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Surface reconstruction from noisy point samples must tale@ éohsideration the stochastic nature of the sample. In otloeds, geometric algorithms
reconstructing the surface or curve should not insist ilofghg in a literal way each sampled point. Instead, they mistpret the sample as a “point cloud”
and try to build the surface as passing through the bestlgegsi the statistical sense) geometric locus that repteslea sample. This work presents two new
methods to find a Piecewise Linear approximation from a Nyegastipliant stochastic sampling of a quasi-pla@idrcurveC (u) : R — R3, whose velocity
vector never vanishes. One of the methods articulates intaelgmew way Principal Component Analysis (statisticaijla/oronoi-Delaunay (deterministic)
approaches. It uses these two methods to calculate the lssditledape-shaped polygon covering the planarised peinasd then approximates the manifold
by the medial axis of such a polygon. The other method appliesipal Component Analysis to find a direct Piecewise Linggpraximation ofC'(u). A
complexity comparison of these two methods is presented al@hgavgualitative comparison with previously developed oriesirns out that the method
solely based on Principal Component Analysis is simpler ancemaust for non self-intersecting curves. For self-irgetinig curves the Voronoi-Delaunay
based Medial Axis approach is more robust, at the price ofdrigbmputational complexity. An application is presentechtegration of meshes originated
in range images of an art piece. Such an application reachg®tht of complete reconstruction of a unified mesh.

Keywords:Curve Reconstruction; Surface Reconstruction; Unorgahi®ints; Range Imaging; Principal Component Analysis; &g Triangulation;
Voronoi Skeleton

1 Introduction

Reconstructing a curve or a surface from a point set is orfeeafitost important problems in the reverse engineering
of geometric models. In some cases curve reconstructioys @a important role in the surface reconstruction
problem (Lee 2000). It is the goal of this paper to present tvethods involving statistical (Principal Component
Analysis -PCA) and deterministic techniques (Moronoi-Delay) for reconstructing a set of curves from noisy
unorganised point sets. An application for surface recansbn is presented, using data sets resulting from object
captured by range images. The references examined indizdteuch a combination of methods has not been tried
before for curve and surface reconstruction, or for rangegemmesh integration.

Even though this work will concentrate on quasi-planar csirtiee statistical methods involved directly extend
to arbitrary curves irBD. Two types of noisy unorganised point sets have been caesid®ne of them results
from sampling and adding statistical noise to a set of miytuhsjoint regular parametric curves (i.e. whose first
derivative vector is continuous and never vanist@g).) in R3. The other point sample is originated in a cluster
of individual meshes from range images. The point sampleasgemed to comply with the Shannon or Nyquist
criteria for digital sampling.

Problem Statement.Given a samples = {py,...,pn} from an (unknown) set of mutually disjoint regular
(open or closed) quasi-planar parametric cuWgs:) in R? and which may self-intersect, a PL (Piecewise Linear)
estimation of eacky;(u) is to be found. As seen later, without loss of generality wg assume that' C R2.

The statistical methods which estimate the tangent to a euifue) are not capable of determining by themselves
the correct sense of thev tangent vector. For this reason we require that the curvedrain continuity in the
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derivative and that in the neighbourhood of each of its [goinhis well approximated by a straight line. That is,
C;(u) must beC''-continuous and its velocity vector must never vanish {he.curve must beegular).

In this paper the stated problem is solved and an applicafiits solution is presented, for integration of range
image meshes. To integrate a set of meshes of individuaéramgges, the set of meshes is sliced by parallel planes.
Each sliceS;, turns out to be a coplanar set of poisis= { P, , Pi,, - - - , P, } With a strong statistical component
stemming from the optical sampling error. The proposed #lyorfinds a PL estimation of the curvg, (u) that
adequately fits the points in the noisy unorganised poinsgethe Literature Review section illustrates that such
an integration of individual range meshes is still an opesbfam in several aspects. Section 5.1 discusses the
application of PL curve reconstruction in detail.

