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Abstract—The Boundary Representation of a 3D manifold con- t: A triangle of the triangulatior'.

tains FACES (connected subsets of a parametric suack? — p,q-
R®). In many science and engineering applications it is cumbersome w, v, w:
and algebraically difficult to deal with the polynomial set and

Points in Euclidean space, ¢ € R?.
Real parameters of a curvgé(w) or a
surfaceS(u, v).

constraints (LOOPS) representing the FACE. Because of this reason, acl(A)'
Piecewise Linear (PL) approximation of the FACE is needed, whichis A. .
usually represented in terms of triangles (i.e. 2-simplices). Solving the int(A):

Closure of the setl. cl(A) = AU OA.
Interior of the setA. int(A) = A — 0A.

problem of FACE triangulation requires producing quality triangles Ba(p,¢,7):  Gabriel Ball in R?. Spherical point set
which are: (i) independent of the arguments9f(ii) sensitive to the whose center is contained in the plamg-,
local curvatures, and (iii) compliant with the boundaries of the FACE passing through the poinis ¢, € R>.
and (iv) topologically compatible with the triangles of the neighboring Be(p, q): Gabriel Ball inR%. Spherical point set

FACEs. In the existing literature there are no guarantees for the point
(iii). This article contributes to the topic of triangulations conforming
to the boundaries of the FACE by applying the concept of parameter-
independent Gabriel complex, which improves the correctness of the e¢:
triangulation regarding aspects (iii) and (iv). In addition, the article
applies the geometric concept of tangent ball to a surface at a point to |
address points (i) and (ii). Additional research is needed in algorithms
that (i) take advantage of the concepts presented in the heuri
algorithm proposed and (ii) can be proved correct.

whose center is contained in the edgg
passing through the poinjs ¢ € R3.
Edge of a triangle.

. INTRODUCTION

Oundary Representations, B-Reps, are the computer for-
malization of the boundary of a bodw{ = 0 BODY).
Keywords—surface triangulation, conforming triangulation, sur-Sho_rtly’ M is a collection of SHELLS’ Wh'ch in turn are col-
face sampling, Gabriel complex. lections of FACEs. For convenience, we will assume that the
SHELLs are 2-manifolds without border i®*. Each SHELL

is decomposed into FACEs, which must have boundary. It is
customary in geometric modeling to make a FAEEa con-

nected proper subset ohe parametric surfacé(u,v) C R3.

GLOSSARY In this article we consider the b-reps as closed 2-manifolds
with continuity C? inside each face an@® among them.
S: Parametric Surfaces : R? — R3. The border ofF is OF, which is the collection of LOOPs

is an (infinite) 2-manifold without border.; embedded ir5. Each LOOPL; is split into a sequence of

F.H: Faces. Connected subsets of a parametEDGEs F;. The LOOPL; can be thought of as a 1-manifold
surface ¢, H C 5). without border, withC> continuity except in a finite number

S—L(F) Pre-image ofF" in parametric space of points, where it isSC°-continuous. In such locations; is
u-V. split into EDGESE;, each one being & 1-manifold with

Tr: Triangulation of faceF’ in Euclidean border. The problem of surface triangulation takes place in
space. one of such FACES'. A PL approximationlr of face I is

Tuy A triangulation in parametric space required which: (a) is formed by triangles, (b) departs from
U-V. F in less than a distance (c) has triangles as equilateral as

T = S(Tyy): Triangulation inR3 as a mapping, possible, (d) has as few triangles as possible, and, (e) each
via S, of the triangulatiorlyy edgee; of the triangle set has exactly two incident triangles.
in U — V parametric space. Property (e) is a consequence of the fact that a B-Rep is

0X Boundary of the sefX. a 2-manifold without boundary. The triangulatidn is also

