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Abstract In Design and Manufacturing, mesh segmen-
tation is required for FACE construction in Boundary
Representation (B-Rep), which in turn is central for
feature - based design, machining, parametric CAD and
reverse engineering, among others. Although mesh seg-
mentation is dictated by geometry and topology, this
article focuses on the topological aspect (graph spec-
trum), as we consider that this tool has not been fully
exploited. We pre-process the mesh to obtain a edge -
length homogeneous triangle set and its Graph Lapla-
cian is calculated. We then produce a monotonically
increasing permutation of the Fiedler vector (2nd eigen-
vector of Graph Laplacian) for encoding the connectiv-
ity among part feature sub-meshes. Within the mutated
vector, discontinuities larger than a threshold (interac-
tively set by a human) determine the partition of the
original mesh. We present tests of our method on large
complex meshes, which show results which mostly ad-
just to B-Rep FACE partition. The achieved segmen-
tations properly locate most manufacturing features,
although it requires human interaction to avoid over
segmentation. Future work includes an iterative appli-
cation of this algorithm to progressively sever features
of the mesh left from previous sub-mesh removals.
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Glossary

M : Triangular mesh of a connected 2-manifold
embedded in R3 composed by the set of
points X = {x1, x2, · · · , xn} and the set of
triangles T = {τ1, τ2, · · · , τp}.

E: Set of the edges {e1, e2, . . . , en} of all the
triangles T describing the connectivity ofM .

G: Graph representation of M consisting of the
pair (X,E).

W : Weighted adjacency matrix ofG of size n×n.
D: n× n diagonal matrix where Dii is equal to

the degree (weighted neighborhood size) of
the vertex xi.

L: Laplacian matrix ofG defined as L = D−W .

λi: ith eigenvalue of the matrix L (sorted in as-
cending order).

ui: Corresponding eigenvector of λi.
u′
2: Second eigenvector of L sorted in ascending

order.
V : Indices of the vertices of G in concordance

with u′
2 (re-labeling).

d: Second differences of u′
2 with respect to V .

d′: Filtered version of d.

ti: ith local maximum of the set of all local
maxima of d′ sorted in descending order.

M: A connected and oriented Riemannian 2-
manifold embedded in R3.

∂
∂yi : Tangent vectors defining a local coordinate

system at a point p ∈ M.
g: Metric tensor which defines an inner product

on M where gij is the local inner product
between the coordinates ∂

∂yi and ∂
∂yj at a

point p ∈ M.
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∇: Gradient operator acting on the surface de-
fined by M.

div: Divergence operator acting on the surface
defined by M.

∆: Laplace-Beltrami operator on manifolds de-
fined as ∆ = −(div ◦ ∇).

1 Introduction

Mesh segmentation has become an important task in
many CAD CAM CAE areas. Its applications range
widely in topics such as mesh animation [1,2], surface
parameterization [3,4], mesh compression [5,6] and shape
processing [7,8].

The problem is as follows: given the mesh of a (con-
nected) surface, break it up into a set of smaller sub-
meshes which together compose the initial mesh. Solv-
ing this problem becomes crucial when some procedure
must be carried on surfaces with particular properties,
such as developability for parameterization or decom-
position into primitive shapes for shape processing or
mesh animation.

Usually a geometric approach is followed to face this
problem as geometric constraints can be easily defined
on the surface based on the user desired result. How-
ever, there are cases in which geometry transitions are
not strong enough to trigger a mesh partition, while
the topology of the mesh indicates a clear discontinu-
ity, that should result in a mesh partition.

Since a mesh can be seen as an undirected graph,
study of graph topology and methods of graph par-
titioning can be almost immediately extrapolated to
mesh segmentation. Graph and mesh Laplacians have
been a topic of extensive research and their spectra have
shown to be a powerful tool for segmentation [9–12].

Finally, mixed approaches have also been proposed.
Mixed approaches define schemes based on graph the-
ory, but including geometric data. For example, finite
elements schemes of the Laplace-Beltrami operator lead
to the cotangent weights method [13]. These schemes
are strong in terms of both geometric and topologic in-
formation which makes them so reliable for mesh pro-
cessing.

