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ABSTRACT

Curve reconstruction from noisy point samples is
needed for surface reconstruction in many applica-
tions (e.g. medical imaging, reverse engineering,
etc.). Because of the sampling noise, curve recon-
struction is conducted by minimizing the fitting er-
ror (f ), for several degrees of continuity (usually
C0, C1 and C2). Previous works involving smooth
curves lack the formal assessment of the effect on op-
timized curve reconstruction of several inputs such
as number of control points (m), degree of the para-
metric curve (p), composition of the knot vector (U ),
and degree of the norm (k) to calculate the penalty
function (f ). In response to these voids, this arti-
cle presents a sensitivity analysis of the effect of m
and k on f . We found that the geometric goodness
of the fitting (f ) is much more sensitive to m than
to k. Likewise, the topological faithfulness on the
curve fit is strongly dependent on m. When an exag-
gerate number of control points is used, the resulting
curve presents spurious loops, curls and peaks, not
present in the input data. We introduce in this ar-
ticle the spectral (frequency) analysis of the deriva-
tive of the curve fit as a means to reject fitted curves
with spurious curls and peaks. Large spikes in the
derivative signal resemble Kronecker or Dirac Delta
functions, which flatten the frequency content ad-
infinitum. Ongoing work includes the assessment of

the effect of curve degree p on f for non-Nyquist
point samples.

KEYWORDS
parametric curve reconstruction, noisy point cloud,
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NOMENCLATURE
C0 = Unknown C1-derivable simple planar curve
C(u) = Parametric planar curve approaching C0

C(ui) = Point on C(u) closest to cloud point pi
d(p, S) = Distance from point p to the point set S

k = Degree of norm: (Σ|xi|k)1/k

l = Length unit
m = Number of control points of C(u)

P = [P0, P1, ..., Pm−1]. Control polygon of C(u)

PCA = Principal Component Analysis
PL = Piecewise Linear
S = {p0, p1..., pn} Noisy point sample of C0

1. INTRODUCTION
Many engineering applications need to recover a pla-
nar curve from a noisy point sample. A possible
approach is to fit a curve to the point set, recogniz-
ing the stochastic nature of the data. This approach
consists in adjusting a parametric or implicit curve
to the set of points, by minimizing the unsigned dis-
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tance function between the points and their approxi-
mating curve. In the existing literature this approach
is reported, in the form of heuristic - based experi-
ments. The heuristics used affect the number of con-
trol points of the curve, its degree, the norm used to
measure distances, the know vector for the paramet-
ric curve, etc. However, it must be noticed that a
numerical systematic evaluation of the importance of
these factors is not reported.

This present article presents a discussion of the opti-
mality conditions of the curve fitting problem with
b-splines (Piegl & Tiller, 1997) of the type Open,
Uniform, degree 2, whose knot vectors were adjusted
such that 0 ≤ u ≤ 1. Our analysis and results ap-
ply for other curve types, although not with the same
quantification. In this article we address point sam-
ples with uniform sampling noise, leaving spatial-
dependent noise for future publications.

1.1. Curve self-intersection

Fig. 1 illustrates that, in the presence of sampling
noise, it might be immaterial whether the sampled
curve C0 is self-intersecting or not. In the examples
shown, the point sample will indicate a self intersect-
ing curve in either case. We declare here that the is-
sue of self-intersection of C0 is outside the scope of
this article and therefore we will consider open, sim-
ple (i.e. non self - intersecting) curves. We introduce
the issue only for establishing a context for the term
self - intersection.

C (ui ) = C (uj )

C´ (ui ) = C´ (uj )

(a) Self-intersection and
self-tangency.

(b) Possible cross sections.

(c) Point sample of the
cross sections.

(d) PL approximation
(non-manifold) of the
cross sections.

Figure 1 Ambiguous noise sample of near self-
intersecting curves (Ruiz et al., 2011).

1.2. Objective function
In mathematical programming, an objective or cost
function f is a function that represents how a de-
pendent variable of a process (e.g., profit, cost, en-
ergy, etc) behaves in terms of a set of independent or
decision variables. Depending on the nature of the
optimization problem the objective function is maxi-
mized or minimized by tuning the independent vari-
ables.

In the context of reverse engineering the problem
of parametric curve reconstruction from noisy point
samples can be stated as follows:

Given an unknown target curve to reconstruct C0,
whose sampling (possibly noisy) constitutes a point
set S, find a parametric curveC, which approximates
C0, by minimizing the distance between the curve
and the elements of S. In general, the following ex-
pression is used to measure the fitting error and there-
fore is the objective function to be minimized:

f =

n∑
i=1

dwi (1)

Where the residual di represents the minimum dis-
tance between the i-th cloud point and the curve C
and w indicates the order of the residual. Then di is
given by:

di = min
C(u)∈C

‖C(u)− Si‖k (2)

k is the norm-degree to calculate the distance.

