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Structured Abstract: 
 
Purpose: Curve fitting from unordered noisy point samples is needed for surface 
reconstruction in many applications. In the literature, several approaches have been 
proposed to solve this problem. However, previous works lack formal characterization 
of the curve fitting problem and assessment on the effect of several parameters (i.e., 
scalars that remain constant in the optimization problem), such as control points 
number (m), curve degree (b), knot vector composition (U) and norm degree (k), on the 
optimized curve reconstruction measured by a penalty function (f). 
Methodology: A numerical sensitivity analysis of the effect of m, b and k on f and a 
characterization of the fitting procedure from the mathematical viewpoint are 
performed. Also, the spectral (frequency) analysis of the derivative of the angle of the 
fitted curve with respect to u as a means to detect spurious curls and peaks is explored. 
Findings: It is more effective to find optimum values for m than k or b in order to obtain 
good results because the topological faithfulness of the resulting curve strongly 
depends on m. Furthermore, when an exaggerate number of control points is used the 
resulting curve presents spurious curls and peaks. We were able to detect the presence 
of such spurious features with a spectral analysis. 
Value: We have addressed important voids of previous works in this field. We 
determined, among the curve fitting parameters m, b and k, which of them influenced 
the most the results and how. Also, we performed a characterization of the curve fitting 
problem from the optimization perspective. And finally, we devised a method to detect 
spurious features in the fitting curve. 
 
Keywords: parametric curve reconstruction, noisy point cloud, sensitivity analysis, 
penalty minimization 
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Nomenclature 
 
𝐶0 : Unknown 𝐶1-differentiable simple planar curve  
𝐶(𝑢) : Parametric planar curve approaching 𝐶0  
𝐒 : {𝒑0, 𝒑1. . . , 𝒑𝑟}. Noisy unordered point sample of 𝐶0  
r  : Number of sampled points in set S  
𝐶(𝑢𝑖) : Point on 𝐶(𝑢) closest to point 𝒑𝑖  
𝑑(𝒑, 𝐒) : Distance from point 𝒑 to the point set 𝐒  
𝑘 : Degree of norm: (Σ|𝑥𝑖|

𝑘)1/𝑘  

l  : Length units   

𝑚 : Number of control points of 𝐶(𝑢) 
𝐏 : [𝑷0, 𝑷1, . . . , 𝑷𝑚−1]. Control polygon of 𝐶(𝑢) 
𝑏 : Degree of parametric curve 𝐶(𝑢) 
O(g(n)) : computational expense is a function g(n) of the data size n.  
X : knot vector 
B : sequence of parameter values. B = [u0, u1, . . . , un] 

  
1.  Introduction 
Many engineering applications (e.g. terrain modeling, medical imaging, reverse 
engineering) require the recovery of a planar curve 𝐶 from its unordered noisy point 
sample 𝐒.    The curve 𝐶 is usually an intermediate step in surface reconstruction. 𝐶 may 
have 𝐶0 (PL: Piecewise Linear) or higher (𝐶1, 𝐶2,…) continuity. In the second case, we 
talk of a smooth parametric free form (i.e. the subject of this article).  In either case, a 
usual goal is that 𝐶 be statistically ‘centered’ in the point cloud 𝐒, assuming that the data 
has a uniform noise distribution, which is the case that we address in this work. It is 
customary to use heuristics to find the ‘best curve’ 𝐶 fitting the given point set 𝐒. In the 
present article, to find the free form curve fitting a noisy point set, we used the heuristic 
of minimizing an accumulative distance function (discussed next) point cloud vs. curve, 
starting with an initial guess for 𝐏, the control polygon of 𝐶. This initial guess is based 
on Principal Component Analysis (PCA), by penalizing large curvatures, extreme curve 
excursions and curls.  It must be clear, however, that even for very finely tuned 
heuristics, the curve 𝐶 obtained must be double-checked by a human user in most of 
the cases, to avoid serious errors in sensitive applications.  

The usual approach implies adjusting a parametric or implicit curve to the set of 
points by minimizing a cumulative unsigned distance function 𝑓 between the points and 
their approximating curve.  It is of interest to know which parameters are more 
effective to increase the goodness of the curve.  The issue is important because an 
excess or deficit of the parameters produce equally disastrous results (curls, cusps, 
excursions, spurious self-intersections, etc.). The literature reviewed presents ad-hoc 
tests, which seem to favor a parameter over others, but not a systematic, quantified 
evaluation of the relative impact of the parameters in the goodness of the curve. This is 
the goal of the present article. 

In this article we will address planar Open Uniform B-splines, with knot vector such 
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that 0 ≤ 𝑢 ≤ 1 (Piegl and Tiller, 1997). Other curve types can be analyzed similarly. We 
address point samples with uniform sampling noise, leaving spatial-dependent noise 
for future work. 

 
1.1.  Objective function 
Consider an unknown smooth finite curve 𝐶0 and 𝐒 a noisy point sample of 𝐶0. The usual 
goal is to find a parametric curve 𝐶, which approximates 𝐶0, by minimizing the distance 
function f  (Eq. 1) between 𝐶 and 𝐒. 
 

