
Applications of Computational Geometry to

Computer Aided Design, Computer Graphics and

Computer Vision

John Edgar Congote Calle

March 2009

2

Applications of Computational Geometry to
Computer Aided Design, Computer Graphics and

Computer Vision

Student: John Edgar Congote Calle
Advisor: Prof. Oscar E. Ruiz

School of Engineering
EAFIT University
Medelĺın, Colombia

Submitted in partial fulfillment of the requirements for a

Masters of Science degree in Engineering from the School of

Engineering, EAFIT University

March, 2009

4

Acknowledgements

This work has been partially supported by the Colombian Council for Science
and Technology -Colciencias-. The Spanish Administration agency CDTI, under
project CENIT-VISION 2007-1007. VICOMTech Institute and CAD/CAM/CAE
Laboratory - EAFIT University. The bunny model is courtesy of the Stanford
Computer Graphics Laboratory and Middlebury College for the stereo vision
data set.

5

6

Contents

1 Introduction 9

2 Surface Triangulation 11
2.1 Context . 11
2.2 Abstract . 13
2.3 Introduction . 13
2.4 Literature Review . 14
2.5 Curvature Measurement in Parametric Surfaces 16
2.6 Methodology . 18

2.6.1 Calculation of F−1 . 18
2.6.2 Star Algorithm . 18
2.6.3 Sprinkle Algorithm . 19
2.6.4 A Pseudo - Delaunay Triangulation 20

2.7 Results . 22
2.8 Conclusions and Future Work . 23

3 Adaptative Cubical Grid 29
3.1 Context . 29
3.2 Abstract . 31
3.3 Introduction . 31
3.4 Related Work . 32
3.5 Methodology . 34
3.6 Results . 36
3.7 Conclusions and Future Work . 38

4 Realtime Stereo Vision 41
4.1 Context . 41
4.2 Abstract . 43
4.3 Introduction . 43
4.4 Glosary . 45
4.5 CUDA . 46
4.6 Dynamic Programming . 46
4.7 Parallel DP . 47
4.8 Results . 49

7

8 CONTENTS

5 Conclusion 51

Chapter 1

Introduction

Modern industrial applications deal with geometry models that in some stage
are impossible to be managed by the human because are beyond the limits of
human senses, also some problems need to change the representation of abstract
geometry models, for that kind of problems computational solutions should be
addressed with the generation of new algorithms and data structures with an
optimal utilization of the computational resources. Computational geometry
is the discipline which present solutions for that problems, one of the basic
structures used in computational geometry is the surface.

The surface can be represented in different ways, like point sets, triangular
tessellations, parametric, implicit and explicit. This work is a compilation of
applications developed in the CAD CAM CAE Laboratory at EAFIT (Medellin,
Colombia) and VICOMTech research center (Donostia - San Sebastian, Spain).
Such applications are solutions proposed to different industrial problems, all
of them originated in real industrial applications: surface reconstruction and
change of model representations.

Particular problems are addressed in this work. Reconstruction of explicit 3D
surfaces, cylinders, cones, planes. Triangular tessellation of parametric surfaces.
Point set reconstruction from parametric surfaces with curvature sensitivity.
Point set reconstruction from projections. Triangular surface tessellation from
implicit surfaces. The implementation of the algorithms required some special
computational architectures like parallel vectorized machines.

Surface triangulations from parametric representation is a change of repre-
sentation of the surface, each representation had characteristics that must be
kept. Parametric representation of surfaces is very good for modeling and design
process but are very difficult in structural analysis however triangular tessella-
tions are very good for structural analysis, so a conversor was generated which
keeps the parametric properties of the representation in a triangular tessellated
surface which is used for structural analysis.

Implicit surfaces are another form of surface representation very common as
an interchange model between surfaces representation, but the correct and fast
generation and visualization of surfaces using the current computer hardware

9

10 CHAPTER 1. INTRODUCTION

need a change of format of the surface from implicit representation to triangular
tessellation. Adaptative Cubical Grid is a modification of the standard algo-
rithm of Marching Cubes. The algorithm generates real-time representation
of implicit surfaces and allows the work of implicit surfaces with commodity
graphic hardware.

Finally the reconstruction of scenes from projections is a common prob-
lem in the computer vision, the problem need to obtain the depth information
from stereo cameras, the depth calculation is done by a simply triangulation
algorithm, but the matching of the points from the two projections are a very
complex problem. For this problem specific graphic hardware was required to
process the information in a real time. The implementation of a novel algorithm
was created for this problem, which allows the parallel computation of the depth
of the projection images.

Chapter 2

Parameter-independent,
curvature-sensitive Sprinkle
and Star Algorithms for
Surface Triangulation

2.1 Context

A project to device a method for the generation of a watertight triangulations
sensitives to the curvature from parametric surfaces was developed at CAD
CAM CAE Laboratory at EAFIT University. The result of this method gener-
ates a watertight triangulated surface and shells ready to be analyzed with FEA.
This work has been founded by EAFIT University and the Colombian Council of
Research and Technology (COLCIENCIAS) and VICOMTech Research center.

John Congote, research assistant under my direction in the CAD CAM CAE
Laboratory, was able to program the application of the devised methods. For
such a purpose, theoretical contributions were needed, which appear in:

• A Curvature-Sensitive Parameterization-Independent Triangulation Algo-
rithm. Oscar Ruiz, John Congote, Carlos Cadavid, Juan G. Lalinde.
5th Annual International Symposium on Voronoi Diagrams in Science
and Engineering. 4th International Kyiv Conference on Analytic Num-
ber Theory and Spatial Tessellations. (Kokichi Sugihara and Deok-Soo
Kim, eds.), vol. 2, Drahomanov National Pedagogical University, ISBN
967-966-02-4892-2 (Book), ISBN 978-966-02-4893-9 (CD). September 22-
28, 2008 Kiev, Ukraine.

Authors

• Oscar E. Ruiz1

11

12 CHAPTER 2. SURFACE TRIANGULATION

• John Congote1,3

• Carlos Cadavid1

• Juan G. Lalinde1

• Guillermo Peris Fajarns2

• Beatriz Defez2

• Ricardo Serrano1,2

1. CAD CAM CAE Laboratory, EAFIT University Colombia

2. Universidad Politecnica de Valencia, Spain

3. VICOMTech Institute, Spain

As co-authors of such publications, we give our permission for this material
to appear in this document. We are ready to provide any additional information
on the subject, as needed.

————————————
Prof. Oscar E. Ruiz
oruiz@eafit.edu.co
Coordinator CAD CAM CAE Laboratory
EAFIT University, Medellin, COLOMBIA

2.2. ABSTRACT 13

2.2 Abstract

An open area of research in triangulation of parametric surfaces is the difficulty
in generating good quality triangles, independently of the underlying particular
parameterization of the surface. At the same time, it is important to achieve a
triangle density sensitive to the local curvature of the surface. Therefore, a good
triangulation must be independent of the parameterization, dependent of the
curvature, and it must produce a high quality aspect-ratio triangles. The present
article discusses the implementation of two algorithms (Star and Sprinkle) for
the generation of the vertex set for the triangulation of a face F mounted on
a parametric surface S. The vertex sets so generated are then processed to
produce triangulations in 3D, by using a pseudo - Delaunay algorithm, based
on the expansion of edges. Numerous B-Reps have been triangulated with the
two methods, with good triangulation quality. The Star algorithm proved to
be slower than the Sprinkle one, although its triangles present a slightly better
quality.

2.3 Introduction

This article discusses algorithms to triangulate a face F mounted on a para-
metric surface or 2-manifold S(u, v) in R3. A face F is a connected subset of
S, where S : R2 → R3 is of the form S(u, v) = [X(u, v), Y (u, v), Z(u, v)] with
X, Y, Z : R2 → R. It is common to assume that S(u, v) is a 1-1 function (no
self intersections) and that the U × V region being the pre-image of S(u, v) is
connected.

A triangulation is a planar graph T = (VT , ET) in which every vertex par-
ticipates in (at least) a loop whose size is 3. A natural embedding of a triangu-
lation occurs in R2, with vertices p ∈ VT being points p = (u, v) ∈ R2 and edges
e = pipj ∈ E being straight segments joining vertices pi and pj belonging to VT .
A triangulation on a parametric surface S(u, v) : R2 → R3 is the bijective map-
ping of a triangulation in R2. In this mapping, each vertex pi = (ui, vi) ∈ R2

is mapped to the point S(ui, vi). Each edge e = pipj in R2 is mapped as a
segment in R3 eS(i, j) = S(ui, vi)S(uj , vj) (an EDGE e near S).