Despite the advantages that mixed schemes may
have, we believe that there should be first a deep under-
standing of relevant topological information for mesh
segmentation.

Since there are voids in the understanding of Topo-
logical and Geometrical mesh properties, human in-
teraction is still required to supervise these automatic
mesh segmentation methods. In this article we illustrate
how the second eigenvector of the Laplacian (Fiedler
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Fig. 1 Scenarios of Mesh Segmentation.

vector) carries important features for graph and mesh
segmentation. We use the monotonically increasing per-
mutation of the Fiedler vector to re-label the mesh
nodes. This re-labeling reflects strength of connectiv-
ity among graph components and therefore determines
a partition of the mesh.

Fig. 1 shows 3 scenarios of application of our mesh
partition algorithm. Fig 1.(a) presents a fully automatic
scenario. Fig 1.(b) displays our algorithm steered by a
human operator, via direct setting of the mesh sepa-
ration parameters. Fig 1.(c) depicts our algorithm pa-
rameters being controlled via a Graphic User Interface
(GUI) which would set the mesh separation parame-
ters. In all 3 cases, some sub-meshes are removed from
the source mesh in iteration i. The remaining mesh be-
comes the source mesh for iteration i+1. The iterations
proceed until the input mesh is null or should not be
split further.

The remainder of this article is organized as fol-
lows: Section 2 reviews the relevant literature. Section
3 presents our segmentation approach. Section 4 dis-
cusses results for many datasets. Section 5 concludes
the article and introduces what remains for future work.

2 Literature Review

Mesh segmentation has been an important research topic
for computer design. Different algorithms have been
proposed for segmentation based on different founda-
tions of many areas such as statistics, optimization,
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graph theory and many others. An algorithm lies in
one of the following classes depending on which data is
relevant for segmentation: i) geometry-based segmen-
tation, ii) topology-based segmentation and iii) mixed-
approach segmentation. A brief discussion of current
state of the art methods is presented below following
the proposed classification.

2.1 Geometry-based Segmentation

Geometry-based methods extract geometric data from
the mesh such as euclidean and geodesic distances or
curvatures. Then, a clustering algorithm is usually ap-
plied assuming that geometrically similar points likely
belong to the same cluster. In [6] a k-means algorithm
is directly applied to the geometry data of the mesh and
therefore needs a post-processing algorithm (which they
call multiple principal plane analysis) for smooth defi-
nition of boundaries between sub-meshes. In [4] tangent
curvatures are computed by curve fitting before cluster-
ing. In [14] curvatures and normals are computed and
then a Student-t mixture model is used for the parti-
tion.

Region-growing methods are expansive clustering
techniques that define seed points or faces on the mesh
and as their name suggest, expand until some geometric
constraint is violated. In [15] an angle variation thresh-
old between faces is defined for the algorithm and in [16]
a variational formulation is proposed for segmentation
by fitting quadric surfaces.

Other statistical techniques have been applied for
mesh segmentation. By generating some random field
on a mesh, the distribution of some objective function
can be used for partitioning. In [17] several segmenta-
tion algorithms generate random fields on the surface
which are later evaluated by their cost function. In [18]
an energy function is first defined and random fields
are applied to the mesh. The distribution of the energy
field in terms of the random fields is then used to divide
the surface.

For these algorithms, we remark two potential draw-
backs: i) most of them are not fully deterministic which
does not guarantee the same results for the same surface
and ii) as we mentioned before, topology information is
usually discarded which might be important in several
cases.

Learning approaches try to replicate shapes from
previously learned geometries. This in fact requires the
algorithm to be calibrated first using already segmented
meshes as can be seen in [19–21]. However, these meth-
ods require lots of datasets for training that must be
similar to the mesh which limits the algorithm and as

can be noted, training meshes must be segmented some-
how.