L: Loop (L € OF ) is a 1-manifold withouta 2-manifold (of theC? class) without boundary. Condition
border. It is a connected subset of the (e) also holds for edges; whose extremes lie on any loop
boundary ofF. L;. This means, this edge; receives a triangle from the

triangulationT’» (face F') and another from the triangulation
Ty (face H).
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arise: (i) Fig. 1 illustrates that a completely internaatgle is tracked back to their pre-imaggs:,,v;) € (U x V)
[a,b,c] in parametric spacé/ — V may not be mapped by therefore rendering a connected regiBn' c (U x V'), most

S to an internal triangléS(a), S(b), S(c)] in R3. (i) roughly likely with holes, bounded by a set of planar Jordan curves
equilateral triangleg in U — V space may map to extremelydF 1 = {Tg,...,T',}.

deformed trianglesS(¢) in R® because of sharp warping
caused bys, (i) neighboring triangles;, t;,tx,.... in U -V
space mapped vi&() may form a fish scale effect ifk?
because of the same warping $h

4 y
S:R> - R’ Delaunay Tetrahedron Gabriel 2-simplex
i b a-b-c-d in R’ a-b-c in R’
. S(c
¢ (b)%§S(a) PSR S
a )
0 Fo rr R a

Fig. 1. Triangleabe is internal in parameter space. Triandléa)S(b).S(c)

is external to the surfacg(r,0) = (r cos(0), rsin(0),0) Gabriel 1-simplex a-b Gabriel 1-simplex a-b

in R’ in
Il. RELATED WORK Fig. 3. Delaunay tetrahedron for pointsb, c,d € R, 2-simplex Gabriel
for a,b,c € R3, 1-simplex Gabriel fora,b € R3, 1-simplex Gabriel for

A. Fundamental definitions a,b e RZ,

As discussed in [1] a smooth 2-manifold with boundary

(face) F' is a sub-manifold of a smooth 2-manifollwithout ) ) ) )
boundary. If the neighborhood of a poipte F is homeo-  Fig. 3 displays a short collection of Delaunay and Gabriel
morphic to a 2 dimensional euclidean space, then we say tRafplexes. A Delaunay tetrahedron in a set of points in 3D
the p is in the interior of F' (int(F)). If the neighborhood 1S @ tetrahedron (3-simplex) formed by four points whose
of a pointp in F is homeomorphic to a half euclidean spacgifcumscribed sphere contains no other point of the seerGiv
then we say that the point is in the boundaryf{9F). The Verticesviv;uy. in the point set, they form a Gabriel triangle
exterior of the submanifold is composed by the poingse §  (2-simplex) if the smallest sphere through them contains no
and not in the closure of (p ¢ cl(F)). It includes all the Other point of the set. The triangigv; v is embedded in the
points neither in the interior nor the boundaryfout still in ~ eguatorial plane of such a sphere. A Gabriel edge (1-

S. The boundary is a closed set and the interior and exter@JfPIEx) is one withv; andv; in the point set, such that the
are open sets. In Fig. 4 the interior, boundary and exterior Phere centered ifw; + v;)/2 with radiusr = d(v;, v;)/2

shown (A — B denotes the difference between sdtand B). contains no point of the sample other thgnandv;. Such a
sphere is the smallest one containing@ndv;. Each 1-simplex

FI = SUF) 2-Manifold Sfuv) Gabriel makes part of at least one 2-simplex Gabriel, and
each 2-simplex Gabriel makes part of at least one Delaunay
S{;‘(("Lj:) tetrahedra.
guvi] The present article applies the Gabriel variant (1- and 2-
uy,

simplices) to Delaunay connectivity to calculate a tridatian

for a point samplé/r (sensitive to curvature and independent

of the parameterization) on the faé& carried by a paramet-

ric surfaceS. Section 2 reviews theoretical and algorithmic

knowledge related to triangulations and surface curvature

Fig. 2. Pre-imagd”—! = S~ (F) of the faceF by the parametric surface Section 3 discusses the algorithms devised and implemented

S. to triangulate Boundary Representations. Section 4 ptesen

five complex Boundary Representations with manufacturing

Fig. 2 displays the general situation in which a facds and organic surfaces and high genii triangulated by theampl

carried by a parametric surfacg in R3. F is a connected mented algorithm. Section 5 concludes this article ancchliest

subset ofS, with the boundary ofF’, OF = {L,...,L,} directions for future work.

being the set of loop£; which limit ' on S. If the function

S(u,v) is 1-1 (which can be guaranteed by a convenient

decomposition of the overall B-Rep) then there exists a prg- cyrvature Measurement in Parametric Surfaces

image of F in parametric spac& x V, that we callF—!.

