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Abstract
This article presents a methodology for reconstruction of 3D faces which is based on
stereoscopic images of the scene using active and passive surface reconstruction. A
sequence of gray patterns is generated, which are projected onto the scene and their
projection recorded by a pair of stereo cameras. The images are rectified to make
coincident their epipolar planes and so to generate a stereo map of the scene. An
algorithm for stereo matching is applied, whose result is a bijective mapping between
subsets of the pixels of the images. A particular connected subset of the images (e.g.
the face) is selected by a segmentation algorithm. The stereo mapping is applied to such
a subset and enables the triangulation of the two image readings therefore rendering the
(x,y,z) points of the face, which in turn allow the reconstruction of the triangular mesh
of the face. Since the surface might have holes, bilateral filters are applied to have
the holes filled. The algorithms are tested in real conditions and we evaluate their
performance with virtual datasets. Our results show a good reconstruction of the faces
and an improvement of the results of passive systems.
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1 INTRODUCTION

1.1 Mathematical Context
In general, surface reconstruction from optical samples requires a function G relating
pixels in an image of the scene A×B (A,B ⊂ N) with points p ∈ R3. This function,
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G : A×B→ R3, is an injection since the image only records the visible part of the
scene. G is not an onto function, as there are many points p ∈ R3 for which there is no
pixel (i, j) ∈ A×B in the image that records them.

Once this geometry function G is known, it is relatively simple to build a triangular
mesh of the portion of the object visible in the image. Under a threshold of geo-
metrical proximity, G(i, j),G(i+ i, j),G(i+ 1, j + 1) may be considered the vertices
of a triangular facet of the sought surface M. Moreover, the triangles being natural
neighbors to triangle t = [G(i, j),G(i+ i, j),G(i+1, j+1)] are the ones involving pix-
els (i, j+1),(i+2, j+1),(i, j−1), again, under thresholds of geometrical proximity.
Stitching the different M triangular meshes originated in different views of the scene is
known as zippering, and is not in the scope of our article. Literature on the topic might
be found in [GT94], [MGC+10] and [SOS04].

The discussion in this article involves two images, which may be labeled, without
losing generality, as right and left, IR and IL. Simplifying the discussion, a color image
is a mapping I : A×B→ [0,255]3. For example, I(i, j) = (143,23,112) means that
the color registered in the pixel (i, j) of I corresponds to Red=143, Green=23 and
Blue=112. A grey scale image has the form I(i, j) = (k,k,k) due to the fact that in it
the Red, Green and Blue graduations are identical (k ∈ [0,255]).

Let SL and SR be the coordinate systems associated to images Left and Right, re-
spectively. In the general configuration of the set-up, SL and SR such that (1) the Z axis
of the coordinate system is normal to the capture plane of the image, and (2) the two
cameras point to a common point p ∈R3. In this article we assume that the images are
rectified. This means, both of them have been rotated inside their own X−Y plane (i.e.
rotation around the Z axis of the image) in such a manner that the epipolar plane of the
set-up is seen as the plane y = Ee in both images. That means, the epipolar plane is
seen as the same horizontal line in both images. We call the rectified images IR and IL
and their rectified and their rectified coordinate systems SL and SR, respectively.

Let us consider a point p ∈ R3 recorded in both images IR and IL. Because the
previous assumptions we have that GL(i, j) = p and GR(i,k) = p. This means, the
point p appears in the same row i of pixels in both images. The value |k− j| is an offset
that only occurs in the same pixel row of both images. Since we know that pixels (i, j)
in image IL and (i,k) = p in image IR record the same point p ∈ R3, the point p can be
recovered by a usual triangulation procedure.

1.2 Informal Context
Human face reconstruction is a common problem in computer vision and computer
graphics [SL09], where one possible objective is the generation and animation of a
virtual model of it. The face is one of the most important identification regions of
the human body, presenting commensurate technical challenges [ZCPR03]. A correct
reconstruction of human faces is a precondition to both augmented reality and face
recognition.

OJO: HERE, ONE MUST SAY WHY IS FACE RECONSTRUCION DIFFERENT
FROM GENERAL SURFACE RECONSTRUCION.

3D surface reconstruction may be achieved by both passive and active methods.
Passive ones do not change the environment in the process of reconstruction. Even

2



Figure 1: Results of the algorithm with the virtual dataset. Smooth surfaces are obtained with
wider baselines.

thought passive methods obtain very good results, their setups are very expensive be-
cause they required a very high resolution required for obtaining reasonable results[BBB+10].

