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Relaxed loading conditions for higher order homogenisatino approaches
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The present paper deals with the formulation of minimal iegatonditions for the application of numerical homogeti@a
techniques, namely the EEnethodology. Based on the set of volume averaging rulesemimy the heterogeneous micro
and the homogeneous macro scale, the minimal constrairtteeateformation of a micro volume are derived for a classical
Cauchy as well as for a micromorphic overall continuum thieBior both cases, numerical studies are included higlitight
the main aspects of the proposed procedure.
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1 Introduction

Heterogeneous materials are well known for their peculfi@céve material properties which are driven by the ungied
micro topology. Under quasi-static conditions, e. g. sigpahdent boundary layers (the smaller the stiffer) are tublserved
[2,17]. By contrast, a highly dispersive overall materiahbviour of the compound can be found under high frequency
loadings (sonic/ultrasonic) accounting for higher ordavermodes due to micro structural degrees of freedom [1, 15].

In the following sections we will apply a mean-field-basedriogenisation approach in order to describe the material
properties of such materials on an effective scale. Forphipose, the heterogeneous medium on the micro scale has to b
replaced by a homogeneous medium on the macro scale. Thizghysantities of the macro scale will be interpreted in
terms of volume averages of their microscopic counterpdidsthis end, appropriate averaging rules have to be fortadla
defining a Dirichlet boundary value problem (BVP) on a micodtvne which is considered to be representative for theentir
mirco structure. Transferring the microscopic stressaasp back on the macroscopic level, the overall constéuglations
can be replaced by a Two-level calculation also stated aBEh¢echnique [4,13] in the sequel.

Whilst the micro structure itself can be captured by a stesh@auchy continuum theory, different choices for the sitiist
medium are possible. Depending on the micro topologicalctsfwhich are to be represented on the macro level different
substitute media have to be considered. If the charadtdgsigth scale of the micro structure is much smaller tharotrerall
length scale (scale separation), a Cauchy substitute madisufficient to predict first order effects such as mateniaitruc-
tural anisotropy [16]. However, higher order approachesraquired if the characteristic length scales become coabjma
Typical representatives of this class are e. g. the Minslbe'cond gradient theory [14] or the micromorphic contintiveory
proposed by Eringen [3].

In the sequel, the present contribution focuses on two c&eshe one hand, the Cauchy substitute medium will be con-
sidered. On the other hand the micromorphic continuum thedl be applied on the macro scale. For both, the formutatio
of microscopic BVP will be discussed, where usually polymarDirichlet boundary conditions are taken into accouny. B
contrast, we propose the concept of the so-cattedmal boundary or loading conditions[12], where the loading conditions
are not prescribed explicitly as a Dirichlet BVP but in aremyial sense constrained by the averaging rules.

All numerical examples are limited to 2D and to the range ddlédeformations in the context of quasi-static defornagio
Linear elasticity is assumed. The discussion whcih miclomwe size is necessary to end up with a representative volume
element is omitted.
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2 First order homogenisation

Let us start our considerations with the substitution of @tmeneous Cauchy medium by a homogeneous Cauchy medium.
Moreover, let us assume an arbitrary shaped 2D micro voluitteeosizeV,, = [?. The micro volume is nested to a
corresponding macroscopic material point via its volumetrced. Any positionAx inside the micro volume is expressed
relative to the volume centroid. Taking into account therdiin of the volume averaging procedui®) = 1/V,,, [(¢)dv

the averaging rules for the kinematic quantities read

(Au) =0, grady;"uy; = (grad)™ Au) = VL / (Au®n)*™ da, (1)
aVnL

cf. [4,13], where the subscript indices and M refer to the micro and the macro scale, respectivelyranefers to the outer
normal vector on the boundat/,,, of the micro volume. From the physical point of view, eq.;(Epnstrains the micro
volume in a way that rigid body translation are omitted, vélaereq. (L) states that the overall symmetric strain has to equal
the volume average of the local strain or its boundary cbatidn, respectively. Usually, the kinematic averaginigsiare
evaluated applying a local Dirichlet BVP of the form

Au = grad}Muny - Ax+ Au. 2)
For the additional fluctuation fielda, several cases can be considered:

a) Au = 0V Ax € 0V,,. This special case represents the upper limit for the stesggonse of the micro volume and is
commonly called Voigt limit. In general, the purely lineaslpnomial results in overestimated effective moduli due to
clamping mechanisms at the boundary of the micro volume.

b) The fluctuation is considered to be periodic at homologmists of the micro volume surface whereas the surface
traction vectors are anti-periodic. The periodic fluctoas allow the micro volume to overcome the clamping boundary
conditions and to reduce the overestimated stress respdrise micro volume. However, this special case requires
geometrically periodic micro volumina which can not be gudeed in general.