Such a region can be calculated &s! = S~!(F). To A parametric surface is a functio$i : R? — R3, which we

do so, a point sample ofF' formed by pointsp; € R3> assume to be twice derivable in every point. The derivatives




are named in the following manner ([8], [16],): algorithm should also give an incorrect output or fail. I'2]1
oS 95 929 929 the restricted Delaunay triangulation of general topalabi
Su=——; Sy = —; Syu = I Spo = 502 (1) spaces is defined. The restricted Delaunay triangulation in
9 v v the case of a 2-manifold is the dual of the Voronoi diagram
0°S Sy X Sy . . : ) .
Suv = Sy = = intersected with the surface, a triangle is created in each
Gudv S x50 intersection of 3 intersected with the surface Voronoi<ell
with »n being the unit vector normal to the surfadeat Another contribution of the paper is to show that Chew’s

S(u,v). algorithm is a restricted Delaunay triangulation. [3] add [
The Gaussian and Mean curvatures are given by: treat the reconstruction of curves in 2D and surfaces in 3D
LN — MM LG —2MF + NE respectively. Good properties about the sampling are given
K = i H = i (2) showing how the curvature and the local feature size (the
EG—FF 2(EG — FF) _ : . ,
o smallest distance to the medial axis) have a lot to do with
where the coefficient®, ', G, L, M, N are: the possibility of reconstructing surfaces without havamy

E=S,08,; F=5,08 =S,0S8; G=S,05; (3 other information but sampled points. The paper introduces
I—S en: M—S en N—S. en the e-sa_mple (a sample thgt depen_ds in th_e local feature size),

ww T we T vv T a very important concept in the triangulation of surfaceat th
Minimal, Maximal, Gaussian, Mean Curvatures from the gives some properties to allow the research of good topology

Weingarten Application and geometry. In [15] the intrinsic Delaunay triangulatioin
The Weingarten Application ([8])IV is an alternative way to a Riemannian manifold is shown to be well defined in terms
calculate the Gaussian and Mean curvatures. of geodesics. A smooth surface embeddedincan define
PP a Riemannian manifold, and these have the property that if
W= LQI am] (4) all the calculations and definitions are done in a small subse
of the manifold (as they can be done with a good sampling
With a11, a12, az1, aze being: condition) the Delaunay triangulation and the Voronoi déag
MF — LG NF - MG are defined exactly as with the euclidean metric and are dual.
M= pa_ g2 M2T Tpa_f2o () In [2] the Gabriel complex is defined faR™. For a set of
LF—-ME MF - NE points in R? the Gabriel complex is composed of triangles
1= "pa_ 20 22T Tpa_Fpz whose smallest defined circumsphere is free of points in the

set. The advantage with [10] is that if it uses it as a 2D-
Delaunay like triangulation, it does not need informatiboat
The surface. The Umbrella filter algorithm described preduc
topologically correct triangulations.

The following facts allow to calculate the curvature measur

k1Y ko of W are calledPrincipal Curvatures, with k; being
the maximal curvature andk, being theminimal curvature
(assume thatk| > |kz|). (i) K = det(W) is the Gaussian In [5] a study of the complexity of the Delaunay tri-
Curvature, with K = kq x ko. (iii) 2H = trace(W) is twice angulations in surfaces is made, giving lower bounds for
the Mean Curvature, with H = % (iv) The maximal well distributed points in surfaces. In [9] An algorithm to

and minimal curvatures aré; = H + v H? — K andk, = sample and triangulate a surface that has correct topology
H—-+VH? - K. and geometry is presented, but it uses computer expensive

