
ADAPTATIVE CUBICAL GRID FOR ISOSURFACE EXTRACTION

John Congote
CAD/CAM/CAE Laboratory, EAFIT University, Medellı́n, Colombia

jcongote@eafit.edu.co

Aitor Moreno, Iñigo Barandiaran, Javier Barandiaran
VICOMTech, San Sebastian, Spain

{amoreno, ibarandiaran, jbarandiaran}@vicomtech.org

Oscar E. Ruiz
CAD/CAM/CAE Laboratory, EAFIT University, Medellı́n, Colombia

oruiz@eafit.edu.co

Keywords: adaptive isosurface extraction, adaptive tessellation, isosurfaces, volume warping, marching cubes

Abstract: This work proposes a variation on the Marching Cubes algorithm, where the goal is to represent implicit
functions with higher resolution and better graphical quality using the same grid size. The proposed algorithm
displaces the vertices of the cubes iteratively until the stop condition is achieved. After each iteration, the
difference between the implicit and the explicit representations are reduced, and when the algorithm finishes,
the implicit surface representation using the modified cubical grid is more detailed, as the results shall confirm.
The proposed algorithm corrects some topological problems that may appear in the discretisation process using
the original grid.

1 INTRODUCTION

Surface representation from scalar functions is an
active research topic in different fields of computer
graphics such as medical visualisation of Magnetic
Resonance Imaging (MRI) and Computer Tomogra-
phy (CT) (Krek, 2005). This representation is also
widely used as an intermediate step for several graph-
ical processes (Oscar E. Ruiz, 2005), such as mesh
reconstruction from point clouds or track planning.
The representation of a scalar function in 3D is known
as implicit representation and is generated using con-
tinuous algebraic iso-surfaces, radial basis functions
(Carr et al., 2001) (Morse et al., 2005), signed dis-
tance transform (Frisken et al., 2000) or discrete vox-
elisations.

The implicit functions are frequently represented
as a discrete cubical grid where each vertex has the
value of the function. The Marching Cubes algorithm
(MC) (Lorensen and Cline, 1987) takes the cubical
grid to create an explicit representation of the implicit
surface. The MC algorithm has been widely stud-
ied as has been demonstrated by Newman (Newman
and Yi, 2006). The output of the MC algorithm is
an explicit surface represented as a set of connected
triangles known as a polygonal representation. The
original results of the MC algorithm presented several

topological problems as demonstrated by Chernyaev
(Chernyaev, 1995) and have already been solved by
Lewiner (Lewiner et al., 2003).

Figure 1: Optimised Grid with 203 cubes representing the
bunny.

The MC algorithm divides the space in a regular
cubical grid. For each cube, a triangular representa-

tion is calculated, which are then joined to obtain the
explicit representation of the surface. This procedure
is highly parallel because each cube can be processed
separately without significant interdependencies. The
resolution of the generated polygonal surface depends
directly on the input grid size. In order to increase the
resolution of the polygonal surface it is necessary to
increase the number of cubes in the grid, increasing
the amount of memory required to store the values of
the grid.

Alternative methods to the MC algorithm intro-
duce the concept of generating multi-resolution grids,
creating nested sub-grids inside the original grid. The
spatial subdivision using octrees or recursive tetrahe-
dral subdivision techniques are also used in the opti-
misation of iso-surface representations. The common
characteristic of these types of methods is that they
are based on adding more cells efficiently, to ensure a
higher resolution in the final representation.

This work is structured as follows: In Section 2, a
review of some of the best known MC algorithm vari-
ations is given. Section 3 describes the methodologi-
cal aspects behind the proposed algorithm. In Section
4 details the results of testing the algorithm with a set
of implicit functions. Finally, conclusions and future
work are discussed in Section 5.

2 RELATED WORK

Marching Cubes (MC) (Lorensen and Cline,
1987) has been the de facto standard algorithm for
the process generating of explicit representations of
iso-surfaces from scalar functions or its implicit def-
inition The MC algorithm takes as an input a regular
scalar volumetric data set, having a scalar value resid-
ing at each lattice point of a rectilinear lattice in 3D
space. The enclosed volume in the region of interest
is subdivided into a regular grid of cubes. Each vertex
of all cubes in the grid is set the value of the implicit
function evaluated at the vertex coordinates. Depend-
ing on the sign of each vertex, a cube has 256 (28)
possible combinations, but using geometrical proper-
ties, such as rotations and reflections, the final number
of combinations is reduced to 15 possibilities. These
15 surface triangulations are stored in Look-Up Ta-
bles (LUT) for speed reasons. The final vertices of the
triangular mesh are calculated using linear interpola-
tion between the values assigned to the vertices of the
cube. This polygonal mesh representation is ideally
suited to the current generation of graphic hardware
because it has been optimised to this type of input.