𝑓 = ∑𝑟
𝑖=1 𝑑𝑖

𝑤 (1) 
 

with the residual 𝑑𝑖 being the minimal distance between the 𝑖-th cloud point 𝒑𝑖 ∈ 𝐒 and 
the finite curve 𝐶 (Eq. 2) , 𝑤 being the order of the residual and k being the norm-degree 
to calculate the distance  
 
 𝑑𝑖 = min

𝐶(𝑢)∈𝐶
‖𝐶(𝑢) − 𝒑𝑖‖

𝑘 (2) 

 
 
1.2.  Context of the optimization problem 

The terms in Eq.1 that can be changed to minimize f( ) are: m (number fo control 
points), P (control polygon), b (degree of parametric curve), X (knot vector), k (norm 
type, Eq. 2), and w (power of the distances, Eq. 1). In this article we choose to analyze 
the sensitivity of the curve fitting with respect to m, k, and b (parameters) and the 
tuning variable is P (i.e. 2m scalar values). This problem is non-linear, unconstrained 
with 2m degrees of freedom (Chong and Żak, 2008). The optimal solution is not a global 
one, because the eigenvalues of the Hessian matrix of f( ) have mixed sign. 
 

The relative (dimensionless) parametric sensitivity (Edgar et al., 2001, Fiacco, 1983; 
Nocedal and Wright, 2006)) of 𝑓 with respect to a parameter q (in this article, m, b and 
k) is given by:  

 

 𝑆𝑞
𝑓

=
𝑞

𝑓

∂𝑓

∂𝑞
=

∂𝑙𝑛(𝑓)

∂𝑙𝑛(𝑞)
 (3) 

 
 

1.3 Nyquist – Shannon Compliance.  
The Nyquist – Shannon principle states that the added value of sampling 

distance plus the sampling noise must be smaller than half of the minimal geometric 
feature to be reconstructed from the sample.  In this article we work under the 
assumption of compliance of the Nyquist – Shannon conditions by the sample.   
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2.  Literature Review 
. 

 
2.1.  Objective function  
Reference (Flöry and Hofer, 2010) employs first order residuals (𝑤 = 1 in Eq. 1) while 
references (Gálvez et al., 2007; Liu and Wang, 2008; Liu et al., 2005; Wang et al., 2006) 
use second order residuals (𝑤 = 2). 

Some references (Flöry and Hofer, 2010, 2008; Flöry, 2009; Liu et al., 2005; Wang et 
al., 2006) add a smoothing term 𝑓𝑐  to the objective function in order to adjust the 
roughness of the curve:  

 
 𝑓 = ∑𝑟

𝑖=1 𝑑𝑖
𝑤 + 𝜆𝑓𝑐. (4) 

 
The term 𝑓𝑐  contains information on the curve’s first and/or second derivatives and 

𝜆 penalizes large curvatures and therefore it prevents reconstructing curves with sharp 
corners.   

Constrained approaches (Flöry, 2009) and (Flöry and Hofer, 2008) are used to 
restrict the fitting to or outside entire regions (e.g. manifolds in R3), as opposed to high 
fidelity curve or surface fitting. Because of this reason, we do not consider them here. 
 
2.2.  Distance measurement 
Eq.2 calculates distance or residual 𝑑𝑖 of the objective function (Eq. 1). In curve fitting 
algorithms norm 𝑘 is usually chosen to be 𝑘 = 2 (i.e., Euclidean distance) as in (Liu et 
al., 2005; Wang et al., 2006). 

The exact calculation of 𝑑𝑖 is expensive because it requires calculating the roots of 
polynomial systems.  It implies finding the parameter 𝑢𝑖  which associates a point on the 
curve 𝐶(𝑢𝑖) with the 𝑖-th cloud point 𝒑𝑖 such that 𝑑𝑖 is a minimum (perpendicular 
distance point – curve, Eq. 7). Namely,  

 
 ‖𝐶(𝑢𝑖) − 𝒑𝑖‖

𝑘 = min
𝐶(𝑢)∈𝐶

‖𝐶(𝑢) − 𝒑𝑖‖
𝑘 (5) 

 
 

  𝐺(𝑢) = |𝐶′(𝑢) ⋅ (𝐶(𝑢) − 𝒑𝑖)| (6) 
 

Solving for 𝑢 in 𝐺(𝑢) = 0 is achieved by usins Newton’s Method (Liu et al., 2005; Piegl 
and Tiller, 1997), numerically minimization of 𝐺(𝑢) (Flöry and Hofer, 2010; Liu and 
Wang, 2008; Saux and Daniel, 2003; Wang et al., 2006) or using genetic algorithms 
(Gálvez et al., 2007).  All methods require the usual effort for finding initial guess for 
the solution ( quadtree (Wang et al., 2006), k-D tree (Liu and Wang, 2008)) and 
Euclidean minimum spanning tree (Liu et al., 2005). Other methods avoid the actual 
calculation of point – curve perpendicular. Reference (Liu and Wang, 2008) presents a 
review of methods for solving (or approaching) Eqs 6 and 7. 

It must also be remarked that using point-to-curve distance does not avoid curls 
formed outside the 𝐒 boundaries and outliers in the final curve 𝐶. Therefore, we have 
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included both (1) point-to-curve and (2) curve-to-point distance estimations, allowing 
for curls and outliers avoidance. 

 
2.3.  Effect of Curve fitting Parameters. 
Number of control points m.  Reference (Ueng et al., 2007) presents unconstrained and 
constrained approaches to solve the curve fitting problem to a set of low-noise 
organized data points. The experiments performed show that increasing m helps, in 
general, to diminish 𝑓, although with the collateral effect of obtaining a more erratic 
curve. Reference (Yang et al., 2004) shows similar results to (Ueng et al., 2007), with 
the difference that the removal of control points is part of their fitting strategy.  
Norm Degree k. Reported research is oriented towards identifying which norm to use 
when outliers and particular noise distributions are present in the point data set. 
Reference (Heidrich et al., 1996) performs a comparison amongst 𝐿1, 𝐿2 and 𝐿∞ norms 
in curve fitting applications with several data sets. Ref. (Flöry and Hofer, 2010) 
concludes that the 𝐿1 norm is less sensitive to outliers. In contrast, the problem of 
finding an adequate number of control points for correct geometry and topology 
reconstruction has not been discussed thoroughly. 