The literature survey presented next indicates that the parameterization
u, v under which a surface is calculated dramatically affects the possibility of
generating a topologically and geometrically correct triangulation. In addition
to that, even if the triangulation is correct, it may be inconvenient, in that the
aspect ratio, quantity, and sensitivity of the generated triangles produce numer-
ically unstable results in the (generally subsequent) process of Finite Element
Analysis, or simply may lead to near-infinite runs, useless for practical purposes.

The relation between intervals in the parametric space |(∆u, ∆v)| = |(u2 −
u1, v2 − v1)| and the corresponding distance on S, |S(u2, v2) − S(u1, v1)| is
informally called the velocity of the surface. The parameter space suffers a
warping in 3D via the function S(u, v) and vice versa. As a consequence, the
obvious approach of generating a triangulation in parameter space and to map

14 CHAPTER 2. SURFACE TRIANGULATION

it to the surface S produces incorrect or poorly conditioned results.
In this article, two approaches by the authors are compared, which aim to

achieve parameter - independent triangulations: (a) star and (b) sprinkle gener-
ation of triangulation vertices, followed of a pseudo - delaunay triangulation in
3D space. Given a point S(u, v) in the surface S an additional set of valid neigh-
boring vertices is to be generated, to feed the pseudo - delaunay triangulation
in subsequent stages.

2.4 Literature Review

Several classifications of the reviewed literature are possible: in the first place,
[30], [6] and [11] treat the re-meshing of an already triangulated B-rep. Level
of Detail is tangentially treated in [19], [11] and [37]. [3] and [10] deal with
the quasi-equilateral triangulation in F by iterative point search on U × V 2D
parametric space. [38] and [1] pay special attention to the approximation of the
face edges as NURBS or Bezier curves in R2.

In [19] an initial mesh is refined according to the disposition of the observer
and the scene lights. An emphasis is set on multi-resolution only on the triangles
that actually are seen by the observer. An directed acyclic graph (DAG) is
formed, which tracks the modification operations performed on the vertices,
edges or faces of a initial model. A Hausdorff distance between the reference
and the current surfaces at the modified feature (edge, vertex, face) is evaluated,
and the modifications are performed starting at sites with small value of such
a measure (i.e. simplifications which only slightly modify the current surface
when compared with the original one). The algorithms are designed to work
in image space rather than in object space: subdivision is only performed if it
does not surpass a threshold in the error introduced in the model, and it has an
effect on the image. For example, if a triangle affects only one pixel there is no
point in it being further subdivided.

In [38] an emphasis is set in producing watertight tessellations (borderless 2-
manifolds in R3) by using connectivity information. The face-face connectivity
between the contiguous faces F1 and F2 is represented as a planar trimming
curve C1,2(u) that is the common limit between the 2D regions (in parametric
space U × V) that bound F1 and F2. A curvature-sensitive algorithm places
vertices on the C1,2(u) curve. In the current article, the C1,2(u) curve is not
required, as the implemented algorithm directly samples the edge curve in R3

using the curve sampling interval specified by the user. In our algorithm, this
sample on R3 is tracked back to the U × V plane by forming a piecewise linear
approximation of the trimming curve C1,2(u).

In [30], the authors start with a watertight 2-manifold M with C0-continuity
(a triangulated tessellation), and build a set of parameterizations for M . Each
parameterization covers what is called an internal node (representing an Mi

2-manifold with border) in the Reeb Graph describing the topological chances
in M along the range of a Morse function f : M −→ R. As per the Morse
theory, Mi represents a portion of the M manifold, for which f has no singular

2.4. LITERATURE REVIEW 15

points (topological changes of M) and therefore represents the complete log
of the topological evolution of M . Four types of Mi are possible: cylinders,
cups, caps, and branchings, according to the borders of Mi. For each type,
a pre-defined routine is used, which parameterizes Mi. The step of making
compatible the parameterizations for Mi, i = 0, 1, 2, ... is avoided by remeshing
the parameterizations with higher density at the borders of Mi. In this form,
still a series of parameterizations is possible, while guaranteeing a watertight
remeshed Mr version of M .

In [3] and [4] a parameterization-independent algorithm is proposed to tri-
angulate a surface. The aim of the authors is to produce a nearly uniform tri-
angulation. That is, a triangulation in which the triangles be quasi-equilateral.
A vertex p = S(u0, v0) is chosen on S(u, v) and the plane tangent to S at p,
Tp(p), is calculated. On TP (p), a circle with radius R and its regular inscribed
polygon with n sides (called Normal Umbrella - NU) are constructed along with
the n incident triangles covering the 2Π angle around p. Each angle that con-
tributes to 2Π is projected onto S, with vertex p = S(u0, v0) and projection
rays perpendicular to Tp(p). The radius R is inversely proportional to the lo-
cal curvature. Our own implementation of [4] was found that when the region
already sampled closes onto itself, in the EDGE neighborhoods or near FACE
holes, an illegal overlap of triangles is produced and the algorithm to avoid it is
difficult to control.

In [1] the display of a trimmed NURBS face is discussed, in which a com-
pilation stage is performed. The compilation stage is equivalent to what other
authors call the triangulation. The face in parametric U × V space corresponds
to a 2D connected region with holes, bounded by curved Bezier approximations
of the NURBS trimming curves. Bezier approximations are used because there
exist reasonable algorithms for the finding of a root of a Bezier curve. The re-
gion in U ×V space is cut into sub-regions which have monotonically increasing
or decreasing values of the U and V parameters. These subregions are triangu-
lated separately. As an improvement, the algorithm implemented in this paper
avoids the splitting of the U × V region into subregions. It also requires only
linear intersections (not Bezier ones), leading to a very simple implementation.

[6] presents a mesh-improving method that starts with a t opologically valid
although geometrically poor triangular mesh. The geometric degeneracies are
classified as needles (quasi isosceles triangles that have two vertices very close to
each other) and caps (triangles with one angle very close to 180◦). The elimina-
tion of needles is relatively simple. Elimination of each cap requires the slicing
of the whole mesh along a particular plane, producing an over-population of
triangles. The distance between the final and initial triangulations is used to
accept or reject the cap and needle elimination. [11] starts from reverse engi-
neering or tessellation triangular meshes to execute quality improvement and
property control on them. The article applies the subdivision and simplification
functions to augment and diminish the degree of freedom of the mesh, respec-
tively. Several heuristics are applied to refine the mesh: geometric error, face
size, faces shape quality, edge size and vertex valence. In neither [6] nor [11]
the mesh modifications are evaluated against the original solid, but against an

16 CHAPTER 2. SURFACE TRIANGULATION

existing triangulation of it. A comparison with our article is not possible, since
our work seeks an initial triangulation for a given solid.

[10] propose a quasi - isometric local mapping from a parametric surface
S(u, v) : U × V → R3 by using the control polyhedron (called there the surface
net) of the parametric surface. The reasoning is that the surface net closely
follows the warping of the parametric surface, while at the same time is very
similar to a locally developable surface (in turn a planar surface). If we assume
that a 1-1 function f : U×V → SD ⊂ R2 is known (SD is the developed surface
net), then a quasi equilateral triangulation could be calculated on SD, and taken
to the U × V domain by using f−1. From U × V the triangulation is taken to
R3 by using the parametric equations S(u, v). The image in U ×V of the quasi
equilateral triangles in SD is not quasi-equilateral, but their image in R3 would
be. The paper presents no examples in which SD does not exist for the original
surface, and a subdivision must be done, but mentions this possibility.

[37] discusses the issue of triangulation a trimmed surface F by sub-dividing
a rectangular domain in the U × V space using Quadtrees. Each quadtree is
recursively subdivided if its corner points in R3 deviate from a plane beyond
a prescribed limit. The trimming NURBS curves, which limit the face F to
triangulate are represented as piecewise linear in R3 and in the parametric
U × V space also. The quadtrees which are completely inside the piecewise
linear boundary are trivially triangulated. The ones cut by a loop segment are
triangulated only in its internal extent. The quadtree portions in U×V external
to the boundary loops are not triangulated. The paper mentions but does not
discuss a process of conciliation between the triangulations of adjacent faces in
order to have a seamless triangulation at the faces boundaries.

[34] and [36] are quite important references, used in this paper, regarding
the triangulation of 2D regions. In the present work, a Constrained Delaunay
Triangulation was used, which respects prescribed edges defined on a set of
planar points.