2.2 Topology-based Segmentation

Topology-based algorithms on the other hand, rely on
the features lying on the structure of the mesh without
considering geometric features. Recall that a mesh has
a graph representation and the topologic properties of
this graph can be used for segmentation. However, some
assumptions must be first made on the mesh sampling
since the same surface may be represented by different
connectivities.

The motorcycle algorithm first proposed by Epp-
stein et. al. [22] consists of following a particle across
straight paths that start at what they define an ex-
traordinary vertex and end at vertices visited by other
particles. Gunpinar et. al. [23,24] have presented sev-
eral approaches based on this idea though, this method
is currently limited to quadrilateral meshes.

In [17] segmentation is achieved by simultaneous
clustering of similar meshes. However, this task requires
maximum correspondence between faces which is not
usual in CAD models due to meshing procedures and
refinements. In [8] the authors propose a segmentation
by labeling vertices based on convexity flags.

Graph cuts have been successfully used for mesh
segmentation as seen in [25], where an interactive ap-
proach is followed by letting the user to draw strokes
on areas where he wants the partition.

Reeb graphs have been also explored for mesh seg-
mentation. After a field is defined on the mesh graph,
the reeb graph is computed. Correct choice of the field
is critical for an adequate segmentation. For example, in
[26,27] the authors propose geodesic-based fields, while
in [28] eigenvectors are used instead.

Algorithms that rely solely on the mesh topology
are less common in the literature due to the sampling
constraints and the lack of geometric features which
might be important in many applications leading to the
next class of algorithms.

2.3 Mixed-approach Segmentation

A mixed approach can be followed by extracting fea-
tures from both topology and geometry. For example, in
[29] an improvement of the motorcycle algorithm is pre-
sented. By assigning different velocities to particles the
geometry of the surface is taken into account however,
the limitation of quadrilateral meshes is still present.

In [7] slippage analysis is used for mesh segmen-
tation. Localities of points are used to compute some
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measures such as slippage and curvature. Depending on
the measured features, primitive shapes such as planes,
spheres and cylinders are recognized. The problem with
this method is that some surfaces may present complex
shapes not recognized by the algorithm. Additionally,
since the method is presented for clouds of points, the
algorithm is very sensitive to neighbor sizes.

An important operator has been widely used for
mesh segmentation: the Laplacian operator. The defini-
tion of most mesh Laplacian follow classic graph Lapla-
cian definitions naturally which strongly encodes topo-
logic features. Geometric features are also considered by
weighting schemes defined on the graph of the mesh. In
[30] and [12] interactive approaches are presented where
eigenvectors of the Laplacian are chosen for the segmen-
tation and in [9] eigenvectors are automatically chosen
by an empirical criteria and a k-means algorithm is then
applied on the selected subset of eigenvectors.

Harmonic functions of the Laplacian operator have
been also used. After some region is selected, dirichlet
conditions are introduced to the operator and a linear
system of equations arises. In [31] an interactive algo-
rithm is presented where the user draws strokes across
desired boundaries and in [32] a similar algorithm is
presented for segmentation of dental meshes. Heat ker-
nels have been also explored for mesh segmentation [33,
34] where dirac delta initial conditions are imposed.

2.4 Conclusions of the Literature Review

We believe that there is still a lot of uncertainty about
how the topology of the mesh encodes relevant features
for segmentation. This uncertainty usually leads most
researchers to tackle the mesh segmentation problem
from the geometry-based approach. We also consider
that spectral analysis is an area with high potential for
segmentation as have been shown in previous literature
[12,9]. However, work shows that uncertainty still pre-
vails at this level given the fact that user-interactivity
is required or that parameterizations of the algorithms
are based on empirical results.

In this article we illustrate how the Fiedler parame-
ters encode connectedness properties of the graph mesh.
Based on these results, an intuitive method is presented
for exploiting these properties. A topology-based algo-
rithm is introduced by constructing the classic graph
Laplacian with constant weights and successful segmen-
tation of homogeneous meshes is achieved. The limi-
tation to homogeneous meshes can be partially over-
come by extending the scheme to a mixed approach
but the pure topologic nature of the algorithm gives
faster and computationally stable results. Also, since
the method follows an intuitive result from spectral

analysis, a deeper understanding of topology-based im-
plicitly arises and opens the doors for further research.