MC variations were developed to enhance the res-
olution of the generated explicit surfaces, allowing the

(a) Original Grid. The two spheres
are displayed as a singular object
due to the poor resolution in the re-
gion

(b) Intermediate Grid. Both spheres
are displayed well, but are still
joined

(c) Final Grid. The new resolution
displays two well shaped and sepa-
rated spheres with the same number
of cubes in the grid

Figure 2: 2D slides representing three different states in the
evolution of the algorithm of two nearby spheres

representation of geometrical details lost during MC
discretisation process. Weber (Weber et al., 2001)
proposes a multi-grid method. Inside an initial grid,
a nested grid is created to add more resolution in that
region. This methodology is suitable to be used re-
cursively, adding more detail to conflictive regions.
In the final stage, the explicit surface is created by
joining all the reconstructed polygonal surfaces.

It is necessary to generate a special polygonisa-
tion in the joints between the grid and the sub-grids
to avoid the apparition of cracks or artifacts. This
method has a higher memory demand to store the new
values of the nested-grid.

An alternative method to refine selected region
of interest is the octree subdivision (Shekhar et al.,
1996). This method generates an octree in the re-
gion of existence of the function, creating a poly-
gonisation of each octree cell. One of the flaws of
this method is the generation of cracks in the regions
with different resolutions. This problem is solve with
the Dual Marching Cubes method (Schaefer and War-
ren, 2004) and implemented for algebraic functions
by Pavia (Paiva et al., 2006)

The octree subdivision method produces edges
with more than two vertices, which can be overcome
by changing the methodology of the subdivision. In-
stead of using cubes, tetrahedrons were used to subdi-
vide the grid, without creating nodes in the middle of
the edges (Kimura et al., 2004). This method recur-
sively subdivides the space into tetrahedrons.

The previous methodologies increment the num-
ber of cells of the grid in order to achieve more reso-
lution in the regions of interest. Balmelli (Balmelli
et al., 2002) presented an algorithm based on the
movement of the grid to a defined region of interest
using a warping function. The result is a new grid
with the same number of cells, but with higher reso-
lution in the desired region.

Our method is also based on the displacement of
the vertices of the grid, obtaining dense distribution
of vertices near to the iso-surface. (see Figure 2)

3 METHODOLOGY

The proposed algorithm is presented as a modi-
fication of the MC algorithm. The principal goal is
the generation of more detailed approximations of the
given implicit surfaces with the same grid resolution.

Applying a selective displacement to the vertices
of the grid, the algorithm increases the number of
cells containing the iso-surface. In order to avoid self-
intersections and to preserve the topological structure
of the grid, the vertices are translated in the direction

of the surface. The displacement to be applied to each
vertex is calculated iteratively until a stop condition is
satisfied.

Figure 3: Grid nomenclature, Θ cubical grid, f (x,y,z) = 0
implicit function, N vertex neightboor, V vertices inside the
grid, B vertices at the boundary of the grid

Let be Θ a rectangular prism tessellated as a cu-
bical honeycomb, W the vertices of Θ [Eq. 1], B the
boundary vertices of Θ [Eq. 2], and V the inner ver-
tices of Θ [Eq. 3]. For each vertex vi ∈ V , a Ni set
is defined as the 26 adjacent vertices to vi, denoting
each adjacent vertex as ni, j [Eq. 4]. (see Figure 3)

W = {wi/wi ∈Θ} (1)
B = {bi/bi ∈ δΘ} (2)
V = W −B (3)
Ni = {ni, j/ni, j is jth neighbourgh of vi} (4)

Figure 4: two consecutives iterations are show where the
vertex v is moved between the iterations t = 0 and t = 1.
The new configuration of the grid is shown as dotted lines.

The proposed algorithm is an iterative process. In
each iteration, each vertex vi of the grid Θ is trans-
lated by a di distance vector, obtaining a new config-
uration of Θ, where i) the topological connections of
the grid are preserved, ii) the number of cells con-
taining patches of f are greater than, or equal to, the

previous value, and iii) the total displacement [Eq. 7]
of the grid is lower and is used as the stop condition
of the algorithm when it reach a value ∆(see Figure
4).

