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Relaxed loading conditions for higher order homogenisation approaches
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The present paper deals with the formulation of minimal loading conditions for the application of numerical homogenisation
techniques, namely the FE2 methodology. Based on the set of volume averaging rules connecting the heterogeneous micro
and the homogeneous macro scale, the minimal constraints onthe deformation of a micro volume are derived for a classical
Cauchy as well as for a micromorphic overall continuum theory. For both cases, numerical studies are included highlighting
the main aspects of the proposed procedure.
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1 Introduction

Heterogeneous materials are well known for their peculiar effective material properties which are driven by the underlying
micro topology. Under quasi-static conditions, e. g. size dependent boundary layers (the smaller the stiffer) are to beobserved
[2, 17]. By contrast, a highly dispersive overall material behaviour of the compound can be found under high frequency
loadings (sonic/ultrasonic) accounting for higher order wave modes due to micro structural degrees of freedom [1,15].

In the following sections we will apply a mean-field-based homogenisation approach in order to describe the material
properties of such materials on an effective scale. For thispurpose, the heterogeneous medium on the micro scale has to be
replaced by a homogeneous medium on the macro scale. The physical quantities of the macro scale will be interpreted in
terms of volume averages of their microscopic counterparts. To this end, appropriate averaging rules have to be formulated
defining a Dirichlet boundary value problem (BVP) on a micro volume which is considered to be representative for the entire
mirco structure. Transferring the microscopic stress response back on the macroscopic level, the overall constitutive relations
can be replaced by a Two-level calculation also stated as theFE2 technique [4,13] in the sequel.

Whilst the micro structure itself can be captured by a standard Cauchy continuum theory, different choices for the substitute
medium are possible. Depending on the micro topological effects which are to be represented on the macro level different
substitute media have to be considered. If the characteristic length scale of the micro structure is much smaller than the overall
length scale (scale separation), a Cauchy substitute medium is sufficient to predict first order effects such as materialor struc-
tural anisotropy [16]. However, higher order approaches are required if the characteristic length scales become comparable.
Typical representatives of this class are e. g. the Mindlin’s second gradient theory [14] or the micromorphic continuumtheory
proposed by Eringen [3].

In the sequel, the present contribution focuses on two cases. On the one hand, the Cauchy substitute medium will be con-
sidered. On the other hand the micromorphic continuum theory will be applied on the macro scale. For both, the formulation
of microscopic BVP will be discussed, where usually polynomial Dirichlet boundary conditions are taken into account. By
contrast, we propose the concept of the so-calledminimal boundary or loading conditions [12], where the loading conditions
are not prescribed explicitly as a Dirichlet BVP but in an integral sense constrained by the averaging rules.

All numerical examples are limited to 2D and to the range of small deformations in the context of quasi-static deformations.
Linear elasticity is assumed. The discussion whcih micro volume size is necessary to end up with a representative volume
element is omitted.
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2 First order homogenisation

Let us start our considerations with the substitution of a heterogeneous Cauchy medium by a homogeneous Cauchy medium.
Moreover, let us assume an arbitrary shaped 2D micro volume of the sizeVm = l2. The micro volume is nested to a
corresponding macroscopic material point via its volume centroid. Any position∆x inside the micro volume is expressed
relative to the volume centroid. Taking into account the definition of the volume averaging procedure〈♦〉 = 1/Vm

∫
(♦)dv,

the averaging rules for the kinematic quantities read

〈∆u〉 = 0, gradsym
M

uM = 〈gradsym
m

∆u〉 =
1

Vm

∫

∂Vm

(∆u⊗ n)sym da, (1)

cf. [4,13], where the subscript indicesm andM refer to the micro and the macro scale, respectively andn refers to the outer
normal vector on the boundary∂Vm of the micro volume. From the physical point of view, eq. (1)1 constrains the micro
volume in a way that rigid body translation are omitted, whereas eq. (1)2 states that the overall symmetric strain has to equal
the volume average of the local strain or its boundary contribution, respectively. Usually, the kinematic averaging rules are
evaluated applying a local Dirichlet BVP of the form

∆u = gradsym
M

uM ·∆x+∆ũ. (2)

For the additional fluctuation field∆ũ, several cases can be considered:

a) ∆ũ = 0∀∆x ∈ ∂Vm. This special case represents the upper limit for the stressresponse of the micro volume and is
commonly called Voigt limit. In general, the purely linear polynomial results in overestimated effective moduli due to
clamping mechanisms at the boundary of the micro volume.

b) The fluctuation is considered to be periodic at homologouspoints of the micro volume surface whereas the surface
traction vectors are anti-periodic. The periodic fluctuations allow the micro volume to overcome the clamping boundary
conditions and to reduce the overestimated stress responseof the micro volume. However, this special case requires
geometrically periodic micro volumina which can not be guaranteed in general.