Our proposed algorithm produces segmentations that
obey the connectivity of a homogeneously connected
mesh (i.e. with quasi - uniform triangle edge length).
Notice that such an algorithm requires a human steer-
ing (likely to be interactive), to reject over - fragmenta-
tion, or to set the threshold of Fiedler vector disconti-
nuity, that triggers split of a sub-mesh from the source
mesh.

3 Methodology

We consider triangular meshes M which are connected,
2-manifolds embedded in R3. M is defined by a set
points X = {x1, x2, · · · , xn} which together describe
the geometry ofM and a set of triangles T = {τ1, τ2, . . . , τp}.
Each triangle is a sequence of edges τi = (ea, eb, ec)
where each ej belongs to a set of edges E = {e1, e2, · · · , em}.
This structure describes the connectivity on M .

G = (X,E) is therefore the (undirected) graph rep-
resentation of M where X is seen as the set of vertices
of the graph and E is the set of edges. Since M is con-
nected, so is G.

The problem of mesh segmentation consists of di-
viding M into k disconnected components. For solving
this problem we propose an algorithm that re-labels the
vertices of the graph based on the Fiedler vector. Figure
2 presents the steps of the algorithm. Some preliminary
key results of spectral theory are briefly discussed first.

3.1 Graph Laplacian

In spectral graph theory, the adjacency matrix W of G
is defined as:

Wij =

{
wij if (xi, xj) ∈ E

0 otherwise
(1)

where wij is the adjacency weight between xi and xj .
For our algorithm we take wij = 1 guaranteeing that
only the topology of the graph mesh is considered.

If D is a diagonal matrix with entries Dii =
∑

j wij ,
then D is the degree matrix of G. The Laplacian matrix
of G is therefore defined as L = D−W . Let f : X → R
with f(xi) = fi be a field defined on the vertices of
the graph, then Lf acts locally on each vertex in the
following manner:

(Lf)i =
∑
j

wij(fi − fj) (2)
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Fig. 2 Diagram of the algorithm.

Equation (2) defines another field Lf on the vertices
of the graph where each xi gets assigned the weighted
differences between fi and its neighboring field i.e. all
fj such that xj ∈ N(xi).

3.2 Fiedler Vector

We consider the set of eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn

of L and their corresponding eigenvectors u1,u2, · · · ,un.

There are some important results from graph theory on
these eigenvalues and eigenvectors [35,36]:

1. The first eigenvalue λ1 is equal to 0 and its corre-
sponding eigenvector u1 is the constant vector i.e.
u1(xi) = 1.

2. The second eigenvalue λ2 is known as the Fiedler
value (or algebraic connectivity) and its correspond-
ing eigenvector u2 is known as the Fiedler vector.

3. Since G is connected, λ2 > 0 and therefore u2 is
orthogonal to the constant vector i.e. 〈u1,1〉 = 0.

4. The Fiedler vector solves the following optimization
problem:

u2 = argmin
u⊥1

uTLu

uTu
(3)

The algebraic connectivity is highly related to the
connectedness of the graph. Figure 3 illustrates how the
second eigenvalue of the Laplacian matrix can give us
an idea of such connectedness. The loop graph presents
less algebraic connectivity than the full graph since it
requires less cuts to divide the graph. However, the two
full graphs connected by a single edge show the smallest
algebraic connectivity since cutting that edge is enough
to split the graph despite the high connectedness of
both graphs.

Figure 4 shows the Fiedler vector for the connected
full graphs (figure 3(c)). Here the Fiedler vector is a pos-
itive function in terms of the current vertex labeling.
Also, low connectivity regions (edge (v10, v11)) show
high changes in the Fiedler vector compared with high
connectivity regions (other vertices). This behaviour is
expected since equation (3) will see less penalization in
low connectivity regions, and motivates our algorithm:
by re-labeling the vertices of the graph such that the
Fiedler vector becomes a positive function in terms of
the re-labeled vertices, we can find low and high con-
nectivity regions based on this intuition and set a seg-
mentation criterion.

