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Abstract. In depth map generation, the settings of the algorithm pa-
rameters to yield an accurate disparity estimation are usually chosen
empirically or based on unplanned experiments. A systematic statisti-
cal approach including classical and exploratory data analyses on over
14000 images to measure the relative influence of the parameters allows
their tuning based on the number of bad pixels. Our approach is sys-
tematic in the sense that the heuristics used for parameter tuning are
supported by formal statistical methods. The implemented methodology
improves the performance of dense depth map algorithms. As a result
of the statistical based tuning, the algorithm improves from 16.78% to
14.48% bad pixels rising 7 spots as per the Middlebury Stereo Evalua-
tion Ranking Table. The performance is measured based on the distance
of the algorithm results vs. the Ground Truth by Middlebury. Future
work aims to achieve the tuning by using significantly smaller data sets
on fractional factorial and surface-response designs of experiments.
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1 Introduction

Depth map calculation deals with the estimation of multiple object depths on a
scene. It is useful for applications like vehicle navigation, automatic surveillance,
aerial cartography, passive 3D scanning, automatic industrial inspection, or 3D
videoconferencing [1]. These maps are constructed by generating, at each pixel,
an estimation of the distance between the screen and the object surface (depth).

Disparity is commonly used to describe inverse depth in computer vision, and
also to measure the perceived spatial shift of a feature observed from close camera
viewpoints. Stereo correspondence techniques often calculate a disparity function
d (x, y) relating target and reference images, so that the (x, y) coordinates of
the disparity space match the pixel coordinates of the reference image. Stereo
methods commonly use a pair of images taken with known camera geometry to



generate a dense disparity map with estimates at each pixel. This dense output
is useful for applications requiring depth values even in difficult regions like
occlusions and textureless areas. The ambiguity of matching pixels in heavy
textured or textureless zones tends to require complex and expensive overall
image processing or statistical correlations using color and proximity measures
in local support windows.

Most implementations of vision algorithms make assumptions about the vi-
sual appearance of objects in the scene to ease the matching problem. The steps
generally taken to compute the depth maps may include: (i) matching cost com-
putation, (ii) cost or support aggregation, (iii) disparity computation or opti-
mization, and (iv) disparity refinement.

This article is based on work done in [1] where the principles of the stereo
correspondence techniques and the quantitative evaluator are discussed. The lit-
erature review is presented in section 2, followed by section 3 describing the
algorithm, filters, statistical analysis and experimental set up. Results and dis-
cussions are covered in section 4, and the article is concluded in section 5.

2 Literature Review

The algorithm and filters use several user-specified parameters to generate the
depth map of an image pair, and their settings are heavily influenced by the
evaluated data sets [2]. Published works usually report the settings used for
their specific case studies without describing the procedure followed to fine-tune
them [3–5], and some explicitly state the empirical nature of these values [6]. The
variation of the output as a function of several settings on selected parameters is
briefly discussed while not taking into account the effect of modifying them all
simultaneously [3, 2, 7]. Multiple stereo methods are compared choosing values
based on experiments, but only some algorithm parameters are changed not
detailing the complete rationale behind the value setting [1].

Conclusions of the Literature Review. Commonly used approaches in
determining the settings of depth map algorithm parameters show all or some of
the following shortcomings: (i) undocumented procedures for parameter setting,
(ii) lack of planning when testing for the best settings, and (iii) failure to consider
interactions of changing all the parameters simultaneously.

As a response to these shortcomings, this article presents a methodology
to fine-tune user-specified parameters on a depth map algorithm using a set of
images from the adaptive weight implementation in [4]. Multiple settings are used
and evaluated on all parameters to measure the contribution of each parameter
to the output variance. A quantitative accuracy evaluation allows using main
effects plots and analyses of variance on multi-variate linear regression models
to select the best combination of settings for each data set. The initial results
are improved by setting new values of the user-specified parameters, allowing
the algorithm to give much more accurate results on any rectified image pair.



3 Methodology

Image Processing. In the adaptive weight algorithm ([3]), a window is moved
over each pixel on every image row, calculating a measurement based on the
geometric proximity and color similarity of each pixel in the moving window to
the pixel on its center. Pixels are matched on each row based on their support
measurement with larger weights coming from similar pixel colors and closer
pixels. The horizontal shift, or disparity, is recorded as the depth value, with
higher values reflecting greater shifts and closer proximity to the camera.

The strength of grouping by color (fs (cp, cq)) for pixels p and q is defined as
the Euclidean distance between colors (∆cpq) by Equation (1). Similarly, group-
ing strength by distance (fp (gp, gq)) is defined as the Euclidean distance between
pixel image coordinates (∆gpq) by Equation (2). Where γc and γp are adjustable
settings used to scale the measured color delta and window size respectively.

(1)fs (cp, cq) = exp

(
−∆cpq

γc

)

(2)fp (gp, gq) = exp

(
−∆gpq

γp

)
The matching cost between pixels shown in Equation (3) is measured by

aggregating raw matching costs, using the support weights defined by Equa-
tions (1) and (2), in support windows based on both the reference and target
images.