However there is no need to introduce polynomial loading conditions on the boundary of the micro volume. In order to cir-
cumvent the above limitations of the polynomial conditionswe apply in the sequel the concept ofminimal loading conditions,
initially proposed in [12]. For this purpose, we consider eqs. (1) as integral constraints which control the deformation state of
the micro volume without any further periodicity requirements. From the numerical point of view, these integral constraints
can be easily implemented e. g. using a penalty formulation.

In order to circumvent too soft material response, we introduce an additional compatibility constraint. The need to do so
can be easily motivated regarding Fig. 1 a), where a shear deformation mode is applied on an unit cell of a stiff grid structure
(blue) embedded in a matrix (green, factor 0.0001 softer). The deformation only takes place in the soft phase, which obviously
contradicts the real deformation behaviour of a periodic grid structure. However this effect can be corrected if one introduces
the additional constraint that each phase has to contributeto the overall deformation according to its fraction of the boundary
∂Vm. The resulting deformation state is depicted in Fig. 1 b), c)and d) where the factorf decreases from 1 to 0.0001. For
this special case, the result of the minimal loading conditions equals this one achieved applying periodic boundary conditions.

In the following we want to study the proposed minimal loading condition concept with additional compatibility constraint
for an exemplary microstructure consisting of a soft matrixfilled with stiff particles. The resulting deformation states under
tensile and shear conditions are depicted in Figs. 2 and 3 in comparison to these ones of the Voigt (linear displacements,upper
bound) and the Reuss limits (constant tractions, lower bound). In Fig. 4, the normalised strain energy of the three independent
deformation modes for micro volumina with different sizes is given in relation to the upper and the lower bound.

As expected the application of the minimal constraints allow the microstructure to relax significantly compared to the Voigt
limit. The observed strain energies are even closer to the Reuss than to the Voigt limit. However, this effect could be a
consequence of the very special choice of the microstructure with stochastically distributed stiff particles. For more precise
conclusions, a series of comparable structures should be explored which remains a task for future work.

a) b) c) d)

Fig. 1 Shear mode1/2 (uM1,2 + uM2,1) applied on an unit cell of a stiff grid structure (blue) in a matrix (green) which is factorf softer,
a)f = 0.0001, no additional compatibility constraint, b)f = 1, c) f = 0.01, d) f = 0.0001

Copyright line will be provided by the publisher



4 PAMM header will be provided by the publisher

a) b) c)

Fig. 2 Stretch modeuM1,1 of a micro volume (l = 4mm) consisting of stiff particles (blue) in a matrix (green)which is factorf = 0.1
softer, a) Voigt limit (linear displacements), b) minimal boundary conditions and c) Reuss limit (constant tractions).

a) b) c)

Fig. 3 Symmetric shear mode1/2 (uM1,2 + uM2,1) of a micro volume (l = 4mm) consisting of stiff particles (blue) in a matrix (green)
which is factorf = 0.1 softer, a) Voigt limit (linear displacements), b) minimal boundary conditions and c) Reuss limit (constant tractions).
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Fig. 4 Strain energy observed for different micro volumina of the size l2 activated by the deformation modes a)uM1,1, b) 1/2 (uM1,2 +
uM2,1) and c)uM2,2. The strain energy is normalised with respect to the Voigt (φ = 1) and the Reuss limit (φ = 0) representing
homogeneous strain (linear displacements) or constant traction boundary conditions, respectively.
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3 Second order homogenisation