Another application of the proposed algorithms in inteigrabf individual range meshes arises when a particular
slicek is missing or incomplete In the case of range imaging, thisiccwhen a portion of the object is not captured
by any of the images. In such a case, point samples from lévelsandk + 1 are projected onto the insufficiently
sampled plané. The resulting cross section on plakenust then be recovered from a possibly noisy point set.
This point set should be treated with statistical tools, dddross sections recovered should be the best fit to the
planar point cloud contained in plake

A variant of the first type of noisy point sets (used to illustrdhe Voronoi-Delaunay method) consists of a noisy
sample of a self-intersecting planar parametric curve.féigushows a situation in which the local geometry of a
planar slice (for example a Computer Axial Tomography - CAdded to the presence of stochastic noise renders a
set of points that look like the one in Figure 10(a). Cleadgsl extreme situations may render an “8"-like section in
the presence of a high level of stochastic noise. In the dessample of an “8"-like section two legal resulting PL
approximations are equally likely: (&vo separate circular polygons, and @mepolygon with a thin wasp waist.

It is clear that near the self-intersecting point any aldponi may be confused. A survey of reverse engineering
methods is presented in Varady, Martin and Cox (1997), beindent the use of curve reconstruction from point

samples for generation of revolution or extrusion 2-mddgoOne of such applications is presented by Lee (2000).
This application is particularly important in reverse eregiring when the designer interactively tests the fitting of
such surfaces to specific portions of the point set.

Figure 1. 2-manifold sample which renders a non-manifold curve

2 Literature Review

Several solutions are available for curve reconstructiomfpoint sets without noise. A survey on techniques for
the case of closed, smooth, and uniformly sampled curvebedound in Edelsbrunner (1998). Methods for non-
uniformly sampled smooth curves, and for uniformly sampied-smooth curves are cited by Althaatsal. (2000).
Some TSP (Travelling Salesman Problem) and tour improvemeniskiesiwere used by Althaus and Mehlhorn
(2000), and good experimental results were reported. Inthap&ern and Eppstein (1998) the PL approximation of
aC? curve sampled in a dense pattern proportional to its lo@dufe size (a modification of the Nyquist criterion)
is discussed. Two graphs, tbrustand3-skeletorare discussed, whose edge set exhaust the point sampleuld sh
be noted that the curve reconstructed by these algorithssepdhrough each of the sampled points, and this type
of solution is not adequate for the noisy point sets coneitlér the present paper.

The methods proposed for the case of non self-intersectingganised noisy point sets include spring energy
minimization (Fang and Gossard 1992), implicit simpliagatves (Taubin and Ronfard 199G),shape polygonal
boundaries and medial axes (Edelsbrunner atidkd 1994), and moving least squares (Lee 2000). A review of
these methods along with their limitations can be found in (2860). Verbeelet al. (2001) approximate an open
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curve byk segments that are least squares approximations of poisesubontained in Voronoi regions for sets
of segment. By increasing, better approximations to the curé&u) are found until a fitting criterion is met.
However, the segments still need to be joined in a Hamiltogiaph, significantly adding to the complexity of the
algorithm. The segments of the Hamiltonian graph may be itarge the segments found in fitting the point set.
This has the effect of producing a PL approximation that mayeferched when compared with tlki& «) curve.

(Chenget al. 2005) attack the problem of noisy point samples by compuimgw point set having less noise
as than the initial point set. The actual PL approximatiof'fe) is computed using a crust algorithm (in this case
the NN Crust by Dey and Kumar (1999)). The new point set is d¢aled as follows: for each sample pojné thin
rectangle is built with its main axis normal to the curve tamgand covering a certain number of point samples.
The centre of such rectangle replagg®r the remaining of the algorithm run. The rectangle cerdirescloser to
the C'(u) curve than the original sampled points. From all these redtacentres one keeps the most external ones.
In this way, the point set is pruned while a supporting widihdrust algorithms is provided. At the end, a crust
algorithm is called. In the method discussed in our papesla®p, r) replaces the rectangle, and the centre of
mass of the points inside the ball is assumed to b€’om). Also, the ball contains a point set whose main trend
is tangent toC'(u) instead of normal to it. In our approach, no additional calgbrithm is needed, since the PL
approximation ta”'(u) is directly built using the centre of mass of those pointhm$ample which are contained
in the ball.