In summary, few discussions are presented about the influence of 𝑚 and 𝑘 on 𝑓, and 
the influence of 𝑏 on 𝑓 has not been analyzed. Furthermore, a formal sensitivity analysis 
for these parameters has not, to the best of our knowledge, been yet performed.  In 
addition, some features of the optimization problem have not been discussed, such as 
the objective function convexity, and its role in classification of extrema. 

 
2.4.  Peaks and curls detection 

A mathematically optimal solution for the fitting curve problem does not necessarily 
imply a correct topological and geometrical reconstruction of the curve 𝐶0 represented 
by the point cloud 𝐒, since spurious peaks and curls may appear.  We show in this article 
that peaks and curls may be avoided by finding an optimal value for 𝑚, as opposed to 
the strategy of curvature penalization implemented in (Flöry and Hofer, 2010; Flöry, 
2009; Liu et al., 2005; Wang et al., 2006), which presents the drawbacks discussed in 
section 2.1. Reference (Pekerman et al., 2008) presents an algebraic approach to detect 
self-intersections solving 𝐶(𝑢) − 𝐶(𝑣) = 0, with 𝑢 ≠ 𝑣. In any case, peaks and curls 
detection is not trivial and it is an open problem. In this article, we introduce the usage 
of the frequency content of the 𝐶(𝑢)’s curvature to detect peaks and curls. 

 
2.5.  Conclusions of the Literature review and contribution of this article 
There are several open issues in optimized curve fitting to point clouds: (a) Effect of 
parameters such as the number of control points 𝑚, knot vector 𝐗 and norm 𝑘, (b) 
Detection of peaks and curls in C(u) to validate optimal parameter value identification 
and (c) Mathematical characterization of the curve fitting problem from the viewpoint 
of optimization. 
The knot vector X controls the variation of parameter velocity in the curves, and the 
adherence to specific control polygon vertices. The knot vector is, in itself, a whole area 
of research, given the large number of configurations and types that it admits. Because 
of this reason, we prefer, in this article, to explore: (1) A sensitivity analysis of the 
number of control points(m), degree of curve (b), norm type (k) and size of point 
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sample (r) on f ( ), and, (2) A quantitative analysis in the frequency domain of the 
curvature of C(u) to detect peaks and curls.  We aim to reconstruct curves which have 
sharp corners, and therefore, we do not consider a curvature penalty factor  . 
Nyquist-Shannon theory is well known in the domain of one-dimensional functions (i.e. 
signal processing). However, the quantification of Nyquist compliance in 2D/3D 
samples is an open problem in computational geometry. We do not know of any 
numerical estimation of Nyquist-compliance of 2D / 3D data. We do not, at this time, 
intend to undertake such a task. 
 
3.  Methodology 
 
3.1.  Dual distance calculation 
In addition to point-to-curve distance (section 2.2), curve-to-point distance is used to 
calculate 𝑑𝑖, used in Eq.1, for the curve fitting algorithm implemented in this article. 

The distance from a given cloud point to the curve (point-to-curve, Figure 1(a))is 
defined as  

 
 𝑑𝑖 = ||𝒑𝑖 − 𝐶(𝑢𝑖)||

𝑘 (7) 
 
where 𝑢𝑖  is the parameter in the domain of 𝐶 which defines point 𝐶(𝑢𝑖) closest to 𝒑𝑖.  
This calculation is computationally expensive because it seeks the common roots of a 
polynomial ideal (Kapur and Lakshman, 1992). 
 

 
 

 

(a) Distances cloud point to curve. (b) Distances curve to cloud point. 
Figure 1: Distances cloud points to/from curve. 

 

 
To avoid the computational expenses of algebraic roots calculation, we sample the 

domain for u in [0,1], (i.e.  [0, u, 2u,…,1.0]) and approximate the curve 𝐶 with a poly-
line  [C(0), C(u), C(2u),…,C(1.0)]. Approximating 𝐶(𝑢𝑖) in Eq. 8 for a given 𝒑𝑖 simply 
entails traversing [C(0), C(u), C(2u),…,C(1.0)] to find the 𝐶(𝜅Δ𝑢) closest to 𝒑𝑖. This 
PL approximation of C produces reasonable results if the sample of u in [0,1] is Nyquist-
compliant.    

 
Figure 1(a) displays the distance di (Eq. 1) from a particular cloud point 𝒑𝑖 to its 

closest point 𝐶(𝑢𝑖) on the current curve 𝐶. Notice that 𝒑𝑖 and 𝐶(𝑢𝑖) (and hence 𝑓) do 
not change if large legs and curls appear in the synthesized 𝐶. Therefore, considering 
only the distance 𝑓𝑟𝑜𝑚 𝑐𝑙𝑜𝑢𝑑 𝑝𝑜𝑖𝑛𝑡𝑠 𝑡𝑜 𝑡ℎ𝑒 𝑐𝑢𝑟𝑣𝑒 in Eq.1 does not avoid spurious 
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outlier legs and curls outside the boundaries of 𝐒. To overcome this disadvantage, we 
also include in f the distances from 𝑡ℎ𝑒 𝑐𝑢𝑟𝑣𝑒 𝑝𝑜𝑖𝑛𝑡𝑠 𝐶𝑖 𝑡𝑜 𝑡ℎ𝑒 𝑐𝑙𝑜𝑢𝑑 𝑝𝑜𝑖𝑛𝑡𝑠 𝒑𝑖 (see 
Figure 1(b)). 