Active systems obtain higher accuracy using off-the shelf components (OJO: WHO
SAYS SO?). They modify or adapt the environment during the capture process, for
example by (OJO: SAY WHICH ACTIONS TYPICALLY MAKE A SYSTEM TO
BE ’ACTIVE’). Our active system uses the projection of a light pattern (i.e structured
light), which is widely used for face surface reconstruction. In structured light systems
any change on the setup requires new algorithms for face (surface) reconstruction.

The 3D surface reconstruction system implemented and informed in this article is
part of a system used for full body reconstruction with visual hull algorithm [HP10].
Our setup applied to a face-body model produces a (OJO: IS IT A TRIANGULAR
MESH ?) triangular mesh with high detail in the face region and low detail in the rest
of the body. The reason for this differential resolution is that, while for the face region
one requires high frequency details (e.g. texture of the skin), for the rest of the body
such details are not required in our applications.

This article presents a system for face reconstruction which articulates non-proprietary
hardware and our own software to obtain geometrical information from two images
(possibly originated in 3D video - conference set ups). Our system also recovers the
3D geometry form the body region, although intentionally using lower resolution for
neighborhoods other than the face.

This paper, Section 2 reviews previous works in face reconstruction. Section 3
presents the methodology implemented, including generation of the light patterns, cap-
ture, segmentation and reconstruction. Section 4 discusses the hardware set-up for
the experiment and its configuration. Section 5 presents the results of the 3D surface
reconstruction set-up and algorithms, and evaluates the reconstructed models against
with real data. Section 6 concludes the work and proposes the future actions in this
domain.

2 RELATED WORK
Face reconstruction is a widely studied topic. [PL05] presents a tutorial on face recon-
struction, describing different problems and approaches from an artistic point of view,
looking for a correct representation of the face and its expressions in multi- media.
[SL09] presents a survey of 3D face reconstruction methods, classifying them in three
different categories: single image, stereo images and videos.

3



Passive systems are commonly used for face reconstruction. One of the advan-
tages of these systems is their non interaction with the environment, allowing to cap-
ture the geometry without interfering with other systems (OJO: what does this mean
?). [OTRT05] uses a system with four calibrated cameras applying a multi - view al-
gorithm. A stochastic model is generated for the identification of the geometry, by
minimizing a cost function. [LLWD05] compares different stereo algorithms for face
reconstruction, and proposes an appropiate geometrical configuration of cameras to
obtain accurate results. [ARL+09] presents a complex setup to a high resolution face
reconstruction system. The methodology is based on an iterative reconstruction of the
face by incrementing the size of the image and the number of stereo pairs used in each
step. [BBB+10] extends the approach proposed in [ARL+09] by adding a postprocess-
ing step that modifies the geometry of the face by using a texture, assuming that small
dark regions of the face represent small hollows. This approach obtaining a more rich
geometry.

Structured light for 3D reconstruction have been study for several years. The infor-
mation obtained with this kind of systems is already being used as ground truth data
for the evaluation of pasive reconstruction systems, such as stereo algorithms [SS03].
An extensive survey of structured light 3D reconstruction approaches can be found in
[SFPL10], where a classification of different coding techniques are presented and eval-
uated. They identify the best coding approach for each one of the possible scenario
configurations.

Real time capture of facial expresions is also an important feature in some sys-
tems. Several problems have to be addresed to accomplish this objective. One of these
problems is the difficulty of projecting several patterns for a reconstruction , so other
patterns have been employed which uses color models as [TFMS05] which allows a
denser codification of the pattern, also single frame reconstruction with 2D coding is
possible[CLZ08]. Another problem is hardware calibration to obtain several frames
per second with a correct synchronization process between the projector and the cam-
eras. An accepted synchronization approach can be found in [ZRY06]. Finaly, for a
correct pattern codification of time variant patterns, a motion compensation should be
implemented. This issue is especially critical for face reconstruction systems, where
the person being reconstructed could move in a involuntary way,during adquisition
[WLG07]

3 METHODOLOGY
Our algorithm of face reconstruction uses a set of stereo images captured at the same
moment when a pattern is projected into the face. The images are captured in a setup
previously calibrated. We assume that the object does not move between the different
captures and the face is assumed to be a smooth surface without hair or beard and
without highlight reflections. The result is a mesh of triangles correctly positionated in
the space which represent the face region.
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3.1 Stereo Calibration
Stereo calibration refers to the task of finding the relative pose between the cameras of a
stereo pair. The objective is to feed subsequent stereo rectification processes that align
the images such that the epipolar lines are horizontal and thus matching algorithms for
3D reconstruction can be implemented as one-dimensional searches.