3.3 Laplace-Beltrami Operator

Let M be an oriented Riemannian 2-manifold embed-
ded in R3. M is connected. The Laplace-Beltrami op-
erator ∆ : L2(M) → L2(M) on M is defined as [37]:

∆φ = −(div ◦ ∇)φ (4)

where φ ∈ L2(M), ∇ is the gradient operator on M
defined as:
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∑
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DRAFT 

DRAFT 

DRAFT 

DRAFT Setting the segmentation thresholds

DRAFT Setting the segmentation thresholds

DRAFT 

DRAFT A partitition of the 

DRAFT A partitition of the 
mesh 

DRAFT 
mesh 𝑀

DRAFT 
𝑀

Diagram of the algorithm.

DRAFT 
Diagram of the algorithm.

Equation (2) defines another field

DRAFT 
Equation (2) defines another field

of the graph where each

DRAFT 
of the graph where each
differences between

DRAFT 

differences between

fDRAFT 

fjDRAFT 

jfjfDRAFT 

fjf such thatDRAFT 

such that

DRAFT connectedness of the graph. Figure 3 illustrates how the

DRAFT connectedness of the graph. Figure 3 illustrates how the
second eigenvalue of the Laplacian matrix can give us

DRAFT second eigenvalue of the Laplacian matrix can give us
an idea of such connectedness. The loop graph presents

DRAFT an idea of such connectedness. The loop graph presents
less algebraic connectivity than the full graph since it

DRAFT less algebraic connectivity than the full graph since it
requires less cuts to divide the graph. However, the two

DRAFT 
requires less cuts to divide the graph. However, the two

DRAFT 

DRAFT 

DRAFT 

DRAFT 

1 DRAFT 

1 local DRAFT 

local DRAFT 

DRAFT 

Setting the segmentation thresholdsDRAFT 

Setting the segmentation thresholds

full graphs connected by a single edge show the smallest

DRAFT 
full graphs connected by a single edge show the smallest

algebraic connectivity since cutting that edge is enough

DRAFT 
algebraic connectivity since cutting that edge is enough
to split the graph despite the high connectedness of

DRAFT 
to split the graph despite the high connectedness of
both graphs.

DRAFT 
both graphs.

Figure 4 shows the Fiedler vector for the connected

DRAFT 
Figure 4 shows the Fiedler vector for the connected

full graphs (figure 3(c)). Here the Fiedler vector is a pos-

DRAFT 
full graphs (figure 3(c)). Here the Fiedler vector is a pos-
itive function in terms of the current vertex labeling.

DRAFT 
itive function in terms of the current vertex labeling.

DRAFT is known as the Fiedler

DRAFT is known as the Fiedler
value (or algebraic connectivity) and its correspond-

DRAFT 
value (or algebraic connectivity) and its correspond-

is known as the Fiedler vector.

DRAFT 
is known as the Fiedler vector.

0 and therefore

DRAFT 
0 and therefore u

DRAFT 
u2

DRAFT 
2 is

DRAFT 
is

orthogonal to the constant vector i.e.

DRAFT 
orthogonal to the constant vector i.e. 〈

DRAFT 
〈u

DRAFT 
u1

DRAFT 
1,

DRAFT 
,1

DRAFT 
1〉

DRAFT 
〉 = 0.

DRAFT 
= 0.

4. The Fiedler vector solves the following optimization

DRAFT 
4. The Fiedler vector solves the following optimization

The algebraic connectivity is highly related to theDRAFT 

The algebraic connectivity is highly related to the
connectedness of the graph. Figure 3 illustrates how theDRAFT 

connectedness of the graph. Figure 3 illustrates how the
second eigenvalue of the Laplacian matrix can give usDRAFT 

second eigenvalue of the Laplacian matrix can give us
an idea of such connectedness. The loop graph presentsDRAFT 

an idea of such connectedness. The loop graph presents



6 D. Mejia et al.

(a) λ2 = 0.382.

(b) λ2 = 10.