Section 2.5 gives a condensed review of continuous differential geometry
concepts. Section 2.6 discusses the methodology followed and its mathematical
grounds. Section 2.7 presents the results of the proposed and implemented
algorithms, while Section 2.8 concludes the article and discusses possible future
work directions.

2.5 Curvature Measurement in Parametric Sur-
faces

A parametric surface is a function S : R2 → R3, which we asume to be twice
derivable in every point. The derivatives are named in the following manner

2.5. CURVATURE MEASUREMENT IN PARAMETRIC SURFACES 17

([29], [7], [24], [2]):

Su =
∂S

∂u
; Sv =

∂S

∂v
; Suu =

∂2S

∂u2
; Svv =

∂2S

∂v2
;

Suv = Svu =
∂2S

∂u∂v
; n =

Su × Sv

|Su × Sv| (2.1)

with n being the unit vector normal to the surface S at S(u, v).
The Gaussian and Mean curvatures are given by:

K =
LN −MM

EG− FF
; H =

LG− 2MF + NE

2(EG− FF)
; (2.2)

where the coefficients E, F , G, L, M , N are:

E = Su • Su; F = Su • Sv = Sv • Su; G = Sv • Sv;
L = Suu • n; M = Suv • n; N = Svv • n; (2.3)

Minimal, Maximal, Gaussian, Mean Curvatures from the Weigarten
Application
The Weingarten Application ([7], [2]), W is an alternative way to calculate the
Gaussian and Mean curvatures.

W =
[
a11 a12

a21 a22

]
(2.4)

with a11, a12, a21, a22 being:

a11 =
MF − LG

EG− F 2
; a12 =

NF −MG

EG− F 2
;

a21 =
LF −ME

EG− F 2
; a22 =

MF −NE

EG− F 2
(2.5)

The following facts allow to calculate the curvature measures for S from the
Weingarten Application: (i) The eigenvalues k1 y k2 of W are called Prin-
cipal Curvatures, with k1 being the maximal curvature and k2 being the
minimal curvature (assume that |k1| ≥ |k2|). (ii) K = det(W) is the Gaus-
sian Curvature, with K = k1 ∗ k2. (iii) 2H = trace(W) is twice the Mean
Curvature, with H = k1+k2

2 . (iv) The maximal and minimal curvatures are:
k1 = H +

√
H2 −K and k2 = H −√H2 −K.

W ∗ v = k ∗ v is the eigenpair equation for the W matrix. The solutions for
such an equation are the eigenpairs (k1, v1) and (k2, v2). Therefore, W ∗ v1 =
k1 ∗ v1 and W ∗ v2 = k2 ∗ v2. The directions of principal curvature in U × V
space are v1 and v2 (v1 = (w11, w12) and v2 = (w21, w22)). The directions
of maximal and minimal curvatures in R3 are u1 = w11 ∗ Su + w12 ∗ Sv and
u2 = w21 ∗ Su + w22 ∗ Sv, respectively.

18 CHAPTER 2. SURFACE TRIANGULATION

2.6 Methodology

2.6.1 Calculation of F−1

A basic step in calculating a triangulation of a face F (Figure 2.1(a)) is the
determination of the pre-image F−1 in U × V space R2 of such a face, that is,
the pre-image of F under the parametric surface S(u, v) (Figure 2.1(b)). F−1 is
the connected region (possibly with holes) in R2 bounded by an external curve
Γ0 and internal ones Γi, i = 1, ..., n. In what follows we use the notation S−1(F)
to mean F−1. Figure 2.2 shows that the face F is carried by the parametric
surface S(u, v). A PL sample of the border ∂F of the face F is carried out to
calculate the pre-image S−1(F) on U × V . A calculation of the 2D bounding
box minmax(S−1(F)) of S−1(F) follows.

(a) Face defined on a 2-Manifold (don-
nut)

(b) Forward Map S(u, v) from F−1 ⊂ R2 onto F

Figure 2.1: Pre-image of a 3D Face F .

2.6.2 Star Algorithm

The calculation and sampling of the pre-image of F , S−1(F) (Figure 2.2) is a
pre-condition for starting the Star algortihm. This pre-processing initializes a
queue Q of the 3D vertices that are accepted for the triangulation of face F .

2.6. METHODOLOGY 19

These initially determined vertices are the isometric sampling of the loops Li

forming the boundary of F .
As the Star algorithm proceeds, a vertex p ∈ Q is extracted from Q. A star

is calculated around p (Figure 2.3(a)), lying on the plane Π[p, n] tangent to S at
p with normal n (Equation 2.5). The star has radius r(H), and six (6) vertices.
The radius r(H) of the star is inversely proportional to the mean curvature H
of S at p (Figure 2.3(a)). A number of vertices of the star are rejected if they
(their projection on S) fall outside F . Additional vertices are rejected if they
are too close to the already accepted vertices inside F . The survivor vertices
are projected on F and included in the queue Q. The algorithm for vertex
calculation stops when Q is empty.

After the vertex set VT on the face F is determined, a modified Delaunay
Triangulation with the points in VT proceeds, which is explained later.

Figure 2.2: The iso-distance sample of edges on F generate the triangulation
initial vertex set.

2.6.3 Sprinkle Algorithm

Figure 2.3(b) displays the fact that the creation of random points (u, v) inside
F−1 is encouraged in neighborhoods in which the curvature H is high. This
is done in this manner: (i) Create a point (u, v) with (u, v) being random
numbers and (u, v) inside minmax(S−1(F)). (ii) Return to step (i) if (u, v)
is outside F−1, (iii) Assess (u, v) against curvature as follows: define a small
radius r(H) if a local high curvature S(u, v) exists, and vice versa. (iv) Reject
(u, v) and go back to (i) if the 3D ball B(S(u, v), r(H)) contains another vertex
already marked on the face F . (v) Accept (u, v) if the ball B(S(u, v), r(H))
on F contains no other vertex already accepted and mark S(u, v) on F as an
acceptable vertice for the future triangulation. Include S(u, v) in the vertex set

20 CHAPTER 2. SURFACE TRIANGULATION

(a) Star algorithm. Sampling distance as function of the
curvature

(b) Sprinkle algorithm. Sprinkle focus as a function of the
curvature

Figure 2.3: Comparison between Star and Sprinkle algorithms for generation of
triangulation vertices.

VT .
One knows that the face F is already sufficienty sprinkled by vertices if a

given number Nt of trials to mark vertices S(u, v) on F fails. The effect of such
heuristic is hinted in Figure 2.4(a). The result of the algorithm acting on a test
B-rep is displayed in Figure 2.4(b). This B-Rep (called Yello) is specifically gen-
erated to have faces with velocity in the u direction being dramatically diferent
from the velocity in v direction, with which a grid generated in the U ×V space
will produce a triangulation with folds and plies. In contrast, Figure 2.4(b)
shows excellent aspect ratio (nearly equilateral) triangles.

A modified Delaunay Triangulation is calculated with the points in VT . Re-
sults are shown in Figure 2.4(b).

2.6.4 A Pseudo - Delaunay Triangulation

To generate the connectivity information of the set of discretized points two
approaches were used. The first one is to calculate a triangulation in parametric
space (using [35]). This approach does not produce satisfactory results whenever
the warping of the U × V space with respect to the R3 euclidean distance is

2.6. METHODOLOGY 21

(a) Sprinkle span as function of local curvature

(b) Random Sprinkle of points in R3

space. Yello B-Rep.

Figure 2.4: Regions with higher curvature are sprinkled with smaller sampling
interval.

non-homogeneous (see Introduction section). The second one (called Pseudo-
Delaunay) is described next.

The pseudo-delaunay triangulation is built with vertices of the VT set. The
invariant of the algorithm establishes that there exists a sequence of edges QE

that are the (advancing) frontier of the triangulation, and a set of availabe
vertices VT which are to be used, along edges of QE , to make triangles and
therefore to advance the frontier of already triangulated region. The algorithm
stops when the triangulated region equals F (i,e. when the set of available edges
for expansion (forming a triangle with a vertex) is exhausted.

An initial PL approximation of ∂F , the loops bounding F , is available (see
previous sections) in a sequence QE . An edge e = (pi, pj) is chosed from QE .
A vertex p ∈ V is identified such that the triangle t = (vi, vj , v) is a pseudo-
Delaunay one (see below). The edge e = (pi, pj) is replaced in QE with the
edges (pi, p) and (pj , p) in the queue QE .

A pseudo-Delaunay triangle t = (pi, pj , p) with pi ∈ VT is tested in this

22 CHAPTER 2. SURFACE TRIANGULATION

(a) Helmet.

