Furthermore, a common shortcoming is
that the numerical methods proposed by different authors are only tested in a
narrow range of porosities. In response to the presented problems, this article tries
to implement a numerical scheme to calculate effective permeability for sufficiently
large and representative domains of diverse kind of materials with low and high
porosity, i.e. from sandstone to high-porous open-cell foams.

The proposed workflow starts from a voxel-based geometry obtained directly
from the image segmentation of a CT scan. We calculate the effective permeability
as follows: a) Setup of a boundary value problem, b) parallel computing of Stokes
flow based on a Finite Difference (FD) approach, and c) calculation of coarse-
grained permeability from the velocity and pressure field calculated in the previous
step. We prove our method with pervious and semipervious materials, in a range
of porosities from 0.146 to 0.934.

2 Methodology

The aim of the present contribution is to present a workflow for an efficient numeri-
cal calculation of intrinsic permeabilities of low- and high-porous materials. There-
fore we choose representative examples of such porous media, like Fontainebleau
sandstone (φ = 0.146), regulary and non-regulary packed spheres and high porous
man-made metal foam (φ = 0.935). Furthermore, we restrict ourselves on low-
Reynolds number flow, i.e. stationary flow processes on the pore-scale leading to
a creeping or Darcy-type flow process on the coarse-grained macroscopical scale.

The starting point of our numerical workflow is a segmented binary 3-dim voxel-
based data set obtained e.g. from x-ray synchrotron or desktop microtomography.
A discussion about the important step from the reconstructed tomographic raw
data to the binarized data set is out of the focus of the paper, details can be
found in [9] our [12,13]. On basis of the cartesian grid of the segmented and
binearized voxel data, we perform a Finite Difference analysis of the stationary
Stokes equations. The volume-averaged velocity and pressure fields numerically
calculated are employed in Darcy’s law to estimate the permeability. The proposed
workflow, cf. Fig. 1, is given as follows:

In step (1), the geometry, i.e. the domain of calculation is preprocessed for
domains presenting disconnected pores. In step (2), we setup the boundary value
problem of the Stokes flow simulation. The related numerical problem is solved
in step (3) resulting in a computation of the velocity and pressure field. In the
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postprocessing step (4), the calculation of effective permeability is performed. Step
(1) - (4) of the workflow is discussed now in further detail.

2.1 Step (1): Preprocessing of the domain of calculation

Especially in low-porous materials, a certain number of domains present discon-
nected pores. Those pores do not affect the flow pattern of the connected pores.
However, they have an influence on the volume averaging process (step (4)) of the
velocity field, cf. section 2.4, and consume computing time. Therefore, they are first
eliminated from the calculation domain before computation of the Stokes prob-
lem starts. These disconnected pores are indirectly identified by applying a seed
region growth algorithm. Fig. 2 shows such subdomain occurring in the data set
of the Fontainebleau sandstone. The network of the connected pores is displayed
in (light) pink color, while the disconnected pores appear in blue color. Around
6.6% of the pore space consist of unconnected pores in the discussed example.

2.2 Step (2): Set-up of boundary value problem

We simulate Stokes flow of a stationary and incompressible fluid with Re � 1
through a porous media. This is governed by the balance of momentum 1 and the
continuity equation 2:

grad p = ηfR div gradu (1)

divu = 0 (2)

Applying the divergence operator on both sides of Eq. 1 we obtain:

div grad p = 0 (3)

Supplemented by boundary conditions, Eq. 3 is the basis of our numerical scheme.
To solve the velocity and pressure fields, the boundary value problem is posed
onto a digitized sample of the porous material as follows: The representative unit
cell of the porous material is enclosed in a rectangular domain Ω ⊂ R3 with basis
vector ex, ey and ez. The planes with coordinates x = 0, x = L, y = 0 and y = L
are closed walls, and no-slip boundary conditions are applied. Periodic boundary
conditions are applied in the velocity field (u(z = 0) = u(z = L)). The boundary
conditions of the pressure field are defined by a constant function in the planes z =
0 and z = L (p(z = 0) = p0, p(z = L) = pf ). The pressure boundary conditions
are related to a pressure gradient, similar to pressure boundary conditions applied
in physical permeability experiments. Fig. 3 shows the setup of the boundary value
problem for the mentioned porous materials which are investigated in the present
contribution. It is important to note, that we need to mirror the domain at the
plane z = L/2 in order to apply periodic boundary conditions, cf. Fig. 3. This
increases the degrees of freedom by a factor of two but allows well-defined periodic
BCs.
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2.3 Step (3): Computation of u and p (3)

The numerical solution scheme applied to Eqs. 1 and 3 is based on a regular stag-
gered grid technique, cf. [14], using a second order Finite Difference method. Fig.
4 shows a 2-dim example of the discretization for visualization purposes. Techni-
cal details of the (standard) discretization scheme are omitted here and can be
found in the related literature, e.g. [14]. A regular cartesian grid, i.e. a voxel-based
grid allows to use the geometry information directly from the tomographical data,
avoiding a) the loss of geometrical information and b) reducing computational ef-
fort in the generation of complex geometrical representations such as triangulations
or parametric surfaces. Furthermore, the resultant system of linear equations is
solved by the iterative Succesive Over-Relaxation method SOR, cf.[15]. The SOR
method converges for a relaxation factor ω ∈ (0, 2) [16]. We found for our compu-
tations that ω = 1.2 is an optimal parameter for convergence acceleration.