(3)E (p, p̄d) =

∑
q∈Np,q̄d∈Np̄d

w (p, q)w (p̄d, q̄d)
∑

c∈{r,g,b} |Ic (q)− Ic (q̄d)|∑
q∈Np,q̄d∈Np̄d

w (p, q)w (p̄d, q̄d)

where w (p, q) = fs (cp, cq) · fp (gp, gq), p̄d and q̄d are the target image pixels
at disparity d corresponding to pixels p and q in the reference image, Ic is the
intensity on channels red (r), green (g), and blue (b), and Np is the window
centered at p and containing all q pixels. The size of this movable window N is
another user-specified parameter. Increasing the window size reduces the chance
of bad matches at the expense of missing relevant scene features.

Algorithms based on correlations depend heavily on finding similar textures
at corresponding points in both reference and target images. Bad matches hap-
pen more frequently in textureless regions, occluded zones, and areas with high
variation in disparity. The winner takes all approach enforces uniqueness of
matches only for the reference image in such a way that points on the target
image may be matched more than once, creating the need to check the dispar-
ity estimates and fill any gaps with information from neighboring pixels using
post-processing filters like the ones shown in Table 1.

Statistical analysis. The user-specified input parameters and output accu-
racy measurements data is statistically analyzed measuring the relations amongst
inputs and outputs with correlation analyses, while box plots give insight on the



Filter Function User-specified parameter

Adaptive
Weight [3]

Disparity estimation and
pixel matching

γaws: similarity factor, γawg: proximity factor
related to the WAW pixel size of the support
window

Median Smoothing and incorrect
match removal

WM : pixel size of the median window

Cross-
check[8]

Validation of disparity
measurement per pixel

∆d: allowed disparity difference

Bilateral[9] Intensity and proximity
weighted smoothing with
edge preservation

γbs: similarity factor, γbg: proximity factor re-
lated to the WB pixel size of the bilateral win-
dow

Table 1. User-specified parameters of the adaptive weight algorithm and filters.

influence of groups of settings on a given factor. A multi-variate linear regression
model shown in Equation (4) relates the output variable as a function of all the
parameters to find the equation coefficients, correlation of determination, and
allows the analysis of variance to measure the influence of each parameter on
the output variance. Residual analyses are checked to validate the assumptions
of the regression model like constant error variance, and mean of errors equal to
zero, and if necessary, the model is transformed. The parameters are normalized
to fit the range (−1, 1) as shown in Table 2.

(4)ŷ = β0 +

n∑
i=1

βixi + ε

where ŷ is the predicted variable, xi are the factors, and βi are the coefficients.
Experimental set up. The depth maps are calculated with an implementa-

tion developed for real time videoconferencing in [4]. Using well-known rectified
image sets: Cones from [1], Teddy and Venus from [10], and Tsukuba head and
lamp from the University of Tsukuba. Other commonly used sets are also freely
available [11, 12]. The sample used consists of 14688 depth maps, 3672 for each
data set, like the ones shown in Figure 1.

Parameter Name Levels Values Coding

Adaptive Weights Window Size aw win 4 [1 3 5 7] [-1 -0.3 0.3 1]
Adaptive Weights Color Factor aw col 6 [4 7 10 13 16 19] [-1 -0.6 -0.2 0.2 0.6 1]
Median Window Size m win 3 [N/A 3 5] [N/A -1 0.2 1]
Cross-Check Disparity Delta cc disp 4 [N/A 0 1 2] [N/A -1 0 1]
Cross-Bilateral Window Size cb win 5 [N/A 1 3 5 7] [N/A -1 -0.3 0.3 1]
Cross-Bilateral Color Factor cb col 7 [N/A 4 7 10 13 16 19] [N/A -1 -0.6 -0.2 0.2 0.6 1]

Table 2. User-specified parameters of the adaptive weight algorithm.

Many recent stereo correspondence performance studies use the Middlebury
Stereomatcher for their quantitative comparisons [2, 7, 13]. The evaluator code,



(a) (b) (c) (d)

Fig. 1. Depth Map Comparison. Top: best initial, bottom: new settings. (a) Cones, (b)
Teddy, (c) Tsukuba, and (d) Venus data set.

sample scripts, and image data sets are available from the Middlebury stereo
vision site4, providing a flexible and standard platform for easy evaluation.
The online Middlebury Stereo Evaluation Table gives a visual indication of
how well the methods perform with the proportion of bad pixels (bad pixels)
metric defined as the average of the proportion of bad pixels in the whole im-
age (bad pixels all), the proportion of bad pixels in non-occluded regions
(bad pixels nonocc), and the proportion of bad pixels in areas near depth dis-
continuities (bad pixels discont) in all data sets.