Typically, stereo calibration is carried out by means of finding a number of point-
correspondences between the images of the pair and retrieving the fundamental matrix.
Let x be the image of a 3D point in the left image, and x′ the image of the same
point in the right image. The fundamental matrix restricts the position of x′ to the
epipolar line associated to x, such that x′>Fx = 0. It has been shown [HZ04], that the
knowledge of the fundamental matrix can be used to retrieve the projection matrices of
the two cameras of the pair, up to a projective ambiguity that can be solved with known
restrictions of the camera.

Besides, images captured by real cameras show some tangential and radial distor-
tion, which can be corrected applying the following functions:

u = px +(u− px)(1+ k1r+ k2r2 + k3r3 + . . .)

v = py +(v− py)(1+ k1r+ k2r2 + k3r3 + . . .)

where r2 = (u− px)
2 + (v− py)

2 and k1,k2,k3, . . . are the coefficients of the Taylor
expansion of an arbitrary radial displacement function L(r).

Parameter identification of the camera stereo pair is extracted from the calibra-
tion information of the full body reconstruction setup; which is further explained in
[RVG08]. For our purposes we select the camera pair which are focused to the face
region of the body, and we follow a 3D stereo reconstruction process with them.

3.2 PATTERN GENERATION
Pattern generation refers to the task of creating of a set of synthetic binary images to be
projected as structured ligth in the scene. The objetive is to identify the coordinates of
the projected pattern in the image scene and thus allowing a poing matching algorithm
to became independient of the color in the captured scene.

The used patterns are represented as a matrix of boolean values. Let P be a matrix of
M columns and N rows thus P = {Pm,n ∈ {0,1}} with 0 < m < M and 0 < n < N. Let C
be a matrix of the same dimensions of P thus C = {Cm,n ∈ (0,M)⊆N}. The restriction
of the number of values in the matrix C is the same that the number of columns allows
the correct identification of the column in the images. Let g be a function such as
g : N→ N which is bijective and transforms the numbers from binary representation
to Gray representation as described in algorithm 1, the inverse Gray function g−1 is
described in algorithm 2. The number of images to be projected depends of the number
of columns of the matrix C, so nPat = dlog2 Me

The nPat patterns represented by the matrix P are generated as follows:

Pi
j,k = g( j)•2i
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Input: bin
Output: gray
return bin(bin/2)

Algorithm 1: Gray function to convert from binary to gray code

Input: gray
Output: bin,nPat
ish,ans, idiv ∈ N
ish← 1
ans← gray
while 1 do

idiv← ans
ish

ans← ans⊕ idiv
if idiv≤ 1∨ ish = 32 then

return ans
end
ish← ish×2

end
Algorithm 2: Gray function to convert from Gray code to binary

where 0 < i < nPat represent the number of the pattern, j,k the coordinates in the
matrix P. The pattern structure can be depicted as a sequence of columns as can be
visualized in the figure 2. The nature of this kind of patterns is 1D because the cali-
bration setup already give us an epipolar constrain of the images. Therefore it is not
neccesary to use of 2D patterns in this case.

3.3 PATTERN RECOGNITION
Pattern recognition refers to the task of creating a pair of images which maps the posi-
tion of the projected patterns P in the set of stereo pair of images. The objetive is the
identification of the projected pattern in the set of images, and calculate the value of
the matrix C for each pixel. This matrix allow the point matching algorithm to became
unambiguos since each point in the maps is labeled uniquely in each epipolar line.

Let s = L,R be matrices of W columns and H rows, thus L = {Lw,h ∈ (0,255)} with
0<w<W and 0< h<H. The matrices L and R represent the information of the stereo
pair cameras in grayscale. Let O = {Ow,h ∈ (0,M)} be the decode maps OL, OR. Let
t : (0,255)→ {0,1} be a threshold function which binarize the images L and R. The
threshold value could be calculated with the Otsu algorithm as explained in [KBW+09]
or by means of calculating the alvedo of the images with the process described in
[SS03] where each pattern is projected two times, each one with the original version
and their negative.

Os
m,n = g−1

(∨
i

t
(
si

m,n
)
·2i

)
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Figure 2: Gray code

As shown in figure 3 the set of L and R images are binarized. Stereo reconstruction
images are combined, and a unique map OL and OR is processed. The maps should be
rectified as shown in figure 4: this rectification process is possible because the camera
information is already known as explained in section 3.1.