Digitization of porous materials samples with the help of x-ray synchrotron or
desktop scanning facilities produces massive quantities of imaging data. As one aim
of our present contribution is to discuss a flexible framework for sufficiently large
domains of calculation, we look to be able to compute extremely large domains
avoiding memory problems. Therefore, we implement our own Stokes solver in a
parallel computation environment. In the presented examples of the manuscript,
the solver run on a cluster of PCs (without demanding specifications) connected
in parallel, but if desired, it can also be used on larger computing environments.
Given the problem-based advantage of using distributed memory, we parallelized
the computation using MPICH2 (Message Passing Interface based on Chameleon
portability system) [17]. Therefore, the calculation domain was divided between
the processes in a straightforward way. We split the domain with a family of
equidistant planes, normal to the axis ez, according to the number of cores which
have to be used. Fig. 5 shows an example of the domain division proposed for the
parallelization of the code.

In parallel computation, the communication among parallel processes repre-
sents a resources-consuming task. We minimize this communication expense by
having each process to pass to the neighboring one only a slice of the domain,
cf. the gray voxels in Fig. 5. The communication operations were organized in a
ring network as described in Rauber and Rünger [18]), where we can find a com-
munication link between the first and last process. In Fig. 6(a) we show a O(N)
relation between the size of the domain, given in number of elements, and the
calculation time (seconds) needed for each iteration. For a domain consisting of
4003 voxels, Fig. 6(b) shows how the time per iteration decreases as the number of
processors increases. It has to be mentioned, that the number of iterations needed
for convergence is directly affected by the size of the domain and the porosity of
the investigated material. The upper bound of the implemented SOR method is
O(N/p), where N is the number of elements p is the number of processors used in
the numerical simulation.

2.4 Step (4): Postprocessing and calculation of effective permeability

From the velocity and pressure field calculated in the previous section, cf. 2.3,
we calculate ∆p (imposed boundary condition) and the volume averaged velocity
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FD Calculation of Permeability in Large Domains in a Wide Porosity Range 7

component in direction ez

um =
1

Vf

∫
Vf

|uz|dv. (4)

With the volume-averaged velocity, the intrinsic permeability of the porous mate-
rial is calculated from Darcy’s law [19]

ks =
ηfR um
∆p

. (5)

3 Results and Discussion

Tab. 1 shows a summary of the obtained results for different materials with a
large variety of porosities. A comparison between values from the literature and
numerically-obtained data calculated with the described technique is demonstrat-
ing the reliability and accuracy of the method. Tab. 1 also shows the size of the
calculation domain and the large range of porosities in which the proposed method
was proved. In order to use benchmark data from the literature, we restrict the
displayed results to domains which are far from the maximum domain size we have
simulated.

Table 1 Comparison of simulated materials and data from literature.

Case Ref.
Value

Sample size
[Vox]

φ
∑

Vox-
els

∑
Vox

in pore
space

Reference ks

[m2]
Calculated ks

[m2]

Al metall foam No ref. 400 × 400 × 400 0.935 64 × 106 59.87 ×
106

− 7.8124 × 10−7

Capillary tube Ref. [20] 100 × 100 × 400 0.785 4 × 106 3.14 ×
106

9.8175 × 10−6 9.6316 × 10−6

Regularly packed
spheres

Ref. [21] 200 × 200 × 400 0.414 16 × 106 6.62 ×
106

1.3955 × 10−9 1.0867 × 10−9

Non-Regular
packed spheres

Ref. [10] 400 × 400 × 600 0.343 96 × 106 32.92 ×
106

2.6668×10−10 2.1985×10−10

Fontainebleau
sandstone

Ref. [10] 290 × 290 × 600 0.146 50.46 ×
106

7.36 ×
106

1.8765×10−12 9.6982×10−12

The permeability of aluminium foam (Al foam) with a large porosity of φ =
0.935 was calculated in a domain consisting of 4003 voxels resulting in 256 ×
106 DOFs. The numerically calculated effective permeability is high with respect
to the other analysed materials with lower porosities and in the range of the
expected one, cf. Tab. 1. There is no literature or reference value of intrinsic
permeability for this material. Fig. 7 shows the rather straight streamlines of fluid
flow through aluminium foam. Especially for such high porous materials with
high effective permeability physical permeability tests are complicated as very low
pressure drops have to be measured accurately [22–24] . Numerical calculations
could be an interesting alternative tool for such investigations.

Flow through a capillary tube was analysed in order to discuss the discretiza-
tion of the proposed method. Stokes flow was simulated through a capillary tube

DRAFT D
RAFT D

RAFT 

oruiz
Llamada
revisit

oruiz
Rectángulo



8 Maria Osorno et al.

with ratio length/radius = 4. The estimated permeability, applying the proposed
method, presents an error of 1.89% in comparison to the analytical solution, cf.
Eq. 6 presented in Carman’s classical work [20]. Fig. 8 shows the parabolic profile
of the velocity in direction of the ez axis for the simulated and analytical solution
of a tube with radius rT = 0.2 m. The numerical results are shown in the Tab. 1.

ks =
π

32
r2t . (6)

Furthermore, Tab. 1 shows the numerically calculated effective permeability for
a regular packed sphere array (FCC lattice: ds = 1 mm) with porosity of φ = 0.414
vs. the reference value of the permeability calculated with the model proposed by
Rumpf and Gupte in [21], cf. Eq. 7 for spheres of a diameter of 1 mm. Fig. 9 is
showing the streamlines for the calculated velocity field.

ks =
φ5.5

5.6
d2s. (7)

For non-regular packed spheres, we analysed the permeability for a porosity of
(φ = 0.343) which was investigated in Andrä et al. [10]. The comparison of our
results with the benchmark values given by Andrä et al. show a good accordance
with the benchmark data. Fig. 10 shows a subdomain of the no-regular packed
spheres; the top shows the magnitude of the velocity field, and the bottom is
depicting the geometry of the domain. The calculated and reference values can be
seen in Tab. 1.

To prove our method with a low porous material, the permeability of the
Fontainebleau sandstone, with porosity φ = 0.146), is calculated and compared
with the benchmark value in the Table 2 in [10]. Fig. 11 shows a subdomain of the
Fontainebleau sandstone, the magnitude of the calculated velocity field can be ob-
served on the top, and in the bottom of the figure the geometry can be observed.
Again, Tab. 1 shows the calculated permeability and the reference values. We
found in the calculated velocity field the existence of divergence in the connection
between a pore and a pore throat, when the throat diameter is much smaller than
the pore diameter, cf. Fig. 12. This kind of connection occurs mainly in materials
with low porosities. In the simulations of the materials discussed in this contribu-
tion, the applied global boundary conditions ensure a viscous regime in most areas
of the calculation domain. In the described specific pore-pore throat connections
of the Fontainebleau sandstone, we found that inertial effects are dominant. Even
with this aspect, we are able to comment that the calculated value of effective
permeability presents an acceptable error respect to the reference value (factor of
5, in the same order of magnitude). We consider this to be an acceptable error,
given that physical experiments results fluctuate in the same order of magnitude
[25]. It seems to be that a stationary Stokes solver could also be applied for such
kind of applications. Nevertheless, if higher accuracy is necessary, for low porous
media we recommend to use a Navier-Stokes-based solver to improve the quality
of the results and include inertia effects in coarse-grained effective permeability
results.
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FD Calculation of Permeability in Large Domains in a Wide Porosity Range 9

4 Conclusions and future work

Effective intrinsic permeability was numerically calculated for a variety of mate-
rials with porosities from φ = 0.146 to φ = 0.935. A source of error found in
the calculation of the effective permeability is the existence of local divergence
in the velocity field because of the sharp changes in the material pores diame-
ter and small pore throats relative to the pore size. This is more common in the
materials with low porosity and was analysed in the simulations of Fontainebleau
sandstone. In materials with higher permeabilities we have not observed such ef-
fects and obtained good agreement with reference values. Our method demands
low computational resources, which allows to calculate large domains, i.e. large
representative unit cells on inexpensive clusters of desktop computers connected
in parallel. Future work includes the calculation of further effective properties
of porous materials such as e.g. tortuosity and the comparison of the proposed
method against other numerical methods like as Lattice-Boltzmann or Smoothed
Particle Hydrodynamics.
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Fig. 1 Workflow for intrinsic permeability calculation (Different subdomains in geometry
pre-processing and pressure field for visualization purposes).
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φcon = 0.137

φuncon = 0.009

Fig. 2 Geometry of the connected pore network (pink) and and unconnected or isolated pores
(blue) in a Fontainebleau sandstone.
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(b) Fontainebleau Stone.
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(c) Aluminium foam.
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(d) No-regularly packed spheres.

Fig. 3 Domain setup of porous media analyzed
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pi,j

ui−0.5,j

vi,j−0.5

Voxel i, j

Fig. 4 Example in 2d of discretization of pressure and velocity field.

Fig. 5 Example of domain division for parallelization. Voxels P1, P2,..., are processed in
parallel. Voxels common among processes appear in grey color.

(a) Time per iteration as a linear function
of domain size.

(b) Time per iteration as function of the
number of processors used.

Fig. 6 Parallelization
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Fig. 7 Aluminium foam domain. chosen computed streamlines.

Fig. 8 Profile of flow velocity in capillary tube. Comparison of Poiseuille equation with sim-
ulation with different discretizations.
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Fig. 9 Regularly packed spheres domain. Chosen streamlines

Fig. 10 Subdomain of irregularly packed spheres. Top: Magnitude of fluid velocity. Bottom:
Geometry
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Fig. 11 Magnitude of fluid velocity in a sub-domain of Fontainebleau Stone.

Fig. 12 Divergence of velocity field in subdomain of Fontainebleau stone
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