(b) Crank Shaft.

Figure 2.5: Helmet and Crank Shaft.

manner: (a) Find the circumcenter ct of the triangle t and the radius rt of the
planar circle containing t. (b) Consider the ball Bt(ct, rt) centered in ct with
radius rt. (c) Test every vertex q of V for inclusion on Bt. If no q ∈ V is inside
Bt, t is a pseudo-Delaunay triangle (Figure 2.8).

2.7 Results

Several Boundary Representations were used as data sets for testing the two
triangulation vertex generation algorithms (Star vs. Sprinkle). The quality
of the triangulations by the two methods is roughly similar. The times for
generating the vertex sets are significantly different (see Conclusions section).

The algorithms have been tested with the following data sets: Helmet,
Crankshaft, Bearing, Pre-columbian Fish, Coupling, Gruyere. The results ap-
pear in Figures 2.5(a), 2.5(b), 2.6(a), 2.6(b), 2.6.3, 2.9(a) and 2.9(b).

2.8. CONCLUSIONS AND FUTURE WORK 23

2.8 Conclusions and Future Work

The Star algorithm produces slightly better triangles than the Sprinkle algo-
rithm. This advantage is to be expected, since the Star algorithm, by definition,
creates on the tangent plane Π[n, p] a regular hexagon (i.e. 6 equilateral trian-
gles) incident to the vertex p to expand, and projects them onto the F surface.
In contrast, the Sprinkle algorithm is considerably more efficient for generating
the vertex point set than the Star algorithm. The execution times are displayed
in the following figures: Helmet, 2.10(a), Aphrodite data Set. 2.10(b) and Hand
2.10(c). The statistics presented are concentrated in the generation of the vertex
set, because the algorithm (pseudo-Delaunay) for the connection of the vertex
set is common.

Future work is needed in the aspects of the numerical assessment of the
goodness of the triangle set, specifically in the application of Finite Element
Analysis.

24 CHAPTER 2. SURFACE TRIANGULATION

(a) Bearing.

(b) Pre-columbian Fish.

Figure 2.6: Bearing and Pre-columbian Fish.

2.8. CONCLUSIONS AND FUTURE WORK 25

Figure 2.7: Coupling Triangulation

Figure 2.8: Pseudo-Delaunay validation of triangles lying on the face F .

26 CHAPTER 2. SURFACE TRIANGULATION

(a) Gruyere B-Rep triangulated with the Star Algo-
rithm

(b) Gruyere B-Rep triangulated with the Sprinke Algo-
rithm

Figure 2.9: Triangulations of Gruyere Boundary Representation

2.8. CONCLUSIONS AND FUTURE WORK 27

(a) Helmet data set.

(b) Aphrodite data Set.

(c) Hand data set.

Figure 2.10: Comparisson between Star and Sprinkle algorithms for generation
times for triangulation vertices.

28 CHAPTER 2. SURFACE TRIANGULATION

Chapter 3

Adaptative cubical grid for
isosurface extraction

3.1 Context

A project to device a method for the generation of real-time triangular tessel-
lation of implicit surfaces was developed at VICOMTech Institute. The result
of this method generates a triangular tessellation of implicit surfaces which
can be displayed in commodity computers in real time. This work has been
founded by EAFIT University, the Colombian Council of Research and Tech-
nology (COLCIENCIAS) and The Spanish Administration agency CDTI, under
project CENIT-VISION 2007-1007, VICOMTech Institute.

John Congote, research assistant under my direction in the CAD CAM CAE
Laboratory, was able to program the application of the devised methods. For
such a purpose, theoretical contributions were needed, which appear in:

• Adaptative Cubical Grid For Isosurface Extraction. John Congote, Aitor
Moreno, Inigo Barandiaran, Javier Barandiaran, Oscar E. Ruiz. 4th In-
ternational Conference on Computer Graphics Theory and Applications
GRAPP-2009. ISBN 978-989-8111-67-8, pp 21-26. Feb 5-8, 2009. Lisbon,
Portugal.

Authors

• John Congote1,2

• Aitor Moreno2

• Iñigo Barandiaran2

• Javier Barandiaran2

• Oscar E. Ruiz.1

29

30 CHAPTER 3. ADAPTATIVE CUBICAL GRID

1. CAD CAM CAE Laboratory, EAFIT University Colombia

2. VICOMTech Institute, Spain

As co-authors of such publications, we give our permission for this material
to appear in this document. We are ready to provide any additional information
on the subject, as needed.

————————————
Prof. Oscar E. Ruiz
oruiz@eafit.edu.co
Coordinator CAD CAM CAE Laboratory
EAFIT University, Medellin, COLOMBIA

3.2. ABSTRACT 31

3.2 Abstract

This work proposes a variation on the Marching Cubes algorithm, where the
goal is to represent implicit functions with higher resolution and better graphical
quality using the same grid size. The proposed algorithm displaces the vertices
of the cubes iteratively until the stop condition is achieved. After each iter-
ation, the difference between the implicit and the explicit representations are
reduced, and when the algorithm finishes, the implicit surface representation
using the modified cubical grid is more detailed, as the results shall confirm.
The proposed algorithm corrects some topological problems that may appear in
the discretisation process using the original grid.

3.3 Introduction

Surface representation from scalar functions is an active research topic in dif-
ferent fields of computer graphics such as medical visualisation of Magnetic
Resonance Imaging (MRI) and Computer Tomography (CT) [20]. This rep-
resentation is also widely used as an intermediate step for several graphical
processes [27], such as mesh reconstruction from point clouds or track planning.
The representation of a scalar function in 3D is known as implicit representation
and is generated using continuous algebraic iso-surfaces, radial basis functions
[8] [25], signed distance transform [12] or discrete voxelisations.

The implicit functions are frequently represented as a discrete cubical grid
where each vertex has the value of the function. The Marching Cubes algo-
rithm (MC) [22] takes the cubical grid to create an explicit representation of
the implicit surface. The MC algorithm has been widely studied as has been
demonstrated by Newman [26]. The output of the MC algorithm is an explicit
surface represented as a set of connected triangles known as a polygonal repre-
sentation. The original results of the MC algorithm presented several topological
problems as demonstrated by Chernyaev [9] and have already been solved by
Lewiner [21].

The MC algorithm divides the space in a regular cubical grid. For each cube,
a triangular representation is calculated, which are then joined to obtain the
explicit representation of the surface. This procedure is highly parallel because
each cube can be processed separately without significant interdependencies.
The resolution of the generated polygonal surface depends directly on the input
grid size. In order to increase the resolution of the polygonal surface it is
necessary to increase the number of cubes in the grid, increasing the amount of
memory required to store the values of the grid.

Alternative methods to the MC algorithm introduce the concept of generat-
ing multi-resolution grids, creating nested sub-grids inside the original grid. The
spatial subdivision using octrees or recursive tetrahedral subdivision techniques
are also used in the optimisation of iso-surface representations. The common
characteristic of these types of methods is that they are based on adding more
cells efficiently, to ensure a higher resolution in the final representation.

32 CHAPTER 3. ADAPTATIVE CUBICAL GRID

Figure 3.1: Optimised Grid with 203 cubes representing the bunny.

This work is structured as follows: In Section 3.4, a review of some of the
best known MC algorithm variations is given. Section 3.5 describes the method-
ological aspects behind the proposed algorithm. In Section 3.6 details the results
of testing the algorithm with a set of implicit functions. Finally, conclusions and
future work are discussed in Section 3.7.

3.4 Related Work

Marching Cubes (MC) [22] has been the de facto standard algorithm for the
process generating of explicit representations of iso-surfaces from scalar func-
tions or its implicit definition The MC algorithm takes as an input a regular
scalar volumetric data set, having a scalar value residing at each lattice point of
a rectilinear lattice in 3D space. The enclosed volume in the region of interest is
subdivided into a regular grid of cubes. Each vertex of all cubes in the grid is set
the value of the implicit function evaluated at the vertex coordinates. Depend-
ing on the sign of each vertex, a cube has 256 (28) possible combinations, but
using geometrical properties, such as rotations and reflections, the final number
of combinations is reduced to 15 possibilities. These 15 surface triangulations
are stored in Look-Up Tables (LUT) for speed reasons. The final vertices of
the triangular mesh are calculated using linear interpolation between the values
assigned to the vertices of the cube. This polygonal mesh representation is ide-
ally suited to the current generation of graphic hardware because it has been
optimised to this type of input.