Sections 2.1 and 2.2 discuss the objective functions
used in curve fitting and the strategies to calculate the
residuals di.

1.3. Decision variables and parameters
of the optimization problem

As seen in 1.2 there are plenty of terms involved in
the calculation of Eq.1 that can be tunned to mini-
mize it.

An option is to fit variables inherent to the definition
of the parametric curve C.

If C is a b-spline curve, then m, P , the curve degree
p and knot vector U can be adjusted to improve the
fitting to S. In the literature the most common ap-
proach is the optimization of P , sometimes supple-
mented with the adjustment of U as found in (Ueng
et al., 2007). On the other hand, the terms involved
in the calculation of the objective function f such as
k and w can be set to produce the desired results.
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In our approach the decision variables are the control
points P . All other terms remain constant and are
considered parameters of the problem (i.e, norm k,
number of control points m, knot vector U and curve
degree p).

1.4. Constrains and degrees of freedom
Most optimization problems include some constrains
on the decision variables, which bound the region
of search of an optimal solution. In the context of
curve fitting to noisy data sets some constrained ap-
proaches have been developed, in section 2.1 a brief
reference to them is performed. In our implementa-
tion there are no constrains on the decision variables.
As is discussed in the following sections this fact is
decisive in the determination of the uniqueness of
the solution and its global scope. This optimization
problem is classified as Non-linear unconstrained.

The degrees of freedom G of an optimization prob-
lem are given by the subtraction of the number of the
number of equality constrains E, from the number
of decision variables V (G = V − E). Optimiza-
tion techniques are used to solve underdetermined
systems, this means G > 0. Notice that for curve fit-
ting problems in which only the control points are ad-
justed, the number of decision variables is 2m when
implementing planar curves and 3m for the case of
curves in the euclidean three-dimensional space. As
our development is performed using planar curves
and there are no equality constrains G = 2m.

1.5. Sensitivity analysis
This analysis consists of studying how the objective
function behaves when the parameters are perturbed.
The calculation of the relative sensitivity allows to
determine which parameter influences f the most .

Let F (K,Q) be the objective function of an opti-
mization problem where K is a decision variable
and Q is a parameter, then the relative sensitivity of
F (K,Q) with respect to Q, SF

Q , as can be found in
reference (Edgar et al., 2001), is given by:

SF
Q =

∂F/F

∂Q/Q
=
∂ln(F )

∂ln(Q)
(3)

The value of SF
Q is the ratio between the percent

change in F and the percent change inQ, which is di-
mensionless. For this reason it is possible to compare
the relative effect of each parameter on the objective
function.

When the required derivatives are difficult to calcu-
late the sensitivity must be calculated numerically as

shown in (Nocedal & Wright, 2006; Fiacco, 1983).
In this paper the sensitivity analysis is performed
to determine the influence of the number of control
points m and the norm k on f .

1.6. Convexity
The objective function and search region convexity
determine the classification and scope of an opti-
mization problem solution. Let ~x be the decision
variables vector of an optimization problem with ob-
jective function f . Let ~x∗ be such that ∇f( ~x∗) = 0,
then the assessment of the convexity of f at ~x∗ allows
to determine if f( ~x∗) is a local extremum. If the op-
timization problem includes equality and inequality
constrains, the convexity of the bounded region must
be verified in order to conclude the uniqueness of the
extremum, as discussed in (Edgar et al., 2001).

In the case of the objective function, its convexity is
evaluated using the eigenvalues of its Hessian matrix
Hf ( ~x∗), which is defined in (Papadimitriou & Stei-
glitz, 1998) as:

Hf (~x) =
[

∂2f
∂xi∂xj

]
ij

(4)

The eigenvalues e obtained from solving
det
[
Hf ( ~x∗)− eI

]
= 0 indicate whether the

function is convex, non-convex or a saddle point at
~x∗. Furthermore, if f( ~x∗) is optimized on a closed
convex region, global maximum and minimum will
be calculated as shown in (Edgar et al., 2001).

2. LITERATURE REVIEW
Very few discussions about some important concepts
inherent to mathematical optimization can be found
in the curve fitting literature because most of the re-
search is focused on exploring better algorithms to
perform the optimization of the decision variables.