4 Results and Discussion

Variable selection. Pearson correlation of the factors show that they are in-
dependent and that each one must be included in the evaluation. On the other
hand, a strong correlation amongst bad pixels and the other outputs is de-
tected and shown in Figure 2(a). This allows the selection of bad pixels as the
sole output because the other responses are expected to follow a similar trend.

Exploratory Data Analysis. Box plots analysis of bad pixels presented
in Figure 2(b) show lower output values from using filters, relaxed cross-check
disparity delta values, large adaptive weight window sizes, and large adaptive
weight color factor values. The median window size, bilateral window size, and
bilateral window color values do not show a significant influence on the output
at the studied levels.

The influence of the parameters is also shown on the slopes of the main
effects plots of Figure 3 and confirms the behavior found with the ANOVA of
the multi-variate linear regression model. The settings to lower bad pixels from
this analysis yields a result of 14.48%.

4 http://vision.middlebury.edu/stereo/



Multi-variate linear regression model. The analysis of variance on a
multi-variate linear regression (MVLR) over all data sets using the most parsi-
monious model quantifies the parameters with the most influence as shown in
Figure 2(c). cc disp is the most significant factor accounting for a third to a half
of the variance on every case.

(a) Pearson Correlation Coefficient.

(b) Box Plots (c) ANOVA proportion of
bad pixels.

Fig. 2. (a) bad pixels and other output correlation. (b) Box Plots of bad pixels. (c)
Contribution to the bad pixels variance by parameter.

Interactions and higher order terms are included on the multi-variate linear
regression models to improve the goodness of fit. Reducing the number of input
images per dataset from 3456 to 1526 by excluding the worst performing cases
corresponding to cc disp = 0 and aw col = [4, 7], allows using a cubic model
with interactions and an R2 of 99.05%.

The residuals of the selected model fail to follow a normal distribution. Trans-
forming the output variable or removing large residuals does not improve the
residuals distribution, and there are no reasons to exclude any outliers from
the image data set. Nonetheless, improved algorithm performance settings are
found using the model to obtain lower bad pixels values comparable to the
ones obtained through the exploratory data analysis (14.66% vs. 14.48%).



In summary, the most noticeable influence on the output variable comes
from having a relaxed cross-check filter, accounting for nearly half the response
variance in all the study data sets. Window size is the next most influential
factor, followed by color factor, and finally window size on the bilateral filter.
Increasing the window sizes on the main algorithm yield better overall results at
the expense of longer running times and some foreground loss of sharpness, while
the support weights on each pixel have the chance of becoming more distinct and
potentially reduce disparity mismatches. Increasing the color factor on the main
algorithm allows better results by reducing the color differences, and slightly
compensating minor variations in intensity from different viewpoints.

A small median smoothing filter window size is faster than a larger one, while
still having a similar accuracy. Low settings on both the window size and the
color factor on the bilateral filter seem to work best for a good balance between
performance and accuracy.
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Fig. 3. Main Effects Plots of each factor level for all data sets. Steeper slopes relate to
bigger influence on the variance of the bad pixels output measurement.

The optimal settings in the original data set are presented in Table 3 along
with the proposed combinations. Low settings comprise the depth maps with
all their parameter settings at each of their minimum tested values yielding
67.62% bad pixels. High settings relates to depth maps with all their param-
eter settings at each of their maximum tested values yielding 19.84% bad pixels.
Best initial are the most accurate depth maps from the study data set yielding
16.78% bad pixels. Exploratory analysis corresponds to the settings deter-
mined using the exploratory data analysis based on box plots and main effects
plots yielding 14.48% bad pixels. MVLR optimization is the extrapolation
optimization of the classical data analysis based on multi-variate linear regres-
sion model, nested models, and ANOVA yielding 14.66% bad pixels.

The exploratory analysis estimation and the MVLR optimization tend to
converge at similar lower bad pixels values using the same image data set. The
best initial and improved depth map outputs are shown in Figure 1.



Run Type bad pixels aw win aw col m win cc disp cb win cb col

Low Settings 67.62% 1 4 3 0 1 4
High Settings 19.84% 7 19 5 2 7 19
Best Initial 16.78% 7 19 5 1 3 4
Exploratory analysis 14.48% 9 22 5 1 3 4
MVLR optimization 14.66% 11 22 5 3 3 18

Table 3. Model comparison. Average bad pixels values over all data sets and their
parameter settings.

5 Conclusions and Future Work

This work presents a systematic methodology to measure the relative influence of
the inputs of a depth map algorithm on the output variance and the identification
of new settings to improve the results from 16.78% to 14.48% bad pixels. The
methodology is applicable on any group of depth map image sets generated with
an algorithm where the relative influence of the user-specified parameters merits
to be assessed.

Using design of experiments reduces the number of depth maps needed to
carry out the study when a large image database is not available. Further analysis
on the input factors should be started with exploratory experimental fractional
factorial designs comprising the full range on each factor, followed by a response
surface experimental design and analysis. In selecting the factor levels, analyzing
the influence of each filter independently would be an interesting criterion.
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