Figure 3: Stereo images captured from the cameras and their result of the threshold function

3.4 STEREO RECONSTRUCTION
Stereo reconstruction task calculates the point correspondence between two images.
The objective is to calculate the 3D point coordinates of each pixel in the stereo im-
ages. The previous steps of the algorithm such as the stereo calibration assures the
epipolar constrain. Pattern generation process gives the color independence of the im-
ages. Pattern recognition maps the set of images into a map without ambiguities. For
dense depthmap calculation we used a simple box filter algorithm, based on sum of
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Figure 4: O maps of the images, the gray value in each pixel represents the value of the C matrix
in the stereo images and the rectified version

square diferences SSD and a Winner Takes All WTA for pixel selection [SS02].
Let D be a matrix of W columns and H rows, thus D = {Dw,h ∈ N}. where D

describes the pixel difference between the same point in the image L and R. The iden-
tification of the correct disparity the following function is applied.

Dm,n = minargl (SSD(OL,OR,m,n, l))

SSD(L,R,m,n, l) =
m+b

∑
e=m−b

n+b

∑
f=n−b

(
Le, f −Re, f+l

)2

The figure 5 shows the result of the disparity maps DL and DR. The identification
of wrong matched points is carried out by applying proccess such as cross cheking
and joint bilateral filter. It is assumed that the biggest connected region represents
the face, then a max blob algorithm is applied to filter regions outside the face. The
mesh is generated by joining adjacent pixels in the image with their 3D coordinates.
The topology of the mesh is correct since the difference between the coordinates of
adjacent pixels are small.

4 SETUP CONFIGURATION
As our algorithm is part of a bigger chain of process where a full body reconstruction
process is done. We tried to mantain the same setup for our algorithm, even we tried to
use a passive system for face reconstruction, the resolution obtained where insuficient
to fulfill our needs. Then, we put a stereo camera setup with a projector in the middle
of the cameras. We identified that an small distance between the cameras does not give
enough information for recovering 3D positions accurately. In opposite, a wide base-
line between cameras generates occlusion regions, althought projection information is
used for hole filling in post processing step.
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Figure 5: Stereo reconstruction of the face, the disparity images for the L and R, the maximum
connected region and final depthmap result.

Figure 6: 3D face reconstruction, dark regions and occluded ones in the original images shows
problems in the generated mesh
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Figure 7: Ground truth depthmap image of a face

The cameras used where tested with different resolutions, 1024x768, 1240x960
and 1600x1200. Finally, the resolution was set to 1240x960. Also, the projector were
defined at a resolution of 800x600 because an increase of resolution generates very
high frecuency patterns, that are very difficutl to identify accurately at that resolution.
We found that a minimum width of 4 pixels for each column of the pattern is necesary
for a correct identification.

Different kind of binary patterns were used. Gray pattern generates the best results.
Using binary or golay patterns shows in some aspects imposible to generate a workable
results. In this way, we didn’t consider these methods for the final version, and used
only Gray codes. The binarization of the images present one of the biggest problems
of the structured ligth setup. We used the Otsu method but it exhibits some problems,
such as high sensitivity to areas of specular reflection. We finally choose the projection
of the negative images with good results and a threshold t with a value of the half of
the range of the gray image.

5 RESULTS
The evaluation of the algorithm presents several problems since the groundtruth in-
formation it is not available. However, we implemented a virtual environment which
resembles a real setup. This approach allowed us to test our method and validate our
results. We use Blender software for the generation of the setup and the identification
of the groundtruth data, as shown in figure 8. The groundtruth was defined as a nor-
malized depthmap with values between 0 and 255 using all the posible values in the
image format as shown in the figure 7.

Different camera positions were tested in our virtual setup, for the identification of
the best baseline distance. The results obtained with the algorithm are shown in the
figure 8. and the position of the cameras are shown in the figure 9.

The groundtruth information and the results of the algorithm show a difference in
scale, but not in position. We measured the difference of the results and the groundtruth
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Figure 8: Result from the different cameras in the virtual setup

Figure 9: Camera positions for virtual framework

with a image correlation algorithm. The correlation gives us a value between the range
of 0 and 1 where 0 is a bad results and 1 is the groundtruth. The table 1 presents the
correlation values obtained for different camera position, and the figure 1 shows the 3D
mesh generated.

6 CONCLUSIONS AND FUTURE WORK
We present a methodology for face reconstruction in a mixed enviroment of active-
pasive setup. Structured light shows a quality improvement against the results obtained
with pasive setups. Time multiplexing codification has the problem of motion between
the captured images generating a waving efect in the reconstructions. Even robust
algorithms of point matching for dense depthmaps were tested there were no real im-
provement in the results. We will try with color or 2D patterns which only requieres
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Baseline distance Value
1 0.904372
2 0.938449
3 0.958089
4 0.974051

Table 1: Correlation Results

one exposition that present a better aproach for the reconstruction of faces since the
motion problem is not present.
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