Wang, Pottmann and Liu (2006) fit B-splines to a set of noisy etd using curvature - based squared distance
minimization. For this reason, the minimization requites torm of the equation (spline), and makes no attempt to
attack noisy point sets with self - intersecting conditid@a the other hand, no discussion of the complexity of the
algorithm is provided in time or in computational space. \&&l that keeping the objective as a PL curve avoids the
literal formulation of B-splines in the algorithm. Also, oesearch has as a goal the representation of non-manifold
curve samples as PL non self-intersecting curves (i.e.,foldribpologies), which allow for the subsequent usage
of the PL curves in geometrical or topological constructs.

Kegl (1999) and Kegl and Krzyzak (2002) explore the recowéryPrincipal Graph underlying a 2D point sample
(e.g. a character meant to by pen strokes). The authors setwperical optimization algorithm that weights two
competing criteria in the graph: (i) should as closely asits follow the many pixels in the stroke, and (ii) should
not have high curvature portions. An important feature ierapplication of this algorithm is that, since a character
is sought, the final P.L. approximation does not have to be afoldnirherefore, self-intersections are permitted
(like in the “H” or “8” characters). In our case, the final resofl the reconstruction should be a set of disjoint non
self-intersecting curves, and therefore one must takeafdnegher requirements than the ones Kegl and Krzyzak
(2002) and Kegl (1999) met.

Range Images and Point Set SurfaceBecause the algorithms proposed in this paper are to becapiplithe
integration of range images, the authors consider thatiawewn range images is worth as a motivation for the
reader. Range imaging offers a manner of digitizing the sta&phree-dimensional objects. Because all opaque
objects self occlude, no single range image suffices to destite entire object, making necessary the combination
of a collection of range images from diverse viewpoints iateingle polygonal mesh that completely describes
the object. Turk and Levoy (1994) create individual meshedhe different range images and clip them against
each other for integration. Unfortunately, their integmatmethod shows instabilities documented in Curless and
Levoy (1996). Curless and Levoy (1996) integrate range imbhgeaseating a scalar field containing the minimal
signed distancég (z, y, z) from the point(z, y, z) to the object’s surface. Afterwards, a Marching Cubes éigor
creates the B-Rep of the iso-surfagér,y,z) = 0. A shortcoming of this method is the fact that the signed
distance is calculated as a directional (instead of a gcptaperty, and therefore there is no guarantee that the
scalar field correctly registers the signed distance fromiiat po the surface. In Soucy and Laurendeau (1995) the
very high computational cost of combining range image meslfter registration and surface meshing is discussed.
In this reference overlapping components of the mesheegponding to different range images must be identified,
with a large computational cost, of the ord@(2" — 1) whereN is the number of range images. This reference
unrealistically assumes the accuracy of the range datacasipn of the range data deteriorates in the periphery of
each range image. In Zhou, Liu and Li (2006) a heuristic methodferging overlapping triangular meshes from
range images is discussed. This article does not prove thectoess of the method exposed, which is based on the
distance between triangles that are considered as ovartapfhe less likely mesh is projected against the more
likely one, based on a purely geometric projection, giviisg to topological inconsistencies that are not dealt with
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rigorously.