W xv = k*v is the eigenpair equation for tH& matrix. and not common operations. In [6] the concept of loese
The solutions for such an equation are the eigengéirsv;) sample is developed, it can be achieved using operations tha
and(ks,v9). Therefore W vy = ki xv; andW vy = koxvy.  are accessible but computer expensive. In [7] analogous for
The directions of principal curvaturi@ U x V spacearev; e-samples and loose-samples are presented for Lipschitz
andvs (v; = (w11, w12) andvy = (wa,ws2)). The directions surfaces. Lipschitz surfaces are more general than smooth
of maximal and minimal curvatures iR® areu; = w1 %S, + surfaces.

waz * Sy Anduy = wa * Sy + way * Sy, r€SpECtively. In [18] an algorithm to triangulate b-reps is presented. In

] the algorithm all the triangulation occurs in parametriac

C. Previous Work and is mapped tdR3. In [17] an algorithm to triangulate
In [10] the surface triangulation problem is addressed. Tisaeirfaces according to curvature and with boundary isosasnpl

paper is the first to propose a surface triangulation with a 23 presented. From unorganized points the problem remains
Delaunay like method, where the circle empty of points of thensolved. [1] is focused in the notion of envelope that is the
sample in 2D is replaced by a sphere in 3D, defined by tleevering of a 3-manifold created with spheres)otize and
3 points and centered in the surface. The main advantagecehftered in the points of the surface. From the envelope-a sur
choosing that sphere (of the many given 3 points) is that tfece with boundaries can be reconstructed, but this approac
algorithm can create more sampled points and trianglesigiveoes not conserve the original points sampled in the boyndar
any metric like curvature. In the paper expensive operatioand parameters are needed. In practice the envelope approac
like surface-curve intersection are used. The trianguiais does not seem to produce topologically correct results. We
a remeshing, because of this if the triangulation created dispose of information about the surface and boundaries and
parametric space or with another method is incorrect thise another approach to the problem.



) Algorithm 1 Sample of the Edgé’ between Face#; and
Fy

S1(u,v), S2(u,v): Underlying surfaces for Faces, and F5.

C(X\): Underlying Curve forE.

Ao, Ay: Parameters of the extremes Bfin curve C.

Vg Output. Sequence of point sample Bf

K a2 (S,p)): Maximal curvature of Surfacé at pointp.

Nsides: Number of sides of a regular polygon.

Exterior of F

sub-manifold F
of manifold S.

1. Vg = {}
Boundary of F: . —
8F=('Ini'/ure(F)—F 2: A — AO
3: while A <Ay do
Fig. 4._ Interior, boundary and exterior of a submaniféldwith respect to  4: p= C()\)
a manifold S. 5 Vi = Vg U {p}
Gabriel 1-simpl 6: k = max(Kmax(Slvp)7Kma:r(527p))
abriel 1-simplex X _
7. r=1/k
8  d = polygon_determined_arc(r, Nsides)
9: A =dist_to_param(d)

100 A=A+ AX
11: end while

C(u) S(u,v) Polygon side

Center of Gabriel

1-simplex =
Gabriel 2-simplex P r=1/k

onint(F) Center of Gabriel Pp=S(u,y)
2-simplex
pe=Cu)+r.n Regular tangent Direction of maximal
polygon at p=S(u,v) curvature W,

Fig. 5. Gabriel 1- and 2-simplices on faé¢e

Fig. 6. Locally planar curve and local curvature. Approximatby regular
polygon of N sides.

I1l. METHODOLOGY

The implemented algorithm to triangulate a fd¢enounted
onto a parametric surface (Fig. 4) has the following layout, The arcé determined by such a polygon is considered as a
whose details will be discussed later: (1) Calculate the prgood euclidean sampling distance for the cuéveat p (line
image F—! of the faceF through the functiors (Fig. 2). (2) 8). Such an euclidean distance must be transformed to a local
Initialize the vertex eV with a curvature-sensitive sample ofParameter distancé\ at C'()) (line 9).
the loopsLy, ..., L,, of the face boundargF'. (3) Sprinkle the
face F' with verticesv; achieving a vertex density proportional
to the local curvature of’, K,,.., inserting those vertices in
setVy. (4) Calculate a Gabriel connectivify for the vertex f;i?of]”"vam"e
setVr.