For any point 𝒑 ∈ ℝ𝑛 , the distance of this point to 𝐒 is a well defined mathematical 
function: 𝑑(𝒑, 𝐒) = 𝑚𝑖𝑛

𝒑𝑗∈𝐒
(||𝒑 − 𝒑𝑗||

𝑘). For the current discussion the points 𝒑 belong to 

curve 𝐶(𝑢𝑖). 
Notice that 𝑑(𝒑, 𝐒) = ||𝒑𝑗 − 𝒑||𝑘 for some cloud point 𝒑𝑗 ∈ 𝐒. Let the point set 𝐀𝐣 (on 

curve 𝐶) be:  
 

 𝐀𝐣 = {𝐶(𝑢)|𝑢 ∈ 𝐁 ∧ 𝑑(𝐶(𝑢), 𝐒) = ||𝒑𝑗 − 𝐶(𝑢)||𝑘} (8) 

 
𝐀𝐣, a partition of curve 𝐶, contains those points in the sequence 

[𝐶(0), 𝐶(Δ𝑢), 𝐶(2Δ𝑢), . . . , 𝐶(1.0)] that are closer to 𝒑𝑗 ∈ 𝐒 than to any other point of 𝐒. 

We note with 𝑧𝑗  the cardinality of 𝐀𝐣. Observe that some 𝑧𝑗  might be zero, since 𝒑𝑗  could 

be far away from be curve 𝐶 and no point on the curve would have 𝒑𝑗  as its closest in 𝐒. 

From the previous discussion, residuals 𝑑𝑖 for Eq. 1 are defined by:  
 

 𝑑𝑖 = ||𝒑𝑖 − 𝐶(𝑢𝑖)||
𝑘 + (

1

𝑧𝑖
) Σ
𝐶𝑣∈𝐀𝐢

||𝐶𝑣 − 𝒑𝑖||
𝑘 (9) 

 
where ||𝒑𝑖 − 𝐶(𝑢𝑖)||

𝑘 is the distance from cloud points in 𝐒 to the curve 𝐶 and 

(
1

𝑧𝑖
) Σ
𝐶𝑣∈𝐀𝐢

||𝐶𝑣 − 𝒑𝑖||
𝑘 expresses distances from the curve 𝐶 to the cloud points in 𝐒, 

penalizing an increase on the curve length, by augmenting 𝑓. 
 

 
 

   

 
Figure 2: Clusters of distances from curve to cloud points. 

 
 

Figure 2 presents a simplified picture of the situation, with few cloud points, biased 
with respect to 𝐶 curve. Calculations are depicted in Table 1. Observe that 𝐶𝑖 = 𝐶(𝑢𝑖), 
the point on 𝐶 closest to 𝒑𝑖, is not the exact one but an approximation using a tight PL 
approximation of 𝐶. 
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𝒑𝑖 𝐀𝐢 𝑧𝑖  𝐶(𝑢𝑖) 𝑑𝑖  

𝒑1  {𝐶1, 𝐶2, 𝐶3, 𝐶4}  4 𝐶2  ||𝒑1 − 𝐶2|| +
1

4
(||𝒑1 − 𝐶1|| + ||𝒑1 − 𝐶2|| + ||𝒑1 − 𝐶3|| +

||𝒑1 − 𝐶4||)  

𝒑2  {𝐶5, 𝐶6, 𝐶7}  3 𝐶6  ||𝒑2 − 𝐶6|| +
1

3
(||𝒑2 − 𝐶5|| + ||𝒑2 − 𝐶6|| + ||𝒑2 − 𝐶7||)   

𝒑3  {}  0 𝐶8  ||𝒑3 − 𝐶8||  

𝒑4  {𝐶8, 𝐶9}  2 𝐶9  ||𝒑4 − 𝐶9|| +
1

2
(||𝒑4 − 𝐶8|| + ||𝒑4 − 𝐶9||)  

𝒑5  {𝐶10, 𝐶11}  2 𝐶10  ||𝒑5 − 𝐶10|| +
1

2
(||𝒑5 − 𝐶10|| + ||𝒑5 − 𝐶11||)  

𝒑6  {𝐶12, 𝐶13}  2 𝐶12  ||𝒑6 − 𝐶12|| +
1

2
(||𝒑6 − 𝐶12|| + ||𝒑6 − 𝐶13||)  

𝒑7  {𝐶14, 𝐶15, 𝐶16}  3 𝐶14  ||𝒑7 − 𝐶14|| +
1

3
(||𝒑7 − 𝐶14|| + ||𝒑7 − 𝐶15|| + ||𝒑7 − 𝐶16||)  

Table  1: Calculations using curve to cloud-point distances for example in Figure 2. 
 
3.2.  Convexity 
The 2m variables to minimize 𝑓 are the 𝑥 and 𝑦 coordinates of the vertices (𝑷𝑗 =

(𝑥𝑗 , 𝑦𝑗)) of the control polygon 𝐏 = [𝑷0, 𝑷1, . . . , 𝑷𝑚−1].  Because these points can be 

placed anywhere in ℝ2 the problem is unconstrained. The eigenvalues of f ’s Hessian 
matrix (Eq. 11) indicate that the problem is non-convex. 
 