2.1. Objective function
As discussed in section 1.2 Eq.1 is the general rep-
resentation of the objective function in curve fitting
problems. Reference (Flöry & Hofer, 2010) employs
first order residuals (w = 1) and references (Wang
et al., 2006; Liu et al., 2005; Gálvez et al., 2007; Liu
& Wang, 2008) use second order residuals (w = 2).

Some references add a smoothing term fc to the ob-
jective function, in order to adjust the final roughness
of the curve:

f =
n∑

i=1

dwi + λfc. (5)
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The term fc may contain information on the curve’s
first and second derivatives as in (Wang et al., 2006;
Liu et al., 2005; Flöry & Hofer, 2008) or only in-
formation of the former as in (Flöry & Hofer, 2010;
Flöry, 2009) and λ determines its influence, penal-
izing large curvatures. Notice that penalizing the
curvature prevents the curve fitting for non-Nyquist
samples.

Some authors have explored constrained approaches,
reference (Flöry, 2009) presents constrained curve
and surface fitting to a set of noisy points in the pres-
ence of obstacles, which are regions that the curve
or surface must avoid. Reference (Flöry & Hofer,
2008) considers the problem of curves that must lie
on a 2-manifold (surface), also with forbidden re-
gions. These procedures are implemented using a
constrained non-linear optimization strategy.

2.2. Distance measurement
As seen in section 1.2 Eq.2 corresponds to the calcu-
lation of the distance di, which represents the residu-
als of the objective function in Eq. 1. In Curve Fitting
algorithms the norm k is usually chosen to employ
the Euclidean distance (Wang et al., 2006; Liu et al.,
2005) (k = 2).

The exact calculation of di is expensive, since it is
obtained by a minimization procedure at each fit-
ting iteration. The procedure consists of finding the
parameter ui which associates a point on the curve
C(ui) with the i-th cloud point pi such that di is a
minimum, namely

‖C(ui)− pi‖k = min
C(u)∈C

‖C(u)− pi‖k (6)

The minimum distance is obtained performing an or-
thogonal projection of the point pi to the curve C,
which occurs when the dot product between the tan-
gent vector at C(ui) and the distance vector di is null
(see Eq. 7). Therefore, an alternative to face this
problem is to solve for u in g(u) = 0 using the New-
ton’s Method, as implemented in references (Piegl &
Tiller, 1997; Liu et al., 2005). Other approach is to
minimize g(u), references (Wang et al., 2006; Liu &
Wang, 2008), for curve fitting, and (Flöry & Hofer,
2010), for surface fitting, propose the use of Newton-
like iterative schemes, while (Saux & Daniel, 2003)
employs a gradient method. On the other hand, ref-
erence (Gálvez et al., 2007) implement a Genetic Al-
gorithm to obtain the parameter ui at each iteration
of the minimization procedure.

g(u) =
∣∣C ′(u) · (C(u)− pi)

∣∣ (7)

The approaches previously mentioned have draw-
backs inherent to numerical methods, such as the
need of a good initial guess, poor convergence and
stagnation at local minima. These issues may lead to
poor approximations of the distance di yielding un-
satisfactory results of the fitting procedure.

Methodologies to automatically calculate an ade-
quate initial guess for u in g(u) = 0 have been pre-
sented based on the point cloud subdivision using
quadtree (Wang et al., 2006), k-D tree (for general di-
mensional fitting (Liu & Wang, 2008)) and Euclidean
minimum spanning tree (Liu et al., 2005) strategies.

Different methodologies to measure the point-to-
curve distance have been proposed, which are sum-
marized as follows: (i) Point distance, which pre-
serves the Euclidean distance between the cloud
point and the paired point of the curve, discussed
in (Wang et al., 2006; Flöry & Hofer, 2008), (ii)
Tangent distance, which only preserves the distance
between the cloud point and the tangential line pro-
jected at the paired point (Blake & Isard, 1998), and
(iii) Squared distance, which is a curvature-based
quadratic approximation of d2i (Wang et al., 2006).
Reference (Liu & Wang, 2008) presents a deep com-
parison between these methodologies.

It must be also remarked that using the point-to-curve
distance does not make the method sensitive to curls
and loops (formed outside the S boundaries) and out-
liers in the final curve C. Because of these reasons,
in our work we have included both the point-to-curve
and curve-to-point distance calculation (in approxi-
mate manner), giving emphasis instead to curl and
outlier avoidance.

2.3. Optimality conditions and
sensitivity analysis

Regarding the number of control points m, reference
(Ueng et al., 2007) presents unconstrained and con-
strained approaches to solve the curve fitting problem
to a set of low-noise organized data points using dif-
ferent values ofm. The experiments performed show
that increasing the number of control points helps, in
general, to diminish f , although with the collateral
effect of obtaining a more erratic curve.