For the direct treatment of the integrated point cloud frowtividual range images Hoppe et al (1992) use the
k nearest point neighbours of a particular pgirit the cloud to estimate the best local tangent plane. Theeplan
is then used to construct the signed distance funcfign : R> — R from pointq to such plane. A Marching
Cubes algorithm is then used to construct an approximatothe manifoldf(q) = 0. This reference does not
discuss the reconstruction of manifolds with border, nerltehaviour of the algorithm in incorrectly smoothing
sharp edges of the piece. Indeed, their examples show @stesd to filter out high frequencies. For these reasons,
directly fitting surfaces to point sets has been an open resdeid since 1992. As a consequence, there has been
a steady stream of publications in this direction. Ohtakal ¢2005) use spherical influence regions to calculate
most likely points on the surface and local normal vectoos.tRese authors and others, however, a difficulty with
direct reconstruction of the manifold from the integratedhp cloud remains in the fact that stitching together the
local planes (triangles) gives rise to non-manifold tog@s. Adamson and Alexa (2006) propose the computing
of ellipsoidal weighting functions per sample to represemimplicit surface using supporting regions around each
sample (Point Set Surfaces). It must be noted that such an ajpdo®s not explicitly compute the Boundary
Representation of the model. Instead, it lends itself fenalization with ray casting.

The authors of the present article have found that the issiga@in curve reconstruction and in a possible
application of it to range mesh integration are still an opewblem in applied computational geometry. As seen
from the literature review, curve reconstruction of seliersecting curves is also unsolved. In range images, a
reliable algorithm for mesh integration has not been pregoEven in commercial systems (Geomagic 2006) such
an integration requires the user interaction for corrgcsielf-intersecting portions, holes, etc., that are laftrahe
triangulation merges. Such facts have encouraged the authpublish the present paper.

Section 3 examines the adaptation of statistical methods tséd in the present problem. Section 4 discusses the
concepts necessary to implement the algorithms and th&ukation in reaching the solution. Results for several
types of point sets including hon-smooth, self-intersggtand non-uniform sets obtained with both methods are
presented in Section 5. Section 5.1 describes an interestiggyation of one of the methods to surface reconstruc-
tion from range images, and presents the results obtainmeirial object. Section 6 discusses the computational
complexity of the implemented methods. Finally, Section Twdrthe relevant conclusions, and proposes bases for
future work.

3 Statistical Approach

The statistical approach for curve reconstruction from psamples has precursors in Hastie and Stuetzle (1989).
In this reference, the authors define Principal Curves as $nomats, which pass through the middle of, and are self-
consistent with, a sampled cloud efdimensional data with dispersion (relative to the unknaurve) following

a normal distributior{y, o).

3.1 Principal Component Analysis (PCA)

Although the following discussion treats noisy point set&? andR?, it may be useful to know that the stochastic
analysis presented is applicable to samplesdiimensions (in fact, the Principal Component Analysis metlvas
developed for the treatment of samples:kdimensional space, with >> 3).

LetS = {p; € R™: 1 <i < m} be aset ofn sample points iR"™ . Without loss of generality one may assume
that

1 =p2= ... =ty =0 (1)

meaning that the expected value of thelimensional distribution or thg;’s is the origin of R". Let ¥ be the

covariance matrix of the sample, whetg; is the covariance of thé" against thgi*» component of the; points.
One is interested in rotating with an orthogonal transformatioR such that the new s&t' = {¢; € R" : 1 <

i < m} of transformed sample points = R * p; presents maximal dispersion in the direction of the first axis

of R", the second maximal dispersion in the direction of the sé@otis, and so on. For aD point set that has
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a stochastidinear trend, establishing the direction of maximal dispersioadsivalent to identifying the direction
vector of the line from which the sample was taken. FBDapoint set with an stochastpanar trend, establishing
the direction of minimal dispersion identifies the normalteeof the plane from which the sample was taken.