MC variations were developed to enhance the resolution of the generated
explicit surfaces, allowing the representation of geometrical details lost during

3.4. RELATED WORK 33

(a) Original Grid. The two
spheres are displayed as a sin-
gular object due to the poor
resolution in the region

(b) Intermediate Grid. Both
spheres are displayed well,
but are still joined

(c) Final Grid. The new
resolution displays two well
shaped and separated spheres
with the same number of
cubes in the grid

Figure 3.2: 2D slides representing three different states in the evolution of the
algorithm of two nearby spheres

MC discretisation process. Weber [42] proposes a multi-grid method. Inside an
initial grid, a nested grid is created to add more resolution in that region. This
methodology is suitable to be used recursively, adding more detail to conflictive
regions. In the final stage, the explicit surface is created by joining all the
reconstructed polygonal surfaces.

It is necessary to generate a special polygonisation in the joints between
the grid and the sub-grids to avoid the apparition of cracks or artifacts. This
method has a higher memory demand to store the new values of the nested-grid.

An alternative method to refine selected region of interest is the octree sub-
division [33]. This method generates an octree in the region of existence of the
function, creating a polygonisation of each octree cell. One of the flaws of this
method is the generation of cracks in the regions with different resolutions. This
problem is solve with the Dual Marching Cubes method [31] and implemented
for algebraic functions by Pavia [28]

The octree subdivision method produces edges with more than two vertices,
which can be overcome by changing the methodology of the subdivision. Instead
of using cubes, tetrahedrons were used to subdivide the grid, without creating
nodes in the middle of the edges [17]. This method recursively subdivides the
space into tetrahedrons.

The previous methodologies increment the number of cells of the grid in order
to achieve more resolution in the regions of interest. Balmelli [5] presented an
algorithm based on the movement of the grid to a defined region of interest
using a warping function. The result is a new grid with the same number of

34 CHAPTER 3. ADAPTATIVE CUBICAL GRID

cells, but with higher resolution in the desired region.
Our method is also based on the displacement of the vertices of the grid,

obtaining dense distribution of vertices near to the iso-surface. (see Figure 3.2)

3.5 Methodology

The proposed algorithm is presented as a modification of the MC algorithm.
The principal goal is the generation of more detailed approximations of the
given implicit surfaces with the same grid resolution.

Applying a selective displacement to the vertices of the grid, the algorithm
increases the number of cells containing the iso-surface. In order to avoid self-
intersections and to preserve the topological structure of the grid, the vertices
are translated in the direction of the surface. The displacement to be applied
to each vertex is calculated iteratively until a stop condition is satisfied.

Figure 3.3: Grid nomenclature, Θ cubical grid, f(x, y, z) = 0 implicit function,
N vertex neightboor, V vertices inside the grid, B vertices at the boundary of
the grid

Let be Θ a rectangular prism tessellated as a cubical honeycomb, W the
vertices of Θ [Eq. 3.1], B the boundary vertices of Θ [Eq. 3.2], and V the inner
vertices of Θ [Eq. 3.3]. For each vertex vi ∈ V , a Ni set is defined as the 26
adjacent vertices to vi, denoting each adjacent vertex as ni,j [Eq. 3.4]. (see
Figure 3.3)

W = {wi/wi ∈ Θ} (3.1)
B = {bi/bi ∈ δΘ} (3.2)
V = W −B (3.3)
Ni = {ni,j/ni,j is j th neighbourgh of vi} (3.4)

The proposed algorithm is an iterative process. In each iteration, each vertex
vi of the grid Θ is translated by a di distance vector, obtaining a new configu-
ration of Θ, where i) the topological connections of the grid are preserved, ii)
the number of cells containing patches of f are greater than, or equal to, the

3.5. METHODOLOGY 35

Figure 3.4: two consecutives iterations are show where the vertex v is moved
between the iterations t = 0 and t = 1. The new configuration of the grid is
shown as dotted lines.

previous value, and iii) the total displacement [Eq. 3.7] of the grid is lower and
is used as the stop condition of the algorithm when it reach a value ∆(see Figure
3.4).

The distance vector di is calculated as shown in [Eq. 3.6] and it can be seen
as the resultant force of each neighbouring vertex scaled by the value of f at
the position of each vertex. In order to limit the maximum displacement of the
vertices and to guarantee the topological order of Θ, the distance vector di is
clamped in the interval expressed in [Eq. 3.5]

0 ≤ |di| ≤ MIN
(|ni,j − vi|

2

)
(3.5)

di =
1
26

∑
ni,j

ni,j − vi

1 + |f(ni,j) + f(vi)| (3.6)

∑
vi

|di| ≥ ∆ (3.7)

The algorithm stops when the sum of the distances added to all the vertices
in the previous iteration is less that a given threshold ∆ [Eq. 3.7] (see Algorithm
1).

36 CHAPTER 3. ADAPTATIVE CUBICAL GRID

repeat
s := 0;
foreach Vertex vi do

di := 1
26

∑
ni,j

ni,j−vi

1+|f(ni,j)+f(vi)| ;

mindist := MIN
(
|ni,j−vi|

2

)
;

di := d̄iCLAMP(|di|, 0.0, mindist);
vi := vi + di;
s := s + |di|;

end
until s ≥ ∆ ;

Algorithm 1: Vertex Displacement Pseudo-algorithm. |x| represents the
magnitude of x, v̄ represents the normalised vector of v

3.6 Results

Figure 3.5: Two balls in different positions with a scalar function as the distance
transform, representing the behaviour of the algorithm with different objects in
the space.

The proposed algorithm was tested with a set of implicit functions as distance
transforms (see Figure 3.5) and algebraic functions (see Figure 3.6(a)). For
demonstration purposes, the number of cells has been chosen to be very low

3.6. RESULTS 37

GS3
1 MC. QLTY. AMC. QLTY. GS3

2

10 0.958555 - -
20 0.369976 0.32257 10
30 0.188298 0.186994 20
40 0.129414 0.127588 30
50 0.094878 0.092761 40

Table 3.1: Quality is measured as the average distance between the mesh vertices
and the real surfaces. The columns 1 and 2 represent the quality of the bunny
model (MC. QLTY.) using the given cubical grid size (GS1) with the standard
MC algorithm. The columns 3 and 4 shows the quality (AMC. QLTY.) using
the given cubical grid size (GS2) with the proposed algorithm after 30 itera-
tions. The quality values (columns 2 and 3) have been aligned to be as equal
as possible, showing that to achieve a target quality, the grid size using the
proposed algorithm is less than the required using the standard MC algorithm.

to aid in the visual detection of the improvements produced by the algorithm.
For the visualisation process we use Marching Tetrahedra because it produces
correct topological representation of the iso-surface, and allows the identification
of the topological correctness of the algorithm.

The obtained results of the algorithm are visually noticeable, as is shown in
Figure 3.6. Without using the algorithm, the two spheres model is perceived as
a single object (see Figure 3.2). In an intermediate state the spheres are still
joined, but their shapes are more rounded. In the final state, when the algorithm
converges, both spheres are separated correctly, each one being rendered as a
near perfect sphere. Thus, using the same grid resolution and the proposed
algorithm, the resolution of the results has been increased.

The proposed algorithm iteratively increases the number of cells containing
the surface, adding more detail to the new representation. Figure 3.6(b) shows
the incremental evolution of such a number of cubes containing the surface,
tending toward a doubling of the number. The average distance triangulation
vertices to the original surface was calculated as presented in table 3.6. The
proposed algorithm can represent the surface with a good quality with a fraction
of the amount of cells required with the original MC algorithm.

The total displacement of the vertices in each iteration is decreasing rapidly
toward zero after a number of iterations as show in the Figure 3.6(c). Despite
the seemingly high number of iterations, the algorithm is executed only once
for static functions, and can be processed in the background. Even when the
implicit function is a time variant, the cubical grid can be reused as the in-
put cubical grid for the next algorithm execution. When the implicit function
changes smoothly, the algorithm quickly re-converges after just a few iterations
significantly reducing the computational effort.

38 CHAPTER 3. ADAPTATIVE CUBICAL GRID

3.7 Conclusions and Future Work

Our proposed iterative algorithm has shown significant advantages in the rep-
resentation of distance transform functions. With the same grid size, it allows a
better resolution by displacing the vertices of the cube grids towards the surface,
increasing the number of cells containing the surface.

The algorithm was tested with algebraic functions, representing distance
transform of the models. The generated scalar field has been selected to avoid
the creation of regions of false interest, which are for static images in which
these regions are not used.