The distance vector di is calculated as shown in
[Eq. 6] and it can be seen as the resultant force of
each neighbouring vertex scaled by the value of f at
the position of each vertex. In order to limit the max-
imum displacement of the vertices and to guarantee
the topological order of Θ, the distance vector di is
clamped in the interval expressed in [Eq. 5]

0≤ |di| ≤MIN
(|ni, j− vi|

2

)
(5)

di =
1
26 ∑

ni, j

ni, j− vi

1+ | f (ni, j)+ f (vi)| (6)

∑
vi

|di| ≥ ∆ (7)

The algorithm stops when the sum of the distances
added to all the vertices in the previous iteration is less
that a given threshold ∆ [Eq. 7] (see Algorithm 1).

repeat
s := 0;
foreach Vertex vi do

di := 1
26 ∑ni, j

ni, j−vi
1+| f (ni, j)+ f (vi)| ;

mindist := MIN
(|ni, j−vi|

2

)
;

di := d̄iCLAMP(|di|,0.0,mindist);
vi := vi +di;
s := s+ |di|;

end
until s≥ ∆ ;

Algorithm 1: Vertex Displacement Pseudo-
algorithm. |x| represents the magnitude of x, v̄
represents the normalised vector of v

4 RESULTS

The proposed algorithm was tested with a set of
implicit functions as distance transforms (see Fig-
ure 5) and algebraic functions (see Figure 6(a)). For
demonstration purposes, the number of cells has been
chosen to be very low to aid in the visual detection
of the improvements produced by the algorithm. For
the visualisation process we use Marching Tetrahedra
because it produces correct topological representation
of the iso-surface, and allows the identification of the
topological correctness of the algorithm.

The obtained results of the algorithm are visually
noticeable, as is shown in Figure 6. Without using

Figure 5: Two balls in different positions with a scalar func-
tion as the distance transform, representing the behaviour of
the algorithm with different objects in the space.

GS MC. QLTY. AMC. QLTY. GS
10 0.958555 - -
20 0.369976 0.32257 10
30 0.188298 0.186994 20
40 0.129414 0.127588 30
50 0.094878 0.092761 40

Table 1: Quality is measure as the average distance between
the mesh vertices and the real surfaces, the colmuns 1 and
2 represent the quality of the bunny model and the cubical
grid size with the standar MC algorithm, the columns 3 and
4, represent the quality reach with the proposed algorithm
with 30 iterations.

the algorithm, the two spheres model is perceived as
a single object (see Figure 2). In an intermediate state
the spheres are still joined, but their shapes are more
rounded. In the final state, when the algorithm con-
verges, both spheres are separated correctly, each one
being rendered as a near perfect sphere. Thus, using
the same grid resolution and the proposed algorithm,
the resolution of the results has been increased.

The proposed algorithm iteratively increases the
number of cells containing the surface, adding more
detail to the new representation. Figure 6(b) shows
the incremental evolution of such a number of cubes
containing the surface, tending toward a doubling of
the number. The average distance triangulation ver-
tices to the original surface was calculated as pre-
sented in table 4. The proposed algorithm can rep-
resent the surface with a good quality with a fraction
of the amount of cells required with the original MC
algorithm.

The total displacement of the vertices in each iter-
ation is decreasing rapidly toward zero after a number
of iterations as show in the Figure 6(c). Despite the
seemingly high number of iterations, the algorithm

(a) Algebraic function rendered
with an optimised grid

(b) Cube increment (Y axis) vs. Iter-
ation evolution (X axis)

(c) Total displacement of the grid (Y
axis) vs. Iteration evolution (X axis)

Figure 6: Grid evolution for an algebraic function, comparing the number of cubes which contains the iso-surface and the
total displacement of the vertices plotted against the stage of execution of the algorithm

is executed only once for static functions, and can
be processed in the background. Even when the im-
plicit function is a time variant, the cubical grid can
be reused as the input cubical grid for the next algo-
rithm execution. When the implicit function changes
smoothly, the algorithm quickly re-converges after
just a few iterations significantly reducing the com-
putational effort.

5 CONCLUSIONS AND FUTURE
WORK

Our proposed iterative algorithm has shown sig-
nificant advantages in the representation of distance
transform functions. With the same grid size, it allows
a better resolution by displacing the vertices of the
cube grids towards the surface, increasing the number
of cells containing the surface.

The algorithm was tested with algebraic functions,
representing distance transform of the models. The
generated scalar field has been selected to avoid the
creation of regions of false interest, which are for
static images in which these regions are not used.