Reference (Yang et al., 2004) shows similar results
to (Ueng et al., 2007), with the difference that the in-
sertion and removal of control points is part of their
fitting strategy. If the local approximation of a para-
metric curve segment is poor, a new control point is
added to it. On the other hand, when redundant con-
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trol points are detected in a curve segment, the con-
trol points of that segment are removed one by one
taking care of not producing fitting errors above a
defined threshold.

In this approach the curve to reconstruct is comprised
by ordered dense data points. When working with
highly noisy unordered data new challenges arise. In
particular, the problem of finding and adequate num-
ber of control points for correct geometry and topol-
ogy reconstruction has not been discussed throughly.
For other parameters such as the norm k, the reported
researches are oriented to identify which norm to use
when certain features such as outliers and particular
noise distributions are present in the point data set.

Reference (Heidrich et al., 1996) performs a com-
parison amongst L1, L2 and L∞ norms in curve fit-
ting applications with several data sets. In reference
(Flöry & Hofer, 2010) curve and surface fitting case
studies are presented using the L1 and L2 norm when
the data set contains outliers. It is concluded that L1

norm is less sensitive to outliers, therefore better re-
sults are obtained.

In summary, few discussions are presented about the
influence of m and k on the behavior of f . Further-
more, a formal sensitivity analysis for these param-
eters has not been performed yet, to the best of our
knowledge. In addition, some features of the opti-
mization problem have not been discussed, such as
the objective function convexity, and its role in ex-
trema characterization.

2.4. Peaks, curls and closed loops
detection

A mathematically optimal solution for the fitting
curve problem does not necessarily imply a correct
topological and geometrical reconstruction of the
curve C0 represented by the point cloud S. Some
strong oscillations may appear during the fitting pro-
cess, such as peaks, curls and closed loops. When
pursuing the reconstruction of smooth simple curves
(i.e., non-self-intersecting) these features are unde-
sirable and may be avoided by finding an optimal
value for m, as shown in this paper, as opposed to
the strategy of curvature penalization implemented
in (Flöry, 2009; Liu et al., 2005; Wang et al., 2006;
Flöry & Hofer, 2010).

The main drawback of the curvature penalization is
that it is difficult to properly establish the weight λ
with respect to the contributions of the distance resid-
uals di in Eq.5, for each case study. Additionally, op-

timizing m results in an efficient use of the decision
variables. Therefore, detection of peaks, curls and
closed loops is necessary to find a reasonable num-
ber of control points.

In the literature, efficient methods to detect self-
intersections can be found, covering the closed
loops detection case. Reference (Pekerman et al.,
2008) presents an algebraic approach to detect self-
intersections solving C(u)−C(v) = 0, with u being
different from v, and proposing a new function that
does not contain zeros in this diagonal. In any case,
peaks and curls detection is not a trivial and a method
to detect all undesired features is necessary. In this
paper we open the discussion of the use of theC(u)’s
curvature information in the frequency domain to de-
tect the presence of peaks, curls and closed loops.

2.5. Literature review conclusions and
contribution of this article

According to the taxonomy conducted in this litera-
ture review, there are several issues that remain open
in optimized curve fitting to point clouds. These sub-
jects include: (a) Identification of the effect of the
parameters such as the number of control points m,
knot vector U and norm k in the curve fitting prob-
lem, (b) Detection of the presence of peaks, curls and
closed loops in C to support the parameter optimal
value identification and (c) Characterization of the
curve fitting problem from the viewpoint of mathe-
matical optimization.

In response to these issues, this article reports, in ad-
dition to formulating the optimization problem, the
implementation of: (i) Sensitivity analysis of the
number of control points m and norm k on f and
(ii) Quantitative analysis of C(u) curvature informa-
tion in the frequency domain to detect the presence
of peaks, curls and closed loops.

3. METHODOLOGY
3.1. Dual distance calculation
In addition to the point-to-curve distance introduced
in section 2.2 the curve-to-point distance is used to
calculate the distance di used in Eq.1, for the imple-
mentation of the curve fitting algorithm used in this
research.

When implementing the point-to-curve distance we
define the residuals as

di = ||pi − C(ui)||k (8)

where ui is the parameter in the domain of C which
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(a) Distances cloud point to curve.
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(b) Distances curve to cloud point.