The number of iterations is directly related to the chosen value ∆ as it is
the stop condition. The algorithm will continuously displace the cube vertices
until the accumulated displacement in a single iteration is less than ∆. In the
results, it can be seen that this accumulated distance converges quickly to the
desired value. This behaviour is very convenient to represent time varying scalar
functions like 3D videos, where the function itself is continuously changing. In
this context, the algorithm will iterate until a good representation of the surface
is obtained. If the surface varies smoothly, the cube grid will be continuously
and quickly readapted by running a few iterations of the presented algorithm.
As the surface changes may be assumed to be small, the number of iterations
until a new final condition is achieved will be low. The obtained results will be
a better real-time surface representation using a coarser cube grid.

3.7. CONCLUSIONS AND FUTURE WORK 39

(a) Algebraic function rendered with an opti-
mised grid

(b) Cube increment (Y axis) vs. Iter-
ation evolution (X axis)

(c) Total displacement of the grid (Y
axis) vs. Iteration evolution (X axis)

Figure 3.6: Grid evolution for an algebraic function, comparing the number of
cubes which contains the iso-surface and the total displacement of the vertices
plotted against the stage of execution of the algorithm

40 CHAPTER 3. ADAPTATIVE CUBICAL GRID

Chapter 4

Realtime dense stereo
matching with dynamic
programming in CUDA

4.1 Context

A project to device a method for the calculation of depth from to projected
images in real-time was developed at VICOMTech Institute. The result of
this method generates a dense depth map which indicates the distance from the
camera of the captured images in real-time using the graphic card for processing
. This work has been founded by EAFIT University, the Colombian Council of
Research and Technology (COLCIENCIAS) and The Spanish Administration
agency CDTI, under project CENIT-VISION 2007-1007, VICOMTech Institute.

John Congote, research assistant under my direction in the CAD CAM CAE
Laboratory, was able to program the application of the devised methods. For
such a purpose, theoretical contributions were needed, which appear in:

• Publication pending

Authors

• John Congote1,2

• Iñigo Barandiaran2

• Javier Barandiaran2

• Oscar E. Ruiz.1

1. CAD CAM CAE Laboratory, EAFIT University Colombia

2. VICOMTech Institute, Spain

41

42 CHAPTER 4. REALTIME STEREO VISION

As co-authors of such publications, we give our permission for this material
to appear in this document. We are ready to provide any additional information
on the subject, as needed.

————————————
Prof. Oscar E. Ruiz
oruiz@eafit.edu.co
Coordinator CAD CAM CAE Laboratory
EAFIT University, Medellin, COLOMBIA

4.2. ABSTRACT 43

4.2 Abstract

Real-time depth extraction from stereo images is an important process in com-
puter vision. This paper proposes a new implementation of the dynamic pro-
gramming algorithm to calculate dense depth maps using the CUDA archi-
tecture achieving real-time performance with consumer graphics cards. We
compare the running time of the algorithm against CPU implementations and
demonstrate the scalability property of the algorithm by testing it on different
graphics cards.

4.3 Introduction

Dense depth map calculation is a common problem in computer vision. Where
in the image a depth distance is calculated for every pixel, generating a 3D
scene from the given image. The problem has been widely studied and diverse
approaches to solve the problem have been proposed [41] [18]. Furthermore, the
problem had been tracked since 2001 by Scharstein and Szeliski [32] who had
also defined a taxonomy for stereo vision algorithms dividing them into local,
global and scan-line, or semi-global methods. Depth map calculation is very
useful in the area of robotics, 3D scene reconstruction, and in the emerging field
of 3D television with technologies such as Philips WOWvx.

Real-time (RT) and near real-time algorithms to generate depth maps have
improved substantially in recent years due to the following two factors. First,
research in the field has developed new algorithms which reduce the complexity
of algorithms and the increase in computational power required by the CPU,
however these advances have been more dramatic with Graphic Processing
Unit (GPU). New technologies such as Compute Unified Device Architecture
(CUDA) opens a new promising field of work for these kinds of problems.
Recently, much of the research has been carried out on the implementation of
different depth estimation algorithms in GPU.

Local methods are more straightforward to implement using GPU. These
methods were measured and compared by Gong [15] and Tombari[39]. Also
global methods were implemented in GPU, as shown by Gibson[14] and Yang[43].
The highest quality results are achieved by using methods based on Belief
Propagation (BP)[18]. However, these methods are computationally intensive.
Methodologies that strike a good balance between velocity and quality are al-
gorithms that use a combination of a local method, dynamic programming and
a post processing step, as demonstrated by Wang [40]. Our proposal is based
mainly on this work.

Dynamic Programming (DP) has been a difficult problem to solve in parallel
architectures, as shown by Galil [13]. Some implementations of similar (DP)
algorithms have been implemented in GPU, Manavski [23]. A useful practical
implementation of the DP algorithm for depth map calculation has been at-
tempted in the past by Gong [16] without achieving significant improvements
over comparative CPU implementations.

44 CHAPTER 4. REALTIME STEREO VISION

Figure 4.1: Calculated Matrix M190 of the cones model, and the solution ob-
tained with the DP algorithm

The contribution of this paper is the implementation of the DP algorithm
in GPU using the Nvidia CUDA architecture. The algorithm calculates dense
depth maps from stereo images. For benchmarking we use a comparable CPU
implementation as a baseline and measure scalability of the GPU implementa-
tion across multiple GPU configurations. The results prove that the algorithm,
with RT performance, can be viably implemented on inexpensive consumer
graphics cards.

The paper is structured as follows: The original algorithm for the calculation
of the dense depth map is explained in section (4.6), the basics of the Nvidia
CUDA architecture shall be described in section (4.5). The parallelisation
methodology applied in this paper is detailled in section (4.7). The results
of the quality of the algorithm and a comparison of running times for each
configuration are presented in section (4.8), finally conclusions are presented in
section (4.8).

4.4. GLOSARY 45

(a) Left image (b) Ground Truth

(c) Calculated Disparity

Figure 4.2: Depthmap calculation for teddy image of Middlebury stereo vision
data set. the calculated disparity was done using our algorithm and a median
filter as a posprocessing step.

4.4 Glosary

DP: Dynamic Programming

RT: Real Time

CPU: Central Process Unit

GPU: Graphic Process Unit

CUDA: Computer Unified Device Architecture

BP: Belief propagation

GPGPU: General Purpose computation on GPU

SAD: Sum of Absolute Differences

RGB: Red-Green-Blue color space

46 CHAPTER 4. REALTIME STEREO VISION

4.5 CUDA

The graphics processor is new processing unit type common in the personal
computer that are optimised for parallel processing, the evolution of this kind
of hardware in recent years has presented a new possibility of complex compu-
tations that were restricted in the past because of the excessive time required
for the computation or execution of the algorithms making them impractical.
The General Purpose computation on GPUs (GPGPU) is a new programming
paradigm which generates new kinds of algorithms that can be processed in the
graphics units via new frameworks such as CUDA from Nvidia, which provides
a new subset of the C language with parallel primitives.

CUDA provides the execution of parallel threads each joined in blocks,
each thread has access to a global memory and also some other faster memory
spaces such as texture, shared memory cache, which can be used to improve the
running time of the algorithm. These features give the possibility of an effective
implementation of the DP algorithm in the GPU. This work was a challenging
undertaking as explained by Gong [16].

4.6 Dynamic Programming

Dense depth map calculation is a process (See figure 4.2), in which, given two
images Il and Ir each pixel of Il is linked to a pixel in Ir. In our case the
match can be expressed as a displacement for each pixel p(x, y) ∈ Il to a pixel
q(x′, y′) ∈ Ir. The images are previously rectified so that the epipolar lines of
the images are coincident with the scan-lines, this indicates that each pixel from
the Il could have their pair in the same line in the Ir and viceversa. We can
prove that y = y′ so the displacement is d = x−x′. The output of the algorithm
is a disparity map where for each pixel in Il we have a disparity value d.

The problem of dense depth map estimation is NP-hard. Approximations
used to solve it is by a generating cost function for the estimation. This cost
function is defined per pixel and the differences between the neighbouring pixels
could also be used. The cost per pixel is normally calculated by an aggregation
cost function such as SAD defined as the sum of the absolute differences of the
linked pixels colour in RGB. The problem of selecting a good match between the
pixels is solved by DP. The DP approach returns a good match for each scan
line of the images, but the differences between scan lines is a typical problem
with this method.