However there is no need to introduce polynomial loadingl@ions on the boundary of the micro volume. In order to cir-
cumvent the above limitations of the polynomial conditiaresapply in the sequel the conceptafhimal loading conditions,
initially proposed in [12]. For this purpose, we consides.gd) as integral constraints which control the defornrasi@ate of
the micro volume without any further periodicity requirem& From the numerical point of view, these integral caists
can be easily implemented e. g. using a penalty formulation.

In order to circumvent too soft material response, we inicedan additional compatibility constraint. The need to@o s
can be easily motivated regarding Fig. 1 a), where a shearmeation mode is applied on an unit cell of a stiff grid sturet
(blue) embedded in a matrix (green, factor 0.0001 softdrg deformation only takes place in the soft phase, whichalsly
contradicts the real deformation behaviour of a periodid gtructure. However this effect can be corrected if oneuhices
the additional constraint that each phase has to contributes overall deformation according to its fraction of tfeeihdary
0V,,. The resulting deformation state is depicted in Fig. 1 bara@) d) where the factof decreases from 1 to 0.0001. For
this special case, the result of the minimal loading coad&iequals this one achieved applying periodic boundargtitons.

In the following we want to study the proposed minimal loap@ondition concept with additional compatibility constta
for an exemplary microstructure consisting of a soft mditigd with stiff particles. The resulting deformation statunder
tensile and shear conditions are depicted in Figs. 2 and @nirparison to these ones of the Voigt (linear displacemepiser
bound) and the Reuss limits (constant tractions, lower Bpun Fig. 4, the normalised strain energy of the three irdelent
deformation modes for micro volumina with different sizegiven in relation to the upper and the lower bound.

As expected the application of the minimal constraintsrattoe microstructure to relax significantly compared to toegy/
limit. The observed strain energies are even closer to thesfkehan to the Voigt limit. However, this effect could be a
consequence of the very special choice of the microstreatith stochastically distributed stiff particles. For ragrecise
conclusions, a series of comparable structures shoulddderexi which remains a task for future work.

o F F F

Fig. 1 Shear modd /2 (ua1,2 + uar2,1) applied on an unit cell of a stiff grid structure (blue) in atma(green) which is factoyf softer,
a) f = 0.0001, no additional compatlblllty constraint, )= 1, ¢) f = 0.01, d) f = 0.0001
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a). b). C)-

Fig. 2 Stretch mode:as1,1 Of a micro volume { = 4 mm) consisting of stiff particles (blue) in a matrix (greewhich is factorf = 0.1
softer, a) Voigt limit (linear displacements), b) minimalundary conditions and c¢) Reuss limit (constant tractions)

Fig. 3 Symmetrlc shear mode/2 (uar1,2 + uare,1) of @ micro volume { = 4 mm) consisting of stiff particles (blue) in a matrix (green)
which is factorf = 0.1 softer, a) Voigt limit (linear displacements), b) minimalundary conditions and c) Reuss limit (constant tractions)
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Fig. 4 Strain energy observed for different micro volumina of tiee$* activated by the deformation modesway1 .1, b) 1/2 (uar1,2 +
unre,1) and C)unre,2. The strain energy is normalised with respect to the Voigt=t 1) and the Reuss limit( = 0) representing
homogeneous strain (linear displacements) or constaritdnsboundary conditions, respectively.
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3 Second order homogenisation

In the upcoming section we extend the concept of minimalilggadonditions to a second order homogenisation scheme. For
this reason, the kinematics of the substitute medium i<kad by additional degrees of freedom accounting for mgopg
deformation mechanisms. Moreover, the second order egtengivolve an internal length scale in an iherent way. tn li
erature one can find basically two different approaches. fifeeone goes back to the seminal work of Mindlin [14] and
introduces the second gradient of the overall displacerieidtas an additional and independent degree of freedom. The
application of the second gradient continuum as a substibedium for heterogeneous micro structures has been destirs
literature, e. g. [10,11]. The second extension bases amitr@morphic continuum theory initially proposed by Erang3].