 𝐻𝑓(𝐏) = [
∂2𝑓

∂𝑷𝑖 ∂𝑷𝑗
]
𝑖𝑗

=

[
 
 
 
 

∂2𝑓

∂𝑥𝑖 ∂𝑥𝑗

∂2𝑓

∂𝑥𝑖 ∂𝑦𝑗

∂2𝑓

∂𝑦𝑖 ∂𝑥𝑗

∂2𝑓

∂𝑦𝑖 ∂𝑦𝑗

]
 
 
 
 

𝑖𝑗

 (10) 

 
 

   
3.3.  Sensitivity calculation 

To calculate the relative sensitivity (𝑆𝑞
𝑓

), of 𝑓 with respect to a particular parameter 𝑞, 

the curve fitting algorithm is executed for specific values of 𝑞 (i.e., 𝑞𝑖) to yield 𝑓𝑖 , where 
𝑖 (0 ≤ 𝑖 < 𝑖𝑚𝑎𝑥) indicates the number of increments applied over an initial value 𝑞𝑚𝑖𝑛, 

bounded by a maximum number of increments 𝑖𝑚𝑎𝑥 . 𝑆𝑞
𝑓

 is calculated numerically as per 

Eq. 12.  
 

 𝑆𝑞𝑖

𝑓𝑖 ≈
(𝑞𝑖+1+𝑞𝑖)  

(𝑓𝑖+1+𝑓𝑖)
     

(𝑓𝑖+1−𝑓𝑖)

(𝑞𝑖+1−𝑞𝑖)
 (11) 

 
 

The steps for the sensitivity calculation are shown in Figure 3. The initial guess 𝐿 for 
this fitting process is a polyline with collinear intermediate vertices , which will 
eventually evolve as a result of the optimization process. 𝐿 is calculated by using a 
global PCA (see reference (Ruiz et al., 2011)) on the whole point set S. The number of 
sub-divisions of L is a parameter of the sensitivity experiment and it is therefore chosen 
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by the investigators.  The optimized fitting of the curve C is performed with a penalized 
Gauss-Newton algorithm to adjust the control polygon 𝐏 (whose first instance is L).  

 
It must be noticed that a collinear polyline L is used for the specific purpose of the 

experiments related to the Sensitivity Analysis.  In contrast, when the application of 
curve fitting arrives, a more sophisticated process is needed, given the fact that some 
2D point clouds ( e.g. stemming from closed curves ) do not accept a simple collinear 
initial guess for L ( or  P  ).  
 
3.4.  Peaks and curls detection  
We perform an analysis of the frequency spectrum of the change of direction of the first 
derivative of 𝐶(𝑢) with respect to 𝑢 that displays the presence of undesired features in 

𝐶(𝑢). Peaks and curls produce large sudden changes in the direction of 
∂𝐶⃗⃗⃗⃗  ⃗

∂𝑢
 that contain 

contributions of high frequencies. We computed the discrete Fourier transform (DFT) 

of 
∂𝐶⃗⃗⃗⃗  ⃗

∂𝑢
. In order to sample this information according to the Nyquist criterion, we chose a 

series of 𝑢 parameters located at equal distances 𝑑𝑠, on the curve (𝐔𝐬 = {𝑢0, … , 𝑢𝑡}). 
Then we chose ds = 0.0001* l , where  l is a unit distance, and the sampling frequency  

fs  is  10000 / l.  
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Figure 3: Steps of the sensitivity calculation. 

 
 

Next, the normalized tangent vectors of the curve were computed at all points of 𝐔𝐬 
yielding 𝐕𝐬 = {𝒗̂0, … , 𝒗̂𝑡}. The dot product 𝒗̂𝑖 ⋅ 𝒗̂𝑖+1 is calculated, with 𝑖 = 0,1,2. . . , 𝑡 − 1; 
and then the angle 𝜃𝑖  between 𝒗̂𝑖 and 𝒗̂𝑖+1 is obtained. Finally DFT is computed for 𝛉 =
{𝜃0, … , 𝜃𝑡−1}, and properly scaled to achieve a single-sided spectrum of power vs. 
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frequencies. 
 
4.  Results and Discussion 
 
4.1.  Test point set 
The point sample S appears in Figure 4. It is sampled on a curve generated with 5 
control points. The initial guess for curve fitting is a straight line obtained from a naive 
PCA on the complete point cloud. The Hessian matrix 𝐻𝑓(𝐏) and its eigenvalues 𝑒 were 

calculated at each iteration of the optimization procedure using m=5, 8, 9, 15 control 
points. 
 
4.2.  Convexity 
In certain iterations, the eigenvalues of the Hessian matrix 𝐻𝑓(𝐏) are not all positive. 

Therefore, the solutions found are local optima (non-convex domain). This is an 
inherent challenge of the curve fit problem.. 

 
4.3.  Sensitivity Analysis for Number of Control Points (m). 
The number of control points m satisfies 4 ≤ m ≤ 16. The runs used the norms L1 and L2 

(k=1, 2). The results for 𝑆𝑚
𝑓

 appear in Figure 5(b) showing that, as 𝑚 increases 𝑓 
becomes less sensitive to it, specially when using 𝐿2 norm. 

In addition to 𝑓 and 𝑆𝑚
𝑓

, the curve length and curvature were used to obtain 
information about curls, peaks, long legs, etc., of the fitting curve.  In this article the 
word curvature corresponds to the summation of the local curvatures at the PL samples 
on the curve. 