The DP method is: For each line y in both images Il and Ir a matrix Mh is
created with dimensions W ×Dmax where W and H is the width and height of
the images, and Dmax is the expected maximum disparity. This matrix Mh is
filled with the cost corresponding to calculated disparity d for the pixels p(x, y)
and q(x+d, y). The cost matrix Mh is calculated with the equation (4.1) where
the values of λ are assigned emipiricaly and represent the penalty of the change
in the disparity value between neighboring pixels. The aggregation cost SAD
is calculated between two pixels with the equation (4.2) where py and qy are the

4.7. PARALLEL DP 47

8 10 12 16 18 20 24 26 28 32
7 9 11 15 17 19 23 25 27 31
6 8 10 14 16 18 22 24 26 30
5 7 9 13 15 17 21 23 25 29
4 6 8 12 14 16 20 22 24 28
3 5 7 11 13 15 19 21 23 27
2 4 6 10 12 14 18 20 22 26
1 3 5 9 11 13 17 19 21 25

Table 4.1: Parallel steps for dynamic programming for a image with 10 pixels of
width and a calculation of maximum disparity of 8, the number of the maximum
number of threads performing calculation are 3. The pattern shows the order
of cost calculation in the matrix Mh

values of Red-Green-Blue (RGB) colour of the pixels in line y of the currently
processed scan lines. A graphical representation of the cost matrix is in the
figure 4.1.

Mh(x, d) = SAD(x, d) + MIN(λ + Mh(x− 1, d− 1),
Mh(x− 1, d), λ + Mh(x, d + 1)) (4.1)

SAD(x, d) = ABS(py(x)r − qy(x + d)r)+
ABS(py(x)g − qy(x + d)g) + ABS(py(x)b − qy(x + d)b) (4.2)

The extraction of the best path, is achieved by a back tracking process,
starting in the position M(W,Dmax) and following the minimum path, assigning
the disparity value d corresponding to the last position of the path in each
dimension of W .

4.7 Parallel DP

Our proposed parallelisation method of DP algorithm was based in the CUDA
framework, which found a parallelisation pattern presented in the table 4.1 of
the Matrix Mh. The pattern defines the parallel steps which can be executed
simultaneously by the block of threads. This number changes dynamically in
the execution of the algorithm, However this is managed by the architecture,
along with the global, shared memory and syncronization functions.

The presented algorithm 2 uses a block of threads to calculated the cost
matrix Mh. The size of the block of threads is (1× BX), being BX a number
between 1 and Dmax

2 , in each iteration the threads select an available cell to
calculate the cost function, an available cell is a cell which has had all of their
required values already computed. The position of the cell is calculated in the

48 CHAPTER 4. REALTIME STEREO VISION

variables c and d. For each cell (c, d), that is different for each thread, the
minimum value of the neighbours (c− 1, d+1), (c− 1, d), (c, d− 1) is calculated
in t. Then the current cell (c, d) is update with the value of the aggregation
cost function between the pixels p(c, h) and q(c + d, h) of the images Il and Ir

and the minimum value of the neighbours t.

The back tracking step is processed after filling the matrix Mh, we calculate
the path for each scanline in parallel.

Input: Ir,Il,W ,H,Dmax

Output: Mh

h← blockIdx.x
j ← threadIdx.y
for i← 0 to W ·Dmax

blockDim.y + Dmax − blockDim.y
2 do

c← j +
(
blockDim.y · i−2j

Dmax

)

d← (i− 2j) mod Dmax

t← +∞
if (c− 1 ≥ 0) ∧ (c− 1 < W) then

if (d + 1 ≥ 0) ∧ (d + 1 < Dmax) then
t← λ + min(t, S[d + 1])

end
if (d ≥ 0) ∧ (d < Dmax) then

t← min(t, S[d])
end

end
if (c ≥ 0) ∧ (c < W) then

if (d− 1 ≥ 0) ∧ (d− 1 < Dmax) then
t← λ + min(t, S[d− 1])

end
end
if t = +∞ then

t← 0
end
if (c ≥ 0) ∧ (c < W) ∧ (d ≥ 0) ∧ (d < Dmax) then

S[d]← AggregationFunc(c, h, d, Il, Ir,W,H)+t
Mh[c, d] = S[d]

end
syncthreads()

end
return Mh

Algorithm 2: CUDA implementation of the DP algorithm, the number
of running threads in the algorithm must be lower than the half of the
Dmax value.

4.8. RESULTS 49

72dpi,
28.22x21.17 cm, bb=0 0 800 600

Figure 4.3: Running time of the DP algorithm in different CPU and GPU
configurations. The difference between the two 8500GT graphic card is because
the different clock rates of the cards.

4.8 Results

The results of the algorithm were compared against a CPU implementation,
as can be seen in figure 4.3. The GPU version of the algorithm improves the
running time of the algorithm with modern graphics cards. Different processors
were used in the test, as can be seen, the evolution of the running time of
the algorithm between various types of CPU did not generate a substantial
difference, but the evolution of the GPU implementation shows a significant
improvement in the running time of the algorithm.

The images used in the benchmark are the middlebury images of tsukuba,
cones, venus and teddy. The time presented is the average running time of the
same algorithm in 10 test cycles eliminating the extreme data, and the DP
algorithm was ran 10 times every test cycle, this was done with the objective of
discarding measurement error due to race conditions in the computer and the
precision problems with the PC clock.

Conclusion

We have presented a parallel implementation for a DP algorithm that takes
benefits from the GPGPU computing model. Our implementation shows a
high scalability running on CUDA maximising the performance of modern

50 CHAPTER 4. REALTIME STEREO VISION

GPUs. These allows us to implement real-time stereo methods with increasing
resolution and precision.

Chapter 5

Conclusion

Solutions for the four geometric problems have been presented in this work. Such
solutions combine methodologies presented in different fields of computational
geometry, computer graphics and computer vision. The successful application
of the implemented solutions to real problems in the industries for which they
were built is one important contribution of this work.

The methodologies presented in this work represent and advance in the aca-
demic field of the problems with the novel algorithms presented and also the
practical implementation in real environments with good results represent a
complete cycle of the I+D+I process.

Skills in literature reviewing, scientific rhetoric, paper writing and oral pre-
sentation have been developed and strengthened throughout this work.

The valuable interaction with advisors, professors, and researchers at EAFIT
University and Institutions abroad was essential in the successful development
of this work. It was of particular importance the contact with other cultures,
values and working environments.

51

52 CHAPTER 5. CONCLUSION

Bibliography

[1] Salim S. Abi-Ezzi and Srikanth Subramaniam. Fast dynamic tessellation
of trimmed nurbs surfaced. Computer Graphics Forum, 13(”Issue 3”):107–
126, 1994.

[2] Eduardo Aguirre. Geometria diferencial de curvas y superficies. Technical
report, Departamento de Geometria y Topologia, Universidad Complutense
Madrid, 2006. Apuntes de clase.

[3] Marco Attene, Bianca Falcidieno, Michela Spagnuolo, and Geoff Wyvill.
A mapping-independent primitive for the triangulation of parametric sur-
faces. Graph. Models, 65(5):260–273, 2003.

[4] Marco Attene, Bianca Falcidieno, Michela Spagnuolo, and Geoff Wyvill.
A mapping-independent primitive for the triangulation of parametric sur-
faces, 2003.

[5] Laurent Balmelli, Christopher J. Morris, Gabriel Taubin, and Fausto
Bernardini. Volume warping for adaptive isosurface extraction. In Proceed-
ings of the conference on Visualization ’02, pages 467–474. IEEE Computer
Society, 2002.

[6] M. Botsch and L. Kobbelt. A robust procedure to eliminate degener-
ate faces from triangle meshes. In Vision, Modeling and Visualization
(VMV01), Stuttgart, Germany, November 21 - 23, 2001, 2001.

[7] Manfredo Do Carmo. Differential geometry of curves and surfaces, pages
1–168. Prentice Hall, 1976. ISBN: 0-13-212589-7.

[8] J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright,
B. C. McCallum, and T. R. Evans. Reconstruction and representation of 3d
objects with radial basis functions. In SIGGRAPH ’01: Proceedings of the
28th annual conference on Computer graphics and interactive techniques,
pages 67–76, New York, NY, USA, 2001. ACM.

[9] E. Chernyaev. Marching cubes 33: Construction of topologically correct
isosurfaces. Technical report, Technical Report CERN CN 95-17, 1995.

53

54 BIBLIOGRAPHY

[10] Wonjoon Cho, Nicholas M. Patrikalakis, and Jaime Peraire. Approximate
development of trimmed patches for surface tessellation. Computer Aided
Design, 30(14):1077–1087, December 1998.