(c) λ2 = 0.169.

Fig. 3 Some graphs and their algebraic connectivity: a) loop
graph with ten vertices, b) full graph with ten vertices and
c) two full graphs of ten vertices connected by an edge.

Fig. 4 Fiedler vector for the two full graphs (figure 3(c)).
Vertices labeled from 1 to 10 belong to the first full graph
and vertices labeled from 11 to 20 belong to the second full
graph. The vertices 10 and 11 connect the graphs.

Fig. 5 Homogeneous triangular mesh of the iron model.

and div is the divergence operator defined as:

divY =
1

det(g)

∑
i

∂

∂yi
(Y i

√
det(g)) (6)

g is the metric tensor of M, gij = (gij)
−1 are the

components of the inverse of the metric tensor, Y ∈
TM is a vectorial field defined on the manifold (local
tangent planes) and Y i are its corresponding compo-
nents in local coordinates ∂

∂yi .
The Laplace-Beltrami operator is a generalization

of the standard Laplacian taken to manifolds. From
this point of view, the differential equation ∆φ = λφ
on the manifold can be seen as an analogue of the
Helmhotz equation. The Helmhotz equation models the
time-independent component of the wave equation on a
given domain. Schemes for discretization of such oper-
ator on triangular surfaces have been presented in the
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(a) Fiedler vector.

(b) Fiedler isolines.

Fig. 6 Fiedler vector on the iron mesh: a) the field goes from
blue (lower values) to red (higher values) and b) isolines of
such of field are drawn in blue.

literature [13,38] resulting in weighted Laplacians of the
given mesh graphs. This result motivates our work since
the consideration of an homogeneous mesh leads to a
scaled solution of equation (3).

3.4 Algorithm Description

The idea of our approach consists in dividing the mesh
into components with uniform connectivity. As we illus-
trated in figure 4, low connectivity areas present higher
changes of the Fiedler vector with respect to some la-
beling of the vertices of the graph. These changes can
be described by discrete differences on the Fiedler vec-
tor. Also, components with uniform connectivity have
uniform differences and high changes in the discrete dif-
ferences imply relevant topologic changes in the mesh

(a) Sorted Fiedler vector.

(b) Fiedler second differences.

(c) Filtered differences.

Fig. 7 Re-labeling of the vertices (x axis) and corresponding
function on the iron mesh: a) Fiedler vector, b) second dif-
ferences and c) filtered second differences. Lines in red show
the cut points for segmentation.
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Fig. 8 Segmentation of the iron mesh.

graph. Therefore, high absolute differences of second
order on the Fiedler vector with respect to a specific
labeling of the vertices define good cut points for seg-
mentation.

The vertices of the mesh must be re-labeled such
that the Fiedler vector is an increasing function in terms
of the re-labeling since the segmentation will be defined
by cutting thresholds on the Fiedler vector. Below the
proposed algorithm (figure 2) is described:

1. Construction of the Laplacian matrix: Build
the sparse Laplacian matrix L of the graph repre-
sentation G of the connected mesh M as defined in
section 3.1.

2. Computation of the Fiedler vector: Compute
the Fiedler vector u2 of L by using some eigensolver.

3. Sorting of the Fiedler vector: Compute u′
2 as a

sorting of u2 in ascending order.
4. Re-labeling of the vertices of the mesh: Com-

pute V where V = {v1, v2, · · · , vn} is a re-labeling
of X such that vi = xk, u′

2(vi) ≤ u′
2(vi+1) and

vi �= vj , ∀i �= j.
5. Computation of the Fiedler second differences:

Compute the absolute second differences d(v′) of u′
2

with respect to v′. This is equivalent to compute
di = |2u′

2(v
′
i)− u′

2(v
′
i−1)− u′

2(v
′
i+1)|.

6. Application of a filter: A low-pass filter must be
applied to d since the sampling of the mesh can
lead to noise in the computed second differences.
Compute the filtered second differences d′.

7. Finding local maxima: Compute t1, t2, · · · , tk−1

where t1 is the global maximum of d′(v′) and each
ti is a subsequent (local) maximum (recall that k is
the desired number of components to partition the
mesh).