Figure 2 Distances cloud points to/from curve.

defines the pointC(ui) closest to pi. The term di rep-
resents the distance measured from each cloud point
to the curve C (see Fig. 2(a)). This calculation of
the distance between a point and an algebraic curve
is a very expensive proposition because it implies the
calculation of common roots of a polynomial ideal
(see (Ruiz & Ferreira, 1996), (Kapur & Lakshman,
1992)).

Notice that the vector pi − C(ui) is normal to the
curve C at the point C(ui). To avoid the computa-
tional expenses of algebraic root calculation, we ap-
proximate C(u) in PL manner and calculate di sim-
ply by an iterative process. We sample the domain for
C(u), ([0, 1]) getting U = [0,∆u, 2∆u, ..., 1.0] and
approximate the current C curve with the poly-line
[C(0), C(∆u), C(2∆u), ..., C(1.0)]. Calculating an
approximation of C(ui) for a given pi simply en-
tails traversing [C(0), C(∆u), C(2∆u), ..., C(1.0)]
to find the C(κ∆u) closest to pi.

Fig. 2(a) displays the distance from a particular (em-
phasized) cloud point pi to its closest point C(ui) on
the current curve C. Such a distance has influence
in f as per Equation 1. Notice, however, that pi and
C(ui) (and hence f ) do not change if large legs and
curls appear in the synthesized C. Therefore, consid-
ering only the distance from cloud points to the curve
in Eq.1 allows the incorrect formation of outlier legs
and curls outside the boundaries of S.

If one can make spurious legs and curls to inflate the
objective function f , the minimization of f avoids

them. This is achieved by including the distances
from the curve points Ci to the cloud points pi (see
Fig. 2(b)) to penalize in f .

For any point p ∈ Rn, the distance of this point to S
is a well defined mathematical function: d(p, S) =
min
pj∈S

(||p − pj ||k). For the current discussion the

points p are of the type C(ui) (i.e. they are points of
curve C). The ui parameters to use are the sequence
U = [0,∆u, 2∆u, ..., 1.0], already mentioned.

Notice that d(p, S) = ||pj−p||k for some cloud point
pj ∈ S. Let us define the point set Aj (on the curve
C) as:

Aj =

{C(u)|u ∈ U ∧ d(C(u), S) = ||pj − C(u)||k} (9)

The set Aj contains those points in the sequence
[C(0), C(∆u), C(2∆u), ..., C(1.0)] that are closer to
the point pj ∈ S than to any other point of S. We
note with Mj the cardinality of Aj . Observe that
some Mj might be zero, since pj could be far away
from be curve C and no point on the curve would
have pj as its closest in S. The set of all Ajs could
also be understood as a partition of the curve C.

With the previous discussion, a new definition of the
residuals di, to be used in Eq. 1, is possible:

di = ||pi − C(ui)||k + (
1

Mi
) Σ
Cv∈Ai

||Cv − pi||k (10)

The ||pi − C(ui)||k in Eq. 10 considers the distance
from cloud points in S to the curve C. The term
( 1
Mi

) Σ
Cv∈Ai

||Cv − pi||k expresses distances from the

curve C to the cloud points in S. This term penalizes
the length of the curve, by increasing f .

p2

p1

C1
C2

C3

C4
C5

C6
C7 C8 C9 C10 C11

C12 C14C13

p7

p6

p5

p4
p3

C16

C15

Figure 3 Clusters of distances from curve to cloud
points.

Fig. 3 presents a rather simplified materialization of
the situation, with very few cloud points, moreover
biased with respect to the instantaneous C curve.

6 Oscar Ruiz, Camilo Cortes, Diego Acosta, Mauricio Aristizabal



However, it serves the purpose of illustrating the al-
gorithm.

3.2. Convexity
Since the optimization problem that is attacked in
this article has no constrains, only the convexity of
the objective function is analyzed. The variables to
minimize f are the x and y coordinates of the con-
trol points (Pj = (xj , yj)) contained in the control
polygon P = [P0, P1, ..., Pm−1], therefore, the cor-
responding Hessian matrix is given by:

Hf (P ) =
[

∂2f
∂Pi∂Pj

]
ij

(11)

with

∂2f

∂Pi∂Pj
=

[
∂2f

∂xi∂xj

∂2f
∂xi∂yj

∂2f
∂yi∂xj

∂2f
∂yi∂yj

]
(12)

Numerical differentiation is implemented for the cal-
culation ofHf (P ), using approximations for the sec-
ond order and mixed derivatives. Next the eigen-
values of Hf (P ) are computed and the convexity or
concavity of f is evaluated as discussed in 1.6.