Figure 5(a) shows that, as the number of control points (m) increases, the objective 
function decreases. However, a m overly grows, there appears a formation of curls 
and/or peaks and attraction among control points, while f( ) does not decrease in 
significant manner.  This behavior may be traced back to over-abundance of degrees of 
freedom.  Figure 6 shows the resulting curves with different number of control points 
(for L1 and L2 norms). 

By using the dual distance in f(  ), peaks and curls are discouraged. In particular, 
excursions of the curve away from the point sample S disappear.  
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Figure 4: Point cloud and initial curve guess with five control points. 

 
 

4.4.  Sensitivity Analysis for Norm Type ( k ) 
Figure 7 shows the influence of k on several goodness measures (f( ), length, curvature, 

sensitivity 𝑆𝑘
𝑓

 ),  calculated for norms 𝑘 = 1 to 𝑘 = 2 with increments Δ𝑘 = 0.01, for m 
= 5 and m = 8 control points.  There are less oscilations of these measures with respecto 
to k when m=5  Curve length and curvature in Figure 7(c) and Figure 7(d) reflect a very 
stable behavior as 𝑘 changes using m = 5 control points, in opposition to the results 
obtained when m = 8.  Likewise, regarding the curve topology and geometry obtained, 
Figure 8 shows that when the number of control points m is properly chosen, the 
influence of the norm type k is negligible.  
Figure 9 expands  on  Figure 7(d). We have revisited the case in which an exaggerate 
number of control points (m=8) is used. We ran a significant number of curve fitting 
tests, and found that the maximal curvature value in the curve fit behaves erratically 
and curls appear for high m. The reason is that the superfluous control points drift in 
the 2D plane, reaching positions very near to each other. When this jamming of control 
points occurs, the curve is squeezed between them, being forced to adopt local high-
curvature detours. If these control points drift apart, the high curvature disappears. 
Notice that, penalizing curvature itself would impede the fitting of curves to sharp 
corners, which is an advantage of our approach. 
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(a) Objective function vs. number of 

control points. 
 

(b) 𝑆𝑚
𝑓

 vs. number of control points. 

  
(c) Curve length vs. number of control 

points. 
(d) Curve curvature vs. number of 

control points. 
Figure 5: Resulting metrics of the fitting curve with different number of control 

points using 𝐿1 and 𝐿2 norms. Here the units of the length are 𝑙 and the units of the 
curvature are 1/𝑙. 
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Figure 6: Resulting curves of the fitting with different number of control points 𝑚, 

using 𝐿1 and 𝐿2 norms. 
 

 
As a result, it is concluded that it is more effective to optimize 𝑚 than 𝑘 in the pursuit 
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of high topology and geometry fidelity in the reconstruction of 𝐒. 
 

  
(a) Objective function vs. norm. (b) 𝑆𝑘

𝑓
 vs. norm. 

  
(c) Curve length vs. norm. (d) Curve curvature vs. norm. 

Figure 7: Resulting metrics of the fitting curve with different norms using 5 and 8 
control points. Here the units of the length are 𝑙 and the units of the curvature are 
1/𝑙. 

 
 
4.5.  Sensitivity Analysis for Degree b 
This experiment varies b, in the range 1 ≤ 𝑏 ≤ 𝑚 − 1. Figure 10  presents results with 
𝑚 = 5 and 𝑚 = 8, and k=2 (euclidean norm). 
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Figure 8: Resulting curves of the fitting with different norms 𝑘, using 5 and 8 control 

points. 
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𝑘 =1.46; Curve 
curvature=468.09 

𝑘 =1.47; Curve 
curvature=1046.03 

𝑘 =1.48; Curve 
curvature=4806.56 

   
𝑘 =1.54; Curve 

curvature=718.29 
𝑘 =1.55; Curve 

curvature=1010.09 
𝑘 =1.56; Curve 

curvature=2553.30 
Figure 9: Detail of Curvature variation with norm type (k) for cases with over-

population of control points. ( curvature units : 1/ l  ) 

 
 

  
(a) Fitted curve with 𝑏 = 1. (b) Fitted curve with 𝑏 = 2. 

DRAFT D
RAFT D

RAFT 



  
(c) Fitted curve with 𝑏 = 3. (d) Fitted curve with 𝑏 = 4. 

Figure 10: Fitting results with different 𝑏, using 5 control points and 𝐿2 norm. 
 

 
 

 
 

(a) Objective function vs. degree. (b) 𝑆𝑘
𝑓

 vs. norm. 

  
(c) Curve length vs. degree. (d) Curve curvature vs. degree. 

Figure 11: Resulting metrics of the fitting curve with different degrees using 5 and 8 
control points. The units of the length are l . The units of the curvature are 1 / l. 
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f results to be less sensitive to b than to m and to k.   Increasing b improves f( ) only for 
small b values. A curve degree b=3 maintains continutiy in curvature (2nd derivative of 
C(u) ).  It is hard (vis-à-vis the point cloud) to find justification for degrees larger than 
3. . Notice that varying b affects f( ) without changing the number of loops or curls in 
C(u). 
 
4.6. Sensitivity Analysis for Dataset Size r 
 
The sensitivity analysis of f( ) with respect to r (population of point sample S) that 
follows assumes that S remains Nyquist – compliant in spite of being decimated.  When 
S loses too many points and is not Nyquist compilant (e.g. Figure 14), no algorithm is 
able to recover the original sampled geometry.   
 