Let X,,, Y}, Z, be the unit vectors pointing in the directions in whi€thas the largest{,), second largesb{,)
and smallest variance {), respectively. It may be shown that

(i) The pairs(+X,,0.), (Y, 0y), and(+Z,, o) are eigenvector - eigenvalue pairs of the maliix

Y (£Xp) = 0y % (£Xp)
Sk (£Y;) = oy * (1)
Y« (£2Zy) =0, % (£2)) (2)

(i) +£X,, £Y),, £Z, are mutually orthogonal:
XpeYy,=X,02,=2,0Y,=0 3

(i) R*[Xp, Yy, Zp, Op] = [Xu, Yu, Zw, O] and therefore:

X7 07
-1 Yr o
R = XprZpOp — P (4)
0001
Zy 0
[0y 1]

where[ X, Y, Zw, O] is the World Coordinate System or a fixed reference frame. Witluss of generality, one
may assume thaX,, = [1,0,0]7,Y, = [0,1,0]7, Z, = [0,0,1]7,0, = [0,0,0]” and therefore the right hand
side of item (iii) above is a clipped x 4 identity matrix. Because an eigenvector can always be riaretk it can
also be assumed thgX,| = |Y,| = |Z,| = 1. Equation (4) results from the completion of the identity rixain
item (iii) and its (trivial) inversion.

As a result,[X,,, Y, Z,, O,] is easily found and constitutes a right handed coordinaséesy. In particular,
[X,,Y,, Z,] is an orthogonal matrix. As desired, a parametric litg) = O, + n = X, which passes through
the centre of gravity of the point clouslis found by sorting and naming the eigenvector-eigenvahies pf > so
thato, > oy > 0.

From Equations (2) and (4) it is clear that for quasi-planaa dat, the eigenvectdf, associated to, is the
estimation of the direction normal to the fitting plane, siacas by definition the direction of minimal dispersion
of the (quasi-planar) set of points. Conversely, for lineagdthe estimation of the direction vector of the line is the
eigenvectorX,, since it is associated to the eigenvatyerepresenting the maximal dispersion.

3.2 Least SquaresFitting

Section 3.1 explained how the coordinate systed,Y,, Z,, O,] is calculated using PCA, by computing the
eigenvector-eigenvalue pai(s=X,, o), (£Y,,0,), and(+Z,,0.), of matrix > . Because geometric kernels do
not usually have routines for calculationmfdimensional eigenpairs, a method was devised for the &tsional
case at hand. The method takes advantage of the fact thatsaonpties from Coordinate Measurement Machines,
Machine Tool stylos, CAT scans, etc., are planar or quasigil As a consequence, a very close estimation of the
lowest dispersion direction (the vectdy, normal to the plane) can be easily achieved. The point cloa:gted

on this plane loses one dimension and therefore the probémmnes 2-dimensional. Therefore, a solution of the
eigenpair problem in Equation (2) can be achieved as an eateafa Least Squares (LS) fitting. The LS method
cannot be directly applied since it is based onithplicit equationy = mx + b, which has no solution ifn is the
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tangent of+90°. A random rotation aroung, followed by LS fitting and the corresponding counter rotatibthe
point data set, avoids this problem and allows to expres8Ehgend of the point cloud in terms ofarametric
equationp(n) = O, + 1 * X,,.

In two dimensions, the LS method detects the trendf a linear phenomenon. Since the 3D problem at hand is
projected into 2D space, finding in 2D reduces to calculating the projection of the 3D dir@ttrectorX, of p(n)
onto the best fitting plane for the point set. Notice that thefxet is not exactly planar because of the machine tool
sampling errors. Since Least Squares is just a PCA in two dimesidiowhat follows, “PCA’ and “Least Squares”
should be read as synonymes.