3.3. Sensitivity calculation
In order to calculate the relative sensitivity of the ob-
jective function with respect to the parameters on a
defined domain of each one of them, the curve fitting
problem is solved for a set of parameter values. For a
given value of the parameter,mi or ki (when comput-
ing Sf

m or Sf
k respectively) the curve fitting problem

is solved obtaining a value of the objective function
fi. Notice that i indicates the number of increments
applied over an initial value of the parameter of inter-
est and goes from 0 to a defined number of maximum
increments Maxinc.

Next, the sensitivity at an increment i (0 ≤ i <
Maxinc − 1) is numerically calculated by using the
values of the parameter and objective function at i
and i+ 1 as discussed in 1.5. While calculating Sf

m,
k is kept constant. Similarly, when computing Sf

k , m
is kept constant.

The steps of this procedure are summarized as fol-
lows:

1. initialization: The point cloud S, to be fitted
is loaded. Depending on the sensitivity to be
computed m0 or k0 is assigned with an initial
value.

2. initial guess calculation: A straight line L is
used as an initial guess for the b-spline curve
C. This allow us to provide an initial guess
whose topology and shape is not affected by
the number of control points used to build it.
L is obtained performing a principal compo-
nent analysis (PCA) (see reference (Ruiz et al.,
2011)) over the whole S set. In the case of
computing Sf

m themi control points are placed,
equally-spaced, along L. When calculating Sf

k ,
the number of control points is kept constant, so
that the initial guess will be the same during the
whole procedure.

3. curve fitting: A penalized Gauss-Newton algo-
rithm is used to perform the adjustment of P .
Once the stopping criteria is met, the value of f
is saved as fi.

4. parameter value increment: The parameter
value increment is defined as: mi+1=mi+1, for
the number of control points and ki+1 = ki +
∆k, for the norm. Where ∆k is an arbitrary
small constant value.
Only when i < Maxinc the increment is per-
formed and the process goes back to step 2, oth-
erwise the procedure finishes.

In this article we analyze the sensitivity only with
simple curves, ignoring for the time being self-
intersecting curves.

3.4. Peaks, curls and closed loops
detection approach

When solving the curve fitting problem some unde-
sired features, as closed loops, curls and peaks, may
appear in the adjusting curve for certain configura-
tions of parameters. The length and curvature of C
can provide some information about the topology and
geometry of the curve, but without knowing what are
the expected values for this metrics, it is difficult to
conclude from them the correct topological recon-
struction of S and therefore to establish an optimum
value of the parameters of the problem. These ref-
erence values may be expensive to obtain in the pre-
processing stage from the cloud point.

Adding information about the first and/or second
derivatives of the curve to f helps to obtain smooth
fitting curves, however weighting factors between the
contributions of the distance residuals (2) and curve
derivatives to f must be defined, interactively, for ev-
ery case of study (see references (Liu et al., 2005)
and (Flöry, 2009)) as a consequence of not having
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benchmark values for these measurements. There-
fore it is desirable to devise a method to determine
the presence of curls and peaks in the fitting curve,
without the high overheads derived form extracting
reference values form the point cloud.

In this paper we propose to perform an analysis of
the frequency spectrum of certain information of the
fitting curve that reflects the presence of the unde-
sired features previously mentioned. The represen-
tation of the data in the frequency domain indicates
how it is composed of low and high frequency waves,
making easier to establish whether the curve follows
the desired behavior or not. This task is accom-
plished by studying the changes of direction of the
first derivative of the curve with respect to its param-
eter u. Peaks and curls produce large sudden changes
in the direction of ~∂C

∂u that are represented in the fre-
quency domain with a considerable presence of high
frequency sinusoidal curves.

We have obtained the frequency spectrum comput-
ing the discrete Fourier transform (DFT) of the pre-
viously mentioned data. To guarantee that the desired
information is sampled according to the Nyquist cri-
terion, for this process, is of prime importance. To
achieve this, we have chosen a series of u param-
eters that are located at equal distances ds, of each
other, on the curve, constituting us = {u0, . . . , ug}.
We have chosen ds = 0.0001l, where l is the unit
of distance, thus the sampling frequency is fs =
10000l−1.

Next, the normalized tangent vectors of the curve
were computed at all the points given by the parame-
ters us obtaining Vs =

{
V̂0, . . . , V̂g

}
. The dot prod-

uct of every V̂i and V̂i+1 pair is computed, where
0 ≤ i ≤ g − 1, and therefore the angle θi between
them is obtained. Finally the magnitude of the DFT
is obtained, and properly scaled to achieve a single-
sided spectrum of power vs. frequencies of the ob-
tained history of θ.