(a) Mesh.

(b) Fiedler isolines.

(c) Segmentation.

Fig. 9 Segmentation of a non-homogeneous mesh of the iron
model.
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8. Setting the segmentation thresholds: The seg-
mentation of the mesh is achieved by setting the
thresholds u′

2((d
′)−1(ti)) on the Fiedler vector.

4 Results

We now present some results of our algorithm applied
to several datasets. In each case the Fiedler vector was
computed by the Implicitly Restarted Arnoldi Iteration
algorithm which comes implemented in the ARPACK
package [39]. Also, a moving average was implemented
for the filtering of the second order differences with win-
dow sizes ranging between 1%-10%.

Figure 5 shows the triangular mesh of the iron model.
This mesh consists of 35582 points and 71164 triangles.
Figure 6 shows the Fiedler vector of the iron mesh.
Topology of the graph of such (homogeneous) mesh
still preserves many geometric properties of the sur-
face. Isolines of the Fiedler vector (figure 6(b)) show
how the highly connected areas present low changes in
the Fiedler vector with respect to geometry while the
lower ones present high changes.

The Fiedler vector is then sorted as described in
section 3.4 and re-labeling of the vertices is made. Fig-
ure 7 shows the re-labeling results for the iron. As we
pointed in section 3 the sorted Fiedler vector shows
higher changes in specific regions (figure 7(a)) which
correspond to relative changes of the Fiedler isolines
in figure 6(b). The second differences plot (figure 7(b))
shows a concentration of several peaks near desired cut
points. Selecting thresholds from this signal would lead
to several disconnected components near the same iso-
line which is not desired. Therefore this signal must
be filtered first as described in section 3.4. The filtered
signal is presented in figure 7(c). Such filtering allows
the algorithm to automatically detect good cutting iso-
lines. By setting k = 3, global maxima are computed in
the filtered differences resulting in two thresholds (red
lines) for the Fiedler vector which will divide the surface
by the corresponding isolines. These thresholds coincide
with high changes in the slope of the sorted Fiedler vec-
tor as seen in figure 7(a). The resulting segmentation
is presented in figure 8. Notice how the resulting parti-
tion divided the mesh into two high connectivity regions
(blue and red) and a low connectivity region (green).

In contrast with the segmentation of a homogeneous
mesh, figure 9 presents results for a non-homogeneous
mesh of the same model. The Fiedler vector of the graph
mesh does not follow adequately the geometry of the
surface (figure 9(a)) due to the non-homogeneous sam-
pling as seen in figure 9(a) and as a consequence, the
connectivity of the graph does not follow correctly our

intuition of the geometry of the mesh anymore. Ad-
ditionally, isolines present undesired behaviours along
the surface which would result into components with
more irregular boundaries. The segmentation of this
mesh under our approach is presented in figure 9(c).
Notice that the segmentation is less intuitive since the
topology of the mesh graph is more discordant with the
geometry of the iron model and boundaries of discon-
nected components are located at more geometrically
random places. These results illustrate the importance
of the homogeneity of the mesh for adequate results of
the proposed algorithm.

Table 1 presents the results of our algorithm applied
to several datasets usually used in CAD applications or
Computer Graphics. Since the algorithm only takes into
account the topology of the mesh, it is not expected to
partition the mesh by its sharp edges. However, the
achieved segmentation agrees with some of these sharp
edges as can be seen in the gears and crankshaft datasets
showing the importance of the topology even in these
cases. It is important to emphasize the importance of
the user interaction since different results can arise de-
pending on the selection of the parameter k as seen in
the flange yoke dataset. The segmentation of the rest
of the meshes presents intuitive results which illustrates
the fact that high changes in the Fiedler vector can be
used as boundaries between different shapes.

5 Conclusions

We illustrated how the Fiedler vector encodes some fea-
tures of the surface concerning to the connectivity of
the mesh graph. These features allowed us to develop a
simple algorithm for automatic segmentation of homo-
geneous meshes. Keeping the discussion at the topologic
level allowed us to intuitively show several important
characteristics of the second eigenvector of the mesh
graph Laplacian.