In contrast to the second gradient continuum, the so-caliedo deformation tensor and its gradient, respectivelyiatro-
duced as independent degrees of freedom in addition to tred displacement field. However, the micromorphic approach
reduces to the second gradient concept, if the micro defiwme considered to equal the first displacement gradlarthe
sequel, only the homogenisation rules for the micromorphlestitute medium will be discussed, which have been llyitia
proposed by Forest et al. [5-9]. The kinematic averagingsrfdr a quadratic unit cell of the si2g, = /2 read

(Au) =0, grad,,;uy = (grad,,Au) = VL / Au ® nda, 3)
" oV
_ 12
Ko~ 1= (Bu®Ax), @
3 _ 12 1
Ky, =9grad,; xy = = (grad,, (Au ® Ax)) = v / Au® Ax ® nda. (5)
Vi

The crucial point of these relation can be observed reggrtin (4), which can not be transformed into a surface integra
By consequence it is not possible to prescribe Dirichleetgpnditions on the bounda®yV;,, [6]. In literature, several
approaches are to be found [5, 7] dealing with a cubic polyabfor the microscopic displacement field. However, the
displacement field has to be prescribed on the entire midton®V/,,,. No reduction to its bounda@V,, is known, besides
some special cases of regular grid structures [8,9]. Thesprupose to apply the concept of minimal loading condition
for the second order homogenisation scheme. Besides tkimdaperiodic requirements this concept bears the advantag
of circumventing a priori the formulation of any polynomizdnditions. Egs. (3-5) represent the minimal set of integra
constraints enforcing the micro volume to undergo defoimnanodes driven by the overall kinematic quantities. Ag#irs
concept can be easily implemented from a numerical pointeaf ynaking use of a penalty formulation for instance.

In Fig. 5, several exemplary micromorphic deformation n®dee given. The found results (Cosserat micro rotations of
regular grid structures and bending mode of orthotropit call) have been observed in literature [6, 8] applying polyial
loading conditions.

a) b) c)

Fig. 5 The Cosserat type micro rotatiabn;s = Ym21 = —Xxwmiz = 1, applied on the unit cells of a) the squared grid and b) the
honeycomb structure. The Cosserat bending mode > = —Kari22 = 2 K122 = 2 K21 = 1/mm, applied on the orthotropic unit
cell ¢).
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4 Conclusions

Finally, let us recall the basic findings of the present dbation addressing numerical homogenisation schemes.n&rgé
concept for the formulation of minimal loading conditiomsterms of integral constraints on the micro volume has been
introduced. In the case of first order homogenisation this@dure bears the advantage that no periodicity requiresmegist
on the geometry of the micro volume. In principle, even thepghof the micro volume can be chosen arbitrary and does not
have to be necessarily chosen quadratic. Comparing the strargy stored during unit deformations of heterogenetias
volumina it has been found the minimal loading conditiomsjahed with an additional compatibility constraint, tsud in
significantly softer material responses than the Voigttlimpresenting the upper bound on the homogenised straigyene

In the very last section, the concept of minimal loading étods has been extended to the second order homogenisation
technique for micromorphic media substituting a heteregeis Cauchy medium on the micro scale. Due to the extensions
of the volume averaging concept it is no longer possible tmnfdate Dirichlet conditions on the boundary of the micro
volume besides some special cases. For this reason, thegagrules themselves have been used again as the minimal
loading conditions for the micro volume. In comparison te tteformation behaviour of different structures, the rasyl
deformation modes can be validated qualitatively to exasglven in literature.

In the future, further efforts have to be made in order to gadeeper understanding of the proposed concept. Quarditati
validations are planned. Finally, we intend to generali@edoncept to 3D problems dealing with micro volumina résglt
from CT analyses of real micro structures.
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