4. RESULTS AND DISCUSSION

4.1. Test point set

The point cloud shown in Fig.4 was used to run the
procedures discussed here and in the following sec-
tions. As in the sensitivity experiments, the fitting
curve initial guess used here was a straight line ob-
tained from a PCA of the complete point cloud. The
Hessian matrix Hf (P ) and its eigenvalues e were
calculated in every iteration of the optimization pro-

cedure using 5, 8, 9 and 15 control points.

4.2. Convexity
As discussed before, the region of search and objec-
tive function convexity is a necessary condition to
claim the global scope of a solution of a minimiza-
tion problem. Since the problem we deal with is un-
constrained, the region of search is unbounded and
its convexity can not even be verified. Therefore, by
definition, the solutions found from the minimization
procedure can only be classified as local. However
the behavior of f is still of interest, since it hints to
possible better results to be obtained .

For all these cases of study (5, 8, 9 15 control points)
the convexity of f depends on the location of the con-
trol points P used to calculate Hf (P ), given that the
eigenvalues obtained did not comply with the condi-
tion ej ≥ 0 ∀j, where 1 ≤ j ≤ 2m, at certain iter-
ations of such tests. Therefore, no unique extremum
exists and only convergence to a local minimum can
be guaranteed.

Because of the behavior of f it is of prime impor-
tance to provide an initial guess for C close to a sat-
isfactory solution avoiding large optimization times
and stagnation in local minimum with poor topolog-
ical and geometrical reconstruction.

4.3. Number of control points
sensitivity calculation

The process was run twice with a number of control
points ranging between 4 and 16, using both norms,
L1 and L2. The results of Sf

m are summarized in
Fig.5(b), where can be noticed that as m increased f
became less sensitive to it, specially when using L2

norm.

In addition to the value of f and Sf
m, the curve length

and curvature were calculated to obtain information
about the topology of the fitting curve (i.e, curls,
peaks, long legs, etc). In this paper what is presented
as curvature corresponds to the sum of the curvature
at a determined number of samples along the curve.

The results show a general trend in which as the num-
ber of control points increases the objective function
decreases (see Fig.5(a)). However, with exaggerated
number of control points given a topological situa-
tion, some undesirable features begin to appear, such
as curve roughness, curls and/or peaks and attrac-
tion among control points. These outcomes were ob-
tained with both of the norms tested (i.e., k = 1 and
k = 2). In Fig.6 the resulting curves of the fitting
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with different number of control points are shown us-
ing L1 and L2 norms.

For the particular point cloud used in these tests the
minimum number of control points to reconstruct
its topology is 5. Increasing the number of control
points does not yield in a considerable diminution of
f and more importantly, a better topological recon-
struction of the curve is not necessarily obtained.

With the usage of the dual distance in f (see 1.2),
the peaks and curls that appear are located inside the
boundaries of the point cloud S, and what they pro-
duce is a reduction of f . The excessive amount of
degrees of freedom of the curve allows the appear-
ance of these curls and peaks, as the optimization al-
gorithm place the control points minimizing the ob-
jective function.

−1 0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

x

y

Figure 4 Point cloud and initial curve guess with five
control points.

4.4. Norm sensitivity calculation

The relative sensitivity Sf
k was calculated from norm

k = 1 to k = 2 with ∆k = 0.01. The test was run
twice, initially, with 5 control points, which are the
minimum number of control points to successfully
fit S, as determined in section 4.3, and then with 8
control points. The results show that small changes
in the norm k may produce large relative changes in
the values of f obtained in the domain defined by 1 ≤
k ≤ 2 for both of the m tested. Figures 7(a) and 7(b)
show an irregular behavior from which no particular
value or range of k derive a remarkable improvement
of the fitting.

It must be considered that even if the same curve
topology and geometry are obtained implementing
two different norms, the value of f will be distinct

for each case, due to the modification in the residu-
als calculation in Equation 2. This fact magnifies the
effect that k has on f and is the reason of the vari-
ability observed. However with respect to the quality
(e.i., topology and geometry) of the curves obtained
along the procedure (see Fig.8), the influence of k is
almost imperceptible, when m is chosen properly.

The curve length and curvature in figures 7(c) and
7(d) reflect a very stable behavior as k changes us-
ing 5 control points. The outlier curve segments ob-
served in Fig.8 when m = 5 can be adjusted chang-
ing the stopping criteria of the optimization algo-
rithm, so a few more iterations are performed. On
the other hand, using 8 control points some peaks and
curls appear at certain values of k. This can be iden-
tified in a large increment in the curve length and cur-
vature, with respect to the values obtained for other
norms implemented. Therefore it is concluded that it
is more effective to optimize m than k, in the pursuit
of high topology and geometry fidelity in the recon-
struction of S.