A. Edge Sampling

Algorithm 1 is used to produce a curvature - sensitive
sample of an Edgé’. Unlike previous approaches ([18]) such
a sample is not an iso-distance one. Instead, the sampling
interval at pointp on the underlying curv& is sensitive to
the largest of the maximal curvatures §f and S, in such Fig- 7. Goal Point Population on fade
a pointp (line 6). Notice that the curvaturef the curveC
at p needs not to be considered in addition to the surface
curvatures because it will be always less than or equal to tBe Face Sampling. Vertex Sprinkle on FaEe
surface maximal curvature$(,.. (S1,p), Kimaz (52, p))- Algorithm 2 constructs the vertex séf= of the triangu-
Fig. 6 displays the geometrical idea behind lines 7 and 8 lation sought for faceF'. The initialization of Vx (line 1)
the algorithm: the radius of curvatureis the inverse of the is done with the vertices sampled on the boundary loops of
curvaturek. A circle tangent to a curve with such a curvaturé”, 0F = {Ly,...,L,}, as per algorithm 1. Such vertices
may be approximated by a regular polygon /¢f;,.s sides. correctly sampledF. However, the interioint(F’) still must

low curvature
region



(sharp sprinkle)

high curvature E
region =

low curvature
region
(wide sprinkle)

Fig. 8. Curvature-sensitive Sprinkle Airbrugh

Algorithm 2 Sprinkle triangulation vertices on Fade

F: Input. Face to triangulate.
F~1: pre-image of Facé" in spaceU x V/

(line 13). Fig. 6 depicts that the value fét is computed as
the cord of theN,;.s-regular polygon inscribed in the circle
with radius1/k. Functionpolygon_side(r, Ngides) equals to
2rsin(mw/Nyides). Fig. 5 displays the two tests mentioned in
items (a) and (b) above.

C. Face Triangulation. Gabriel Connectivity on Vertex Bet

Algorithm 3 Triangle Connectivity in the séfx
Ve Input. Vertex set sampled on Faéé
Queue: List of triangle edges to expand.

OF ={Ly,..., L, }: Loops Bounding the Facef.
T Output. Triangulation.

S(u,v): Underlying surface for Facé'.

OF ={Ly, ..., L,}: Loops Bounding the Fackf.
Ny: Number of tolerated failures.

Vr: Output. Vertex set sampled on Fage

1: seed = triangle_in_interior(F)

2: {(vo,v1), (v1,v2), (v2,v0)} = edges_of _triang(seed)

3: Queue = {(vg,v1), (v1,v2), (V2,v0)}

4 T ={ seed}

5. while (Queue # ®) do

6: edge_to_expand = extract(Queue)

7 if edge_to_expand is not part of the sample of the

1: Vg = sampling of boundary F’
2. fails =10
3: while fails < Ny do

4:  generate parameter pdin,v) € F~! boundary then
5 k= Knae(S(u,v)) 8: (vo,v1) = vertices(edge_to_expand)
6: r=1/k 9: Unew = vert_for_Gabriel_2_Simplex(Vy,vo, v1)
7. p=S(u,v) 10: T =T U {(vg, V1, Vnew)}
8: R = polygon_side(r, Ngiges) 11 if ((v0,Vnew) € Queue) A ((Vnew,v1) € Queue)
9. if 3¢ € V¢ such that ¢ € B(p, R) then then
10: if Jv;v;, a segment of the boundary, such that  12: Queue = Queue — {(vo, Vnew); (Vnew, V1) }
Be(vi,vj) then 13: eseif ((v, Unew) € Queue) then
11: fail = fail +1 14: Queue = Queue — {(vg, Vnew)}
12: else 15: Queue = Queue U {(v1, Upew)}
13: Ve =Vr U {p} 16: elseif ((vpew,v1) € Queue) then
14 fail =0 17: Queue = Queue — {(Vpew,v1)}
15: end if 18: Queue = Queue U {(vpew, vo) }
16: ese 19: else
17: fail = fail + 1 20: Queue = Queue U {(v1, Unew), (Unew, Vo) }
18:  end if 21 end if
19: end while 22;  end if
23: end while