In the upcoming section we extend the concept of minimal loading conditions to a second order homogenisation scheme. For
this reason, the kinematics of the substitute medium is enriched by additional degrees of freedom accounting for microscopic
deformation mechanisms. Moreover, the second order extensions involve an internal length scale in an iherent way. In lit-
erature one can find basically two different approaches. Thefirst one goes back to the seminal work of Mindlin [14] and
introduces the second gradient of the overall displacementfield as an additional and independent degree of freedom. The
application of the second gradient continuum as a substitute medium for heterogeneous micro structures has been discussed in
literature, e. g. [10,11]. The second extension bases on themicromorphic continuum theory initially proposed by Eringen [3].
In contrast to the second gradient continuum, the so-calledmicro deformation tensor and its gradient, respectively, are intro-
duced as independent degrees of freedom in addition to the usual displacement field. However, the micromorphic approach
reduces to the second gradient concept, if the micro deformation is considered to equal the first displacement gradient.In the
sequel, only the homogenisation rules for the micromorphicsubstitute medium will be discussed, which have been initially
proposed by Forest et al. [5–9]. The kinematic averaging rules for a quadratic unit cell of the sizeVm = l2 read

〈∆u〉 = 0, grad
M
uM = 〈grad

m
∆u〉 =

1

Vm

∫

∂Vm

∆u⊗ n da, (3)

χ̄M − I =
12

l2
〈∆u⊗∆x〉 , (4)

K
3

M
= grad

M
χ̄M =

12

l2
〈grad

m
(∆u⊗∆x)〉 =

1

Vm

∫

∂Vm

∆u⊗∆x ⊗ n da. (5)

The crucial point of these relation can be observed regarding eq. (4), which can not be transformed into a surface integral.
By consequence it is not possible to prescribe Dirichlet type conditions on the boundary∂Vm [6]. In literature, several
approaches are to be found [5, 7] dealing with a cubic polynomial for the microscopic displacement field. However, the
displacement field has to be prescribed on the entire micro volumeVm. No reduction to its boundary∂Vm is known, besides
some special cases of regular grid structures [8, 9]. Thus, we propose to apply the concept of minimal loading condition
for the second order homogenisation scheme. Besides the lacking periodic requirements this concept bears the advantage
of circumventing a priori the formulation of any polynomialconditions. Eqs. (3–5) represent the minimal set of integral
constraints enforcing the micro volume to undergo deformation modes driven by the overall kinematic quantities. Again, this
concept can be easily implemented from a numerical point of view making use of a penalty formulation for instance.

In Fig. 5, several exemplary micromorphic deformation modes are given. The found results (Cosserat micro rotations of
regular grid structures and bending mode of orthotropic unit cell) have been observed in literature [6,8] applying polynomial
loading conditions.

a) b) c)

Fig. 5 The Cosserat type micro rotation̄ϕM3 = χ̄M21 = −χ̄M12 = 1, applied on the unit cells of a) the squared grid and b) the
honeycomb structure. The Cosserat bending modeϕ̄M3,2 = −KM122 = 2KM122 = 2KM121 = 1/mm, applied on the orthotropic unit
cell c).
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4 Conclusions

Finally, let us recall the basic findings of the present contribution addressing numerical homogenisation schemes. A general
concept for the formulation of minimal loading conditions in terms of integral constraints on the micro volume has been
introduced. In the case of first order homogenisation this procedure bears the advantage that no periodicity requirements exist
on the geometry of the micro volume. In principle, even the shape of the micro volume can be chosen arbitrary and does not
have to be necessarily chosen quadratic. Comparing the strain energy stored during unit deformations of heterogeneousmicro
volumina it has been found the minimal loading conditions, enriched with an additional compatibility constraint, to result in
significantly softer material responses than the Voigt limit representing the upper bound on the homogenised strain energy.

In the very last section, the concept of minimal loading conditions has been extended to the second order homogenisation
technique for micromorphic media substituting a heterogeneous Cauchy medium on the micro scale. Due to the extensions
of the volume averaging concept it is no longer possible to formulate Dirichlet conditions on the boundary of the micro
volume besides some special cases. For this reason, the averaging rules themselves have been used again as the minimal
loading conditions for the micro volume. In comparison to the deformation behaviour of different structures, the resulting
deformation modes can be validated qualitatively to examples given in literature.

In the future, further efforts have to be made in order to gaina deeper understanding of the proposed concept. Quantitative
validations are planned. Finally, we intend to generalise the concept to 3D problems dealing with micro volumina resulting
from CT analyses of real micro structures.
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