[11] H. Date, S. Kanai, T. Kishinami, I. Nishigaki, and T. Dohi. High qual-
ity and property controlled finite element mesh generation from triangular
meshes using multi-resolution technique. Journal of Computing and Infor-
mation Science in Engineering, 5(4):266–276, 2005.

[12] Sarah F. Frisken, Sarah F. Frisken, Ronald N. Perry, Ronald N. Perry,
Alyn P. Rockwood, Alyn P. Rockwood, Thouis R. Jones, and Thouis R.
Jones. Adaptively sampled distance fields: A general representation of
shape for computer graphics. pages 249–254, 2000.

[13] Zvi Galil and Correspondence Kunsoo Park. Parallel dynamic program-
ming. Technical report, Department of Computer Science Columbia Uni-
versity, 1991.

[14] J. Gibson and O. Marques. Stereo depth with a unified architecture gpu.
Computer Vision and Pattern Recognition Workshops, 2008. CVPRW ’08.
IEEE Computer Society Conference on, pages 1–6, June 2008.

[15] Minglun Gong, Ruigang Yang, Liang Wang, and Mingwei Gong. A per-
formance study on different cost aggregation approaches used in real-time
stereo matching. Int. J. Comput. Vision, 75(2):283–296, 2007.

[16] Minglun Gong and Yee-Hong Yang. Near real-time reliable stereo matching
using programmable graphics hardware. In CVPR ’05: Proceedings of the
2005 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’05) - Volume 1, pages 924–931, Washington, DC, USA,
2005. IEEE Computer Society.

[17] Akinori Kimura, Yasufumi Takama, Yu Yamazoe, Satoshi Tanaka, and
Hiromi T. Tanaka. Parallel volume segmentation with tetrahedral adaptive
grid. ICPR, 02:281–286, 2004.

[18] A. Klaus, M. Sormann, and K. Karner. Segment-based stereo matching
using belief propagation and a self-adapting dissimilarity measure. Pattern
Recognition, 2006. ICPR 2006. 18th International Conference on, 3:15–18,
0-0 2006.

[19] R. Klein, A. Schilling, and W. Strasser. Illumination dependent refinement
of multiresolution meshes. In Proceedings of Computer Graphics Interna-
tional (CGI ’98), pages 680–687, Los Alamitos, CA, 1998. IEEE Computer
Society Press.

[20] Přemysl Kršek. Flow reduction marching cubes algorithm. In Proceedings
of ICCVG 2004, pages 100–106. Springer Verlag, 2005.

BIBLIOGRAPHY 55

[21] T. Lewiner, H. Lopes, A. Vieira, and G. Tavares. Efficient implementation
of marching cubes’ cases with topological guarantees. Journal of Graphics
Tools, 8(2):1–15, 2003.

[22] William E. Lorensen and Harvey E. Cline. Marching cubes: A high res-
olution 3d surface construction algorithm. SIGGRAPH Comput. Graph.,
21(4):169–169, 1987.

[23] Svetlin Manavski and Giorgio Valle. Cuda compatible gpu cards as effi-
cient hardware accelerators for smith-waterman sequence alignment. BMC
Bioinformatics, 9(Suppl 2), 2008.

[24] Ángel Montesdeoca. Apuntes de geometŕıa diferencial de curvas y superfi-
cies. Santa Cruz de Tenerife, 1996. ISBN: 84-8309-026-0.

[25] Bryan S. Morse, Terry S. Yoo, Penny Rheingans, David T. Chen, and
K. R. Subramanian. Interpolating implicit surfaces from scattered surface
data using compactly supported radial basis functions. In SIGGRAPH
’05: ACM SIGGRAPH 2005 Courses, page 78, New York, NY, USA, 2005.
ACM.

[26] Timothy S. Newman and Hong Yi. A survey of the marching cubes algo-
rithm. Computers & Graphics, 30(5):854–879, October 2006.

[27] Carlos Cadavid Oscar E. Ruiz, Miguel Granados. Fea-driven geometric
modelling for meshless methods. In Virtual Concept 2005, pages 1–8, 2005.

[28] Afonso Paiva, Helio Lopes, Thomas Lewiner, and Luiz Henrique
de Figueiredo. Robust adaptive meshes for implicit surfaces. SIBGRAPI,
0:205–212, 2006.

[29] S. Palacios and O. Ruiz. Calculo de curvatura en superficies parametricas.
A review of Literature on Curvature Measurement, December 2007.

[30] Giuseppe Patane, Michela Spagnuolo, and Bianca Falcidieno. Para-graph:
Graph-based parameterization of triangle meshes with arbitrary genus.
Computer Graphics Forum, 23(4):783–797, 2004.

[31] Scott Schaefer and Joe Warren. Dual marching cubes: Primal contouring
of dual grids. In PG ’04: Proceedings of the Computer Graphics and Ap-
plications, 12th Pacific Conference, pages 70–76, Washington, DC, USA,
2004. IEEE Computer Society.

[32] Daniel Scharstein and Richard Szeliski. A taxonomy and evaluation of
dense two-frame stereo correspondence algorithms. International Journal
of Computer Vision, 47:7–42, 2002.

[33] Raj Shekhar, Elias Fayyad, Roni Yagel, and J. Fredrick Cornhill. Octree-
based decimation of marching cubes surfaces. In VIS ’96: Proceedings of
the 7th conference on Visualization ’96, pages 335–ff., Los Alamitos, CA,
USA, 1996. IEEE Computer Society Press.

56 BIBLIOGRAPHY

[34] J. Shewchuk. Delaunay refinement algorithms for triangular mesh gener-
ation. Computational Geometry: Theory and Applications, 22(1–3):86–95,
2002. citeseer.ist.psu.edu / shewchuk01delaunay.html.

[35] Jonathan Richard Shewchuk. Triangle: Engineering a 2D Quality Mesh
Generator and Delaunay Triangulator. In Ming C. Lin and Dinesh
Manocha, editors, Applied Computational Geometry: Towards Geometric
Engineering, volume 1148 of Lecture Notes in Computer Science, pages
203–222. Springer-Verlag, May 1996. From the First ACM Workshop on
Applied Computational Geometry.

[36] Jonathan Richard Shewchuk. General-dimensional constrained delaunay
and constrained regular triangulations i: Combinatorial properties. Tech-
nical report, Department of Electrical Engineering and Computer Sciences
University of California at Berkeley, Berkeley, CA 94720, December 2005.
To appear in Discrete & Computational Geometry.

[37] C. Shu and P. Boulanger. Triangulating trimmed nurbs surfaces. In In-
ternational Conference on Curves and Surfaces, Saint-Malo, France, pages
381 – 388, May 2000.

[38] Wolfgang A. G. Stöger and Gerhard Kurka. Watertight tessellation of
b-rep nurbs cad-models using connectivity information. In Proceedings of
the International Conference on Imaging Science, Systems and Technology,
CISST ’03, June 23 - 26, 2003, Las Vegas, Nevada, USA, Volume 2. eds.
Hamid R. Arabnia and Youngsong Mun. CSREA Press, 2003.

[39] F. Tombari, S. Mattoccia, L. Di Stefano, and E. Addimanda. Classifica-
tion and evaluation of cost aggregation methods for stereo correspondence.
Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Con-
ference on, pages 1–8, June 2008.

[40] Liang Wang, Miao Liao, Minglun Gong, Ruigang Yang, and David Nis-
ter. High-quality real-time stereo using adaptive cost aggregation and
dynamic programming. In 3DPVT ’06: Proceedings of the Third Interna-
tional Symposium on 3D Data Processing, Visualization, and Transmission
(3DPVT’06), pages 798–805, Washington, DC, USA, 2006. IEEE Com-
puter Society.

[41] Zeng-Fu Wang and Zhi-Gang Zheng. A region based stereo matching algo-
rithm using cooperative optimization. Computer Vision and Pattern Recog-
nition, 2008. CVPR 2008. IEEE Conference on, pages 1–8, June 2008.

[42] Gunther H. Weber, Oliver Kreylos, Terry J. Ligocki, John M. Shalf, Bernd
Hamann, and Kenneth I. Joy. Extraction of crack-free isosurfaces from
adaptive mesh refinement data. In Data Visualization 2001 (Proceedings
of VisSym ’01), pages 25–34. Springer Verlag, 2001.

BIBLIOGRAPHY 57

[43] Q. Yang, L. Wang, R. Yang, S. Wang, M. Liao, and D. Nistér. Real-time
global stereo matching using hierarchical belief propagation. In BMVC,
pages 989–998. British Machine Vision Association, 2006.