be sampled. To do so, trial vertices are generated inside thélgorithm 3 builds the connectivity inside the vertex $&t.
pre-imageF~! in U x V space (line 4) and their image viaThe algorithm seeks to complete eddeg, v ) already known

S is calculated (line 7). Such a trial vertgxmay be rejected to belong to the triangulatiof” (line 6) with an additional

if (@) it is too close to other vertices already accepted/in vertexw,.., to build a Gabriel Trianglévy, v1, Vnew) (lin€ 9).
(line 11) or (b) if it is contained in the smallest ball defined Any internal Gabriel triangle is the first formed triangle
by a pair of vertices consecutive on a lofp. The closeness (lines 1,4). It is also a seed to initialize tligueue of edges
criteria is dictated by the maximal curvatufé,,..(S(u,v)) potentially able to span Gabriel triangles.

atp = S(u,v) (line 5). In the case (a) each already acceptedIf the edge extracted from th&ueue is part of the
vertex in V; is tested for inclusion inside a baB(p, R) boundary, it is not expanded any more (line 7). All the
centered ap with radius R = polygon_side(r, Nyides) (line  edges part of the boundary will be found because they are
9). In the case (b) each segmenv; in the sample of the 1-simplex Gabriel and make part of a 2-simplex Gabriel. If
border is tested as a Gabriel segment (1-simplex) with réspa Gabriel triangle(vy, v1, vhew) €an be built, it is added to
to the candidate. If every segment of the border is Gabriethe triangulationT (line 10). If a Gabriel triangle can be
with respect top, we assume thap is not too close to the built using only an existing edgévg,v;) and a new vertex
border (line 10). A segment is said to be sampled in the,.,, the general situation is that the new ed@es v;,..,) and
boundary, if its two end vertices are consecutive in a log@,..,v1) should be queued to be eventually expanded (line
L; € OF. If tests (a) and (b) are passedis accepted i’z  20). However, this is not always the case, since such a taang



may use 1 or Zadditional edges already in the queue. In the
first case, it is filling a corner (lines 13-18). In the secoade;

it is filling a triangular hole (lines 11,12). In such speaiakes
additional edges (1 or 2 besides the expanded one) should be
taken away from the queue.

IV. RESULTS

Several Boundary Representations B-Reps were used to test
the implemented algorithm, proposed in this article. Sueh B
reps have genii 3 or superior, and present fagesvhose
underlying surfaces$ are parametric ones of the NURBS or
SpI|ne types. Aan = 1000. maximal nu.mber of failed tr_'als Fig. 10. 2 hands with 3 genus, scanned and reconstructed RsimDrop
was used to stop the sprinkle of vertices Bh(generation Geomagic. Colormap according to the size of the triangles
of the setVy). The number of sides for the approximating
polygon wasN;4.s = 30. Figs. 9, 10 and 11 show complex B-
Reps. Other examples of B-reps triangulated include a model
of a pre-columbian fish in Fig. 13, a support of an axle in Fig.
14, and a stub axle in Fig. 15.

The attention of the reader is called to the fact that the
connectivity construction is a process completely ind€een
of the vertex generation one. Since the vertex generation
algorithm (Sprinkle) is the most critical one, the execatio
time was recorded for such an aspect.

For the modelsPump and Hands Figs. 12(a) and 12(b)
show execution times, corresponding to the vertex germerati
process. Fig. 12(c) shows the comparison of vertex gewerati

times for such runs. Fig. 11. Other view of the 2 hands with 3 genus. Colormap adagrtb
the quality of the triangles.
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