For the segmentation a re-labeling of the vertices of
the mesh is made in such a way the vector Fiedler is
increasing in terms of the re-labeled vertices. The al-
gorithm is still applicable to general graphs given the
fact that geometry is not taken into account while using
constant weights makes the algorithm faster and more
stable computationally. However, this advantage comes
with a cost requiring the mesh to be homogeneous as we
illustrated in section 4. Adequate results were presented
for many complex datasets usually used in the context
of CAD CAM CAE and Computer Graphics applica-
tions. These results proved to be in concordance with
user intuitive partitions which is very important since
only topologic aspects are considered. Possible future
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to several disconnected components near the same iso-DRAFT 

to several disconnected components near the same iso-
line which is not desired. Therefore this signal mustDRAFT 
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edges as can be seen in the gears and crankshaft datasets
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Table 1 presents the results of our algorithm applied
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Table 1 presents the results of our algorithm applied

to several datasets usually used in CAD applications or
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Computer Graphics. Since the algorithm only takes into
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Computer Graphics. Since the algorithm only takes into
account the topology of the mesh, it is not expected to
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partition the mesh by its sharp edges. However, theDRAFT 
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edges as can be seen in the gears and crankshaft datasetsDRAFT 
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showing the importance of the topology even in theseDRAFT 
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Table 1 Appraisal of the results of the segmentation algorithm applied to several datasets.

Figure Dataset # of points Commentary

Fig. 10(a). Box. 31945 The segmentation correctly finds high topological changes but segmentation
boundaries are not aligned with sharp edges.

Fig. 10(b). Gears. 24624 The algorithm achieves an intuitive segmentation given the fact that high
topological changes happen at sharp edges.

Fig. 10(c). Pliers. 14250 The segmentation separates the grip from the jaws. Each jaw is also sepa-
rated as well as the grip.

Figs. 10(d),
10(e).

Flange yoke. 16522 A segmentation of the mesh into four sub-meshes is enough to capture the
topological changes. Segmenting into more sub-meshes may present irrele-
vant information.

Fig. 10(f). Crankshaft. 45185 Some of the segmentation boundaries are not aligned with the sharp edges
of the surface given the fact that only topological information is taken into
account.

Fig. 10(g). Sheep. 68741 The base and the head are separated from the rest of the body.

Fig. 10(h). Horse. 99463 The body is separated into two pieces and the head is separated from the
whole body. A leg is separated from the rest of the body since it represents
a high topological change in the direction of the Fiedler vector.

Fig. 10(i). Elephant. 32707 Alike the horse dataset, a leg is separated as well as the head from the body.
Additionally, The algorithm separates the ears from the rest of the head.

work could be the adaptation of the method to non-
homogeneous meshes. Also, future consideration of the
geometry could lead to better results.

The algorithm presented by us would typically work
within a Divide - and - Conquer or Iterative scheme. In
this manner, each run would subtract some sub-meshes
of the source mesh, gradually reducing the size of the
problem. Each iteration would take the input of a hu-
man user to steer each removal iteration and/or to set
the values of discontinuities in the Fiedler vector per-
mutation, which would in turn cause mesh - fragmen-
tation.

Acknowledgements The box, gears and pliers datasets were
taken from the Princeton benchmark [40]. The iron, sheep,
horse and elephant datasets were scanned at Laboratorio de
CAD CAM CAE at Universidad EAFIT (Colombia).
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(a) Box (k = 4). (b) Gears (k = 3). (c) Pliers (k = 4).

(d) Flange yoke (k = 4). (e) Flange yoke (k = 6). (f) Crankshaft (k = 6).

(g) Sheep (k = 3). (h) Horse (k = 4). (i) Elephant (k = 4).

Fig. 10 Results of our algorithm for several datasets. Princeton datasets (10(a),10(b),10(c)). Laboratorio de CAD CAM CAE
U. EAFIT datasets (10(g),10(h),10(i)).
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