3.3 Point Sample Partition

Regardless of the method employed to estimate a PL apprdgimiatr the curves, it is capital to recognize the
fact that the data set must be partitioned into the data sigfmated from the individual curves’;(u). In order

to perform such a partition let us define an equivalence oglatn the point sef, as follows. If the sampling
conditions are anisotropic and constant oRér a pointp € S is said to “be the extended neighbour” of a point
q € S, if and only if there exists a sequence of points of the samipd¢arting atp and ending ay such that no
two consecutive points of the sequence are farther aparog than a fixed distanegfrom each other. Let(p, q)

be read asp is an extended neighbour ¢f. Formally, two pointsp, ¢ are Extended Neighbours of each other,
whenever there exists a sequefge..., ¢,,] such that each; € S, ¢1 = p, ¢ = g and|q; — gi+1| < €. Ther()
relation defined above is an equivalence relation sinceigfezst:

() (P, P;) (reflexive: a pointP; is extended neighbour of itself).
(i) »(P;, Pj) Nr(Pj, Pr) — r(P;, Py) (transitive: if P; and P;, and P; and P, are extended neighboutB; and P
are so).
(i) r(P;, Pj) — r(Pj, P;) (symmetric: if P; is extended neighbour @?; then P; is extended neighbour dt;).

This equivalence relation( ) splits .S into subsetsS;, Ss, ... with the property that(P;, P;) holds (are extended
neighbours) if and only i’; and P; belong to the samg),. Properties (i), (i) and (iii) of the relation( ) imply
thatu;S; = S andS; N S; = ¢, # j. EachS; of the partition happens to be the set of points sampled ften t
curveC;(u). The partition of the se$ by the equivalence relatior( ) is realized by using a standard algorithm of
transitive closuravhich will not be discussed here.

4 Algorithms

Two algorithms for determining a PL approximation for quaksinar 1-manifolds itk? are presented in this section,
along with two figures that show partial results obtained atttain steps of each one of them.

4.1 Data Pre-Processing

The point data must be pre-processed in the following sequéiScaling: to guarantee that a standard bounding
box of the sefS is available (PCA requires such a box). (ii) Partition: toidésS into subsets, each one containing
the points ofS corresponding to an individudl; () curve. (iii) Identification of Best Plane: to find a statistical
planell fitting the quasi-planar point sét. (iv) Correction to Planar Set: to projeStontoII in order to have a
perfectly planar point set. (iv) Transformation 30y Plane: to use the algorithmic results in literature whichl dea
with point sets in theX'Y” plane. Step (ii) is required since seve€i(w) curves may have been sampled and the
point set would represent several unrelated curves. In Vaflatvs, the notationC;(«) will be changed ta” ()
since the analysis is per curve. A post-processing stefstonsin reversing the transformations performed in the
pre-process, is necessary in order to bring the found solltack to the original space.
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4.2 Curve Reconstruction with Least Squares

After the data pre-processing steps mentioned in Sectiotelelplace, the Least-Squares-based algorithm takes
as input a quasi-planar s€t and returns a polyline that fits these points by performirgstieps discussed below
and displayed in Figure 2.

Point Sel

Unprocessed
point set?

Vnitial r

nitial p[— Optimize
Local Ball B(p,r
ball B(p,r)

Linear Trend
Identification

— next p(d)x CG(B(p,N)) + d*v

store
CG(B(p.")

PL Curve

PL Curve

Figure 2. Curve Reconstruction with Principal Component.

4.2.1 Optimal Local Point Set Estimation. Given a noisy unorganised point set, resulting from a ststihiaample
with variance{o, o, o] of a planar 1-manifold”(u) (possibly open) lying on plang in R3, one is interested in
estimating the tangent linéC'(u) /du|y—,~, at pointC(u*) of the curveC'(u). PCA and Least Squares are applied
to points of the sample which are contained inside a B&lP;, R), centred at a seed poift, and having radius
R. Two competing aspects must be compromised: (i) the ballldhoe small enough so that data $etan be
considered to fit a linear estimation of the local tangeny;tiieé ball should be large enough so that the goodness
of the linear estimation is kept. To achieve (i) and (ii) arative search is conducted for a combinatiorPpaind