The number of iterations is directly related to the
chosen value ∆ as it is the stop condition. The algo-
rithm will continuously displace the cube vertices un-
til the accumulated displacement in a single iteration
is less than ∆. In the results, it can be seen that this
accumulated distance converges quickly to the desired
value. This behaviour is very convenient to represent
time varying scalar functions like 3D videos, where
the function itself is continuously changing. In this
context, the algorithm will iterate until a good rep-

resentation of the surface is obtained. If the surface
varies smoothly, the cube grid will be continuously
and quickly readapted by running a few iterations of
the presented algorithm. As the surface changes may
be assumed to be small, the number of iterations un-
til a new final condition is achieved will be low. The
obtained results will be a better real-time surface rep-
resentation using a coarser cube grid.

6 ACKNOWLEDGEMENTS

This work has been partially supported by the Spanish
Administration agency CDTI, under project CENIT-
VISION 2007-1007. CAD/CAM/CAE Laboratory -
EAFIT University and the Colombian Council for
Science and Technology -Colciencias-. The bunny
model is courtesy of the Stanford Computer Graph-
ics Laboratory.

REFERENCES

Balmelli, L., Morris, C. J., Taubin, G., and Bernardini, F.
(2002). Volume warping for adaptive isosurface ex-
traction. In Proceedings of the conference on Visual-
ization 02, pages 467–474. IEEE Computer Society.

Carr, J. C., Beatson, R. K., Cherrie, J. B., Mitchell, T. J.,
Fright, W. R., McCallum, B. C., and Evans, T. R.
(2001). Reconstruction and representation of 3d ob-
jects with radial basis functions. In SIGGRAPH ’01:
Proceedings of the 28th annual conference on Com-
puter graphics and interactive techniques, pages 67–
76, New York, NY, USA. ACM.

Chernyaev, E. (1995). Marching cubes 33: Construction

of topologically correct isosurfaces. Technical report,
Technical Report CERN CN 95-17.

Frisken, S. F., Frisken, S. F., Perry, R. N., Perry, R. N.,
Rockwood, A. P., Rockwood, A. P., Jones, T. R., and
Jones, T. R. (2000). Adaptively sampled distance
fields: A general representation of shape for computer
graphics. pages 249–254.

Kimura, A., Takama, Y., Yamazoe, Y., Tanaka, S., and
Tanaka, H. T. (2004). Parallel volume segmentation
with tetrahedral adaptive grid. ICPR, 02:281–286.

Krek, P. (2005). Flow reduction marching cubes algo-
rithm. In Proceedings of ICCVG 2004, pages 100–
106. Springer Verlag.

Lewiner, T., Lopes, H., Vieira, A., and Tavares, G. (2003).
Efficient implementation of marching cubes’ cases
with topological guarantees. Journal of Graphics
Tools, 8(2):1–15.

Lorensen, W. E. and Cline, H. E. (1987). Marching cubes:
A high resolution 3d surface construction algorithm.
SIGGRAPH Comput. Graph., 21(4):169–169.

Morse, B. S., Yoo, T. S., Rheingans, P., Chen, D. T., and
Subramanian, K. R. (2005). Interpolating implicit
surfaces from scattered surface data using compactly
supported radial basis functions. In SIGGRAPH ’05:
ACM SIGGRAPH 2005 Courses, page 78, New York,
NY, USA. ACM.

Newman, T. S. and Yi, H. (2006). A survey of the marching
cubes algorithm. Computers & Graphics, 30(5):854–
879.

Oscar E. Ruiz, Miguel Granados, C. C. (2005). Fea-driven
geometric modelling for meshless methods. In Virtual
Concept 2005, pages 1–8.

Paiva, A., Lopes, H., Lewiner, T., and de Figueiredo, L. H.
(2006). Robust adaptive meshes for implicit surfaces.
SIBGRAPI, 0:205–212.

Schaefer, S. and Warren, J. (2004). Dual marching cubes:
Primal contouring of dual grids. In PG ’04: Proceed-
ings of the Computer Graphics and Applications, 12th
Pacific Conference, pages 70–76, Washington, DC,
USA. IEEE Computer Society.

Shekhar, R., Fayyad, E., Yagel, R., and Cornhill, J. F.
(1996). Octree-based decimation of marching cubes
surfaces. In VIS ’96: Proceedings of the 7th confer-
ence on Visualization ’96, pages 335–ff., Los Alami-
tos, CA, USA. IEEE Computer Society Press.

Weber, G. H., Kreylos, O., Ligocki, T. J., Shalf, J. M.,
Hamann, B., and Joy, K. I. (2001). Extraction of
crack-free isosurfaces from adaptive mesh refinement
data. In Data Visualization 2001 (Proceedings of Vis-
Sym ’01), pages 25–34. Springer Verlag.