4.5. Peaks, curls and closed loops
detection approach

The cloud point S to reconstruct and the procedure
to obtain the fitting curve initial guess is the same
implemented in previous sections. The methodology
described in section 3.4 was applied for the fitting
curves that resulted from the optimization procedure,
using 5, 8, 9 and 15 control points, using only L2

norm. The change of direction of ~∂C
∂u , represented by

θ, in degrees, is consigned in Fig.9(a) for all the cases
of study. In this figure it is shown how for the curves
generated with 5 and 8 control points the magnitude
of θ was kept small as C is traversed. When 9 and 15
control points were used, very large peaks were ob-
tained in θ, in agreement with the presence of strong
oscillations in the fitting curves.

In the frequency spectrum representation (see figure
9(b)), the θ data obtained when using 5 and 8 con-
trol points, consist of very low frequency waves (i.e,
near zero), while for the 9 and 15 control points cases
the large peaks are represented by a considerable and
stable presence of high frequency sinusoidal waves
that go up to 5000l−1 . Notice that this is the maxi-
mum frequency that can be resolved according to the
sampling rate implemented, but it is not the higher
frequency of the waves that comprise θ for the later
cases.

The information obtained from the frequency spec-
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Figure 5 Resulting metrics of the fitting curve with different number of control points using L1 and L2 norms. Here
the units of the length are l and the units of the curvature are 1/l.

trum can be used to conclude the presence of peaks
or curls in the fitting curve, by comparing the contri-
butions of low and high frequencies waves to θ. With
the usage of the dual distance penalization, the curls
an peaks in the fitting curve produce large values in
θ because of their sharp shape, due to the fact that
they are formed within the S boundaries. Therefore
the low and high frequencies waves contributions to
θ are very similar.

When optimizing the number of control points, the
peaks and curls detection is useful to determine its
upper limit, so the curve is not provided with an ex-
cessive degrees of freedom. If the optimization tech-
nique includes information about the curvature in f ,
the information obtained from the frequency spec-
trum can be processed to establish the weight of the
curvature penalization in f dynamically.

5. CONCLUSIONS AND FUTURE WORK
This article presented a sensitivity analysis of the
number of control points m and norm k on the ob-
jective function f . It has been found that using an
adequate number of control points the formation of
peaks, curls and closed loops in C is prevented, mak-
ing unnecessary to add a curvature penalization term

to f in order to avoid them. Finding proper values
of m also reduces the number of decision variables
of the problem, which results in a more efficient pro-
cess since redundancy of control points is avoided.

Changes in the values of k do not influence signifi-
cantly the result of the reconstruction process when
m is chosen properly. Although k produces larger
percent changes in f than m, the optimization of m
produce better results in terms of topology and ge-
ometry of the reconstructed curve. The analysis of
the C curvature information in the frequency domain
allows to identify the presence of peaks, curls and
closed loops as they map into high frequency com-
ponents in the frequency spectrum.

Ongoing studies are being undertaken to determine
the influence of knot vector U and curve degree
p on the minimization of the penalty function f ,
in case studies that include non-Nyquist and self-
intersecting point samples. A remaining open issue
is the implementation of a method that uses informa-
tion provided by the DFT of the curvature of C to
find appropriate values for parameters such as m.

Notice that the complexity of the fast Fourier trans-
form (FFT) and related efforts depends on the num-
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Figure 6 Resulting curves of the fitting with different number of control points m, using L1 and L2 norms.
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Figure 7 Resulting metrics of the fitting curve with different norms using 5 and 8 control points. Here the units of the
length are l and the units of the curvature are 1/l.

ber of PL segments of the curve C(u) (n: length
of the θ history). It does not depend on the num-
ber of cloud points. The frequency content of the θ
signal is obtained by using the FFT, whose complex-
ity is O(n.log(n)). Although FFT has very reason-
able computational expenses, more work is required
in lowering the expenses of automatically analyzing
the results of the FFT to detect curls and cusps.

Stochastic noise vs. Sampling Density. For a
proper curve reconstruction the quality of the digi-
talization is of prime importance. If the sampling
density and/or stochastic noise violate the Nyquist
criteria, an accurate reconstruction becomes impossi-
ble. Further elaboration of this topic is left for future
publications.
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(a) Changes in direction of curve’s first derivative (degrees)
vs. length (percentage).

(b) Power vs. frequency.

Figure 9 Changes in direction of curve’s first derivative and frequency spectrum.
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