We performed a sensitivity analysis of 𝑓 with respect to r, the number of sampled points 
in S. The original size of the dataset is 334 points. For each iteration of this analysis, the 
dataset was reduced by eliminating 25 points. Each decimation of the input set 
eliminates points evenly along the original curve (i.e. as in lower quality samples). We 
conducted the process until 10% of the original points remained.  
This experiment (Figure 12 and Figure 13) was performed twice, with m=5 and m=8 
control points, norm degree k=2 and curve degree b=2.  
 
Figure 12(a) shows that the value of penalty function f( ) sharply increases as the 
sample size decreases (independent of m). Notice that 𝑓 depends on the quality of the 
PL approximation of C(u) (i.e. size of set B, kept constant in all runs).  When S becomes 
sparse, the curve-to-point distance component in 𝑓 increases, as the distance for any 
point on 𝐶(𝑢) to its closest point in 𝐒 augments, explaining why f( ) is negatively 
sensitive to r (Figure 12(b)). It follows that the dual distance penalization is sensitive 
to the level of dispersion of the point cloud S. 
 

  
(a) Objective function vs. datset S 

size r . 
(b) 𝑆𝑟

𝑓
 vs. datset S size r. DRAFT D
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(c) Curve length vs. datset S size r (d) Curve curvature vs. datset S size r 

Figure 12: Resulting metrics of the fitting curve with different sizes of S using 5 and 

8 control points. The units of the length are l . The units of the curvature are 1 / l. 

 
Figure 13 shows that using m=5 control points, the resulting C(u) is very robust with 
respect to the decimation of S (i.e. decay in r).  The length and curvature plots in Figure 
12(c) and (d) confirm this observation.   On the other hand, using m=8 control points 
produces curves C(u) more vulnerable to the point sample decimation. In this case, the 
curvature shows larger variations (Figure 12(d)). The curve C(u) has too many degrees 
of freedom available (as compared with constraints)  and loops may appear in the fitted 
curve (Figure 13).  These results show that if m is chosen properly and S remains 
Nyquist-compliant, our algorithm is able to reconstruct 𝐶0, even if S is decimated 
significantly. 
 

   
m=5; r=34 m=5; r=159 m=5;r=309 

   
m=8; r=34 m=8; r=159 m=8;r=309 

Figure 13: Resulting curves of the fitting with different sizes of S, using 5 and 8 
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control points. 

However, it worth mentioning that if the samples in 𝐒 are insufficient to describe or 
represent a feature in 𝐶0, the geometry of 𝐶(𝑢) will not resemble that feature after the 
fitting process, as shown in Figure 14.   

 
Figure 14: An excesive decimation (r=28 from an initial r=334) results in non-

Nyquist samples and in C(u) not resembling the original curve C0 (test with m=5 
control points). 

 
4.7.  Peaks and curls detection 
The methodology described in section 3.4 was applied for the fitting curves that 
resulted from the optimization procedure, using m= 5, 8, 9, 15 control points, using L2 
norm. The change of direction of ∂C/∂u, represented by ϴ, appears in Figure 15(a) for 
all cases of study. For the curves generated with m=5 and m=8 control points the 
magnitude of ϴ remains small as C is traversed. For m=9 and m=15 control points, 
large peaks were obtained for 𝜃, indicating large oscillations in C. 

The frequency spectrum representation (see Figure 15(b)), of ϴ (m=5 and m=8 
control points), has low frequencies (i.e., near zero). For the cases with m=9 and m=15 
control points there are high frequencies in ϴ that go up to 5000/l.   The cases m=8, 9, 

15 have a frecuency signature characteristic of a spike or Dirac delta function (high 
frequency content at infinite). The case m=5 presents low frequencies only, showing 
that curls and cusps are avoided.  
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(a) Changes in direction of curve’s first 

derivative (degrees) vs. length 
(percentage). 

(b) Power vs. frequency. 

Figure 15: Changes in direction of curve’s first derivative and frequency spectrum. 
 

 
The general domain of reverse engineering is closely related to the one of multi-

dimensional stochastic signal processing. Therefore, it is only natural to import 
frequency content analysis from signal processing into the reverse engineering domain. 
We do recognize that our application of frequency domain methods in reverse 
engineering still requires a significant amount of work. 
 
5. Real Case Scenario 
The point cloud to be fitted is shown in Figure 16(a) where the principal challenges 
arise from the non-smoothness of the curve (high variation of curvature and concavity), 
as well as the presence of near self-intersecting regions (i.e. infinite Nyquist 
frequencies). The goal is to reconstruct the point cloud with only one parametric curve, 
in order to simplify its representation. 
 

 

 
(a) Cross sectional sample of the skull 

to be fitted. 
(b) A curvature-based initial guess. 

Figure 16. Complete cross-section sample of a skull and initial guess used to 
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perform the fitting procedure. 

 
 

Pre-processing: (1) The initial guess for P is obtained by using the methodology 
presented in reference (Ruiz et al., 2013) with Marching Ellipsoid PCA used to obtain a 
PL approximation of the curve. (2) A curvature-based resampling is applied to diminish 
and optimize the number of control points on linear regions and to increase it in regions 
of high curvature.. The result of this preprocessing is shown in Figure 16(b). 
 
As stated, m is the most critical parameter. When using insufficient control points, the 
resulting curve does not reproduce correctly the initial point cloud (Figure 17(a), 
m=57 control points, degree b=2, norm k=2), leading to a poor result. A successful 
fitting was obtained using m=201 control points (Figure 17(b)). 
 