R, optimal for the linear fitting of local neighbourhoods $f The iterative search starts with a b&l(p(0), r(0))
enclosing a se$(0) of points. Lete (p, ) be a function that associates a least-square regressiag #ttior to the
points inside a ball with centreand radiug-. It is desired to find the values pfandr that minimizee. Applying
the PCA to the point set, a measurement of the fitting error isdoln thek — ¢h iteration a new value ot(k) is
proposed#(k + 1)), which changes the size of the b&l(r(k + 1), p(k)). This ball, in turn will enclose a different
set of pointsS(k + 1), with new centre of gravity(k + 1). The fitting of a new straight line to the s&tk + 1)

will render a new fitting error. The iterations stop when sucteaor has a local minimum. Thiasd hocprocess
was found to have good convergence.
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4.2.2 Piecewise Linear Reconstruction of C'(u). In the following discussion the ter3(p, ) will mean both the
ball with radiusr centred atp, and the subset of the point sample contained in such a badl.cbhtext will
define which meaning is intended. The algorithm in Figure 2 per$oan estimation of the linear trend of the
points in the optimized balB(p, ). Such an estimation produces a parametric equation foriglstime in space
p(n) = Op +n *v with |v] = 1, whereO, is the centre of gravity of the points insid&p, ), v is the linear trend
of the line (also called,, in section 3.1)0O,, is denoted a§’G(B(p,r)) in Figure 2. Such a point is stored directly
in the linear estimation of th€'(u) curve. The ball for the next iteration is initially centred@j + d * v, whered

is the progression step of the algorithm and= 1. SinceB(p;, ;) andB(p;+1, ri4+1) intersect, itis clear that each
sampled point may be used in several balls, and therefoteirdtimation of successive tangents. Notice that the
indexi corresponds to already optimised balls in evolving loegiof the curve” (u) such thatp; 1 — p;| =~ d. In
Figure 2 the need for determining whether or —v is the correct trend is omitted (recall that PCA retutns).
This is easily done by ensuring thate v;,; > 0. The later requirement is reasonable since the cafie) is
assumed to be regular.

The algorithm will continue as long as there are enough adailpoints of the sef (see section 3.3) which fall
inside a ball. Each point can be used in several balls, begigriimber set by the user. In Figure 2 the marking of
the multiply used points af is omitted for the sake of clarity. When this algorithm temates, the curvé’(u) has
been piecewise linearly estimated.

A noisy point set generated from a range image Multi-Meshpans shown in figure 3(a), together with the
balls used by the reconstruction algorithm. Figure 3(b) shihw resulting reconstructed curve.

(a) Noisy Point Set from Range Image Multi-Mesh sample andsBeded in the (b) Reconstructed Curve.
reconstruction process.

Figure 3. PCA-based Reconstruction.

4.3 Principal Curvevia Delaunay Triangulation

The following discussion will be illustrated using a planamanifold with border (operC(w)). Later on, the
concepts explained will be applied on self-intersecting. fion-manifold) planar curves.

For planar self-intersecting curves, PCA alone is not rolemstugh. Additional processing is required since
the points in the neighbourhood of the self-intersectian ethausted for purposes of PCA estimation as the PL
approximation crosses the first time over the intersectioghi®urhood. As the PL curve revisits the intersection
neighbourhoods no points are available for identifyingttiead of the curve, and the algorithm tends to look for
another point (i.e. curve) neighbourhood where to workhuuit really having reproduced the intersection. The
result is an incomplete curve stage, therefore missingeligraersection detail.

To deal with self-intersecting curves, it was decided teedaine the tape-shaped polygdn coveringsS (defi-
nition below). Figure 4 displays the algorithm discussed.nex

Definition. Tape-shaped Polygoril,. Let C : R — R? be a planar regular parametric curve, which may self-
intersect. Without loss of generality let us assume that R?.

Giveno > 0 a real number, defin€, = {p € R? : d(p,C) < o}. There existsry > 0 such thatifo < ¢ < oy
then for everyp € T, (i) the set of points{g,1,...,qy,,} C C formed by those points whose distancepto
equalsd(p, C) is finite. Theg, ; points inC' are the ones which realise the distance freto C; (ii) the distance
between any two points in the sgt, 1, ..., ¢, } is less thar2o. Observe that is dictated by the precision of the
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Figure 4. Line Reconstruction through Delaunay-Voronahfeques.

measurement device which samplésWe assume that the measurement device allows a precisiorcad, and
therefore thatS C T,. Note that they, ; could be regarded as the points to be sampled in the ctiimeabsence of
sampling noise and that ¥ is non self-intersecting thenis unique for eaclp € S.

For small enough values ef, (Nyquist samplesY,, resembles a tape region covering the cutvvéet us define
Qs ={qe€C:d(p,q) =d(p,C),for somep € S}. Note that ifS has no statistical nois€s = S and@s would
be a noise-free Nyquist sample ©f

4.4 Approximation of T,

Under the condition of being a Nyquist-compliant sample, this article proposealgarithm to approximate the
tape-shaped polygdH,. The algorithm follows three steps:

(i) calculates the Delaunay Triangulation®f DT'(S);
(i) then selects fronDT'(.S) small triangles;
(i) and finally, makesI, the boundary of the union of the triangles selected in (ii).

In order to apply such a method, an estimation of what a “simalhgle” is, should be made precise. For this
purpose the typical area and edge length of Delaunay teargglonging t&, need to be estimated. To do that,
PCA is iteratively run on neighbourhoods of the data set, thetermining the lineo(n) = Py + n % v that best
approximates the tangent to ti&w) curve in that neighbourhood. The points $fthat produce such a fit are
contained inside a baflp « B( Py, Ry) approximately centred on a local neighbourhood'¢f,). Delaunay triangles
contained within a scaled version of this ball, namgly«x B(Py, Ry) (with fp = 1.3 being an empirically chosen
enlarging factor) might be considered as “typical” of thesmormingT,, rendering “typical aread and “typical
edge length? values.

One considers that a triangle is small if either of the follmyvcriteria (Fortune (1992) and Guibas and Stolfi
(1985)) holds:

() Enclosure Accept a Delaunay triangl®7T; if it is contained within the local PCA ball, that is, iDT; C
B(Py, Ry) whereB(Py, Ry) is the best local PCA ball (see Figure 5(c)).
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(i) Area and Edge Length Accept a Delaunay triangl®T; if its Area or maximal Edge Length are small. That
is, if Area(DT;) < fax Aorif En.. < fi [, respectively, for fixed constanfs and ;.

We give an informal discussion for the correctness of thegulare to obtain an approximation’tf. The tests
run gave a good performance in the filtering of Delaunay tiesigAn advantage of the implemented algorithm is
that the application of PCA to the local neighbourhoods ofbiat cloud allows the estimation of the sizes of the
triangles to be deleted and to be kept.

Let us suppose that, contrary to the assumption, a largegteidil; = [v;, vy, v;] belongs tdl,. Since it is a
Delaunay triangle, its circumcircle contains no pointsSoBut sinceDT; is a large part of;,, a large portion of
T, contains no sample points, contradicting the fact that a Nyquist sample. On the other hand, suppose that a
small triangleDT; = [vj, vk, v;] is not entirely contained iff,,. If DT; is completely outsid€, then it creates a
contradiction since' C T, . If v;, vg, v; are inT,, but the triangle joins two approaching brancheg’othe sample
S is characteristic of a non-manifold situation and therefbff; is part of 7.

For the sake of simplicit{,, will be denoted simply by/". An approximationof the medial axis of’, called here
the skeleton of Tis the sought PL approximation of tki&(«) curve. Since the skeleton is a graph, it needs to be
post-processed in order to extract from it the PL approxiomedf C'(w).

Figure 5(a) shows a