  
(a) Final fitting result using 57 control 
points. 

(b) Final fitting result using 201 control 
points. 

Figure 17. Final fitting results of the complete cross sectional sample. 

 
 
To observe the behavior when an excessive number of control points is used, one 
neighborhood was chosen, placing in it m=60, 63, 67, 70 control points (Figure 18). As 
expected, the cases m=67 and m=70 control points present curls and cusps in high 
frequency zones. 
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(a) Final fitting result using 60 control 

points. 
(b) Final fitting result using 63 control 

points. 

  
(c) Final fitting result using 67 control 

points. 
(d) Final fitting result using 70 control 

points. 
Figure 18. Fitting results of the upper-right segment of the skull using different 

number of control points. 

 
 
Although these spurious features reduce f( ) as appreciated in Figure 19(a), the 
topological and geometrical reconstruction is not the desired one.  The observation 
agrees with the cases in section 4.3. 
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(a) Objective function. (b) Relative sensitivity 𝑆𝑚

𝑓
 . 

  
(c) Curve length. (d) Curvature of C(u). 

Figure 19. Quantitative properties of C(u) as function of the number of control 
points. The units of length are l . The units of curvature are 1/ l . 

 
Figure 20 displays the subsequent results using the data displayed in Figure 17. The 
cross sections in Figure 20(a) are fed to widely known surface reconstruction 
algorithms, resulting in Figure 20(b). These are not contributions of the present article. 
The information is inserted here for the sake of enhancing the understanding of the 
material. 
 
6.  Conclusions and Future Work 
This article presents a sensitivity analysis of the number of control points 𝑚, curve 
degree 𝑏 and norm 𝑘 on the objective function 𝑓. It has been found that using an 
adequate number of control points the formation of peaks and curls in 𝐶 is prevented, 
making it unnecessary to add a curvature penalization term to 𝑓. Finding proper values 
of 𝑚 also reduces the number of decision variables of the problem, which results in a 
more efficient process since redundancy of control points is avoided. 

Changes in the values of 𝑘 do not influence significantly the result of the 
reconstruction process when 𝑚 is chosen properly. Although 𝑘 produces larger percent 
changes in 𝑓 than 𝑚, the varying of 𝑚 produce better results in terms of topology and 
geometry of the reconstructed curve. The results obtained from varying 𝑏 show that the 
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modification of this parameter is useful to perform a fine tuning of 𝐶(𝑢), without 
causing undesired effects on the final geometry of the curve. 

It is possible to decimate the point sample S, whenever the it remains being Nyquist 
– compliant.  When this boundary is crossed, S is simply insufficient, in terms of 
information content on C, to reconstruct it (independent of the algorithm).  Within the 
Nyquist compliant region, however, lowering the size of the point sample (r) leads to 
more difficulty in minimizing f( ). The dual – distance (point cloud to/from curve) 
proves to be robust in front of the sample decimation, in contrast with the point-to-
curve distance traditional approach. 

The frequency-domain analysis (DFT, FFT) of the curvature of 𝐶(𝑢) helps to detect 
peaks and curls, since they produce hight frequencies in the spectrum. Notice that the 
computational complexity of the FFT is 𝑂(𝑛 log 𝑛) (𝑛 being the number of segments 
approximating 𝐶(𝑢). The complexity of DFT / FFT is not a function of the size of 𝐒.  More 
work is required in lowering the expense of the subsequent processing of FFT or DFT 
to detect curls and cusps. 

 

  

(a) Cross section contours. (b) Surfaces Reconstructed from cross-
section contours. 

Figure 20. Usage of cross section contours in surface reconstruction, using Nuages 
(Boissonat and Geiger, 1993) and Contour-Mapped Nuages (Ruiz et al., 2005).. 

 
 
We conclude that a reasonable procedure to fit a parametric curve to a set of noisy 

2D points is:  
 

(1) With 𝑏 and 𝑘 constant, vary 𝑚 so that the next three conditions are met: 𝑓 is 
reduced, its variation reaches a threshold and no loops are detected. This results 
in an optimal 𝑚 = 𝑚𝑜𝑝𝑡.  

(2) With 𝑘 constant and 𝑚𝑜𝑝𝑡, vary 𝑏 so that f is reduced. This results in an optimal 

𝑏 = 𝑏𝑜𝑝𝑡.  

(3) With 𝑏𝑜𝑝𝑡 and 𝑚𝑜𝑝𝑡, vary 𝑘 so that f is reduced. This results in an optimal value of 
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𝑘 = 𝑘𝑜𝑝𝑡 that leads to a curve with a better approximation to 𝐒.  

 
At the present time, our work is the first to address curve-fitting sensitivity within 

the existing literature. This article addresses the sensitivity of the goal function with 
respect to individual parameters. Future work includes the evaluation of cross-
correlations among parameters as they influence the objective function. 

The presented methodology can be applied to analyze the effect of parameters 
involved in a fitting process using other types of curves. Notice that for parameters that 
are independent of the curve type (e.g.  degree of the norm 𝑘),  their effect is determined 
according to the definition of 𝑓. 

Additional work is required to study (1) the influence of the knot vector X,  (2)  the 
systematic usage of the frequency content (DFT) of 𝐶 to optimize it,  (3) the quality of 
the digitalization and its noise distribution, since insufficient  sampling density and/or 
stochastic noise put at risk the compliance of Nyquist criteria, and (4) different noise 
distributions which may dictate different strategies for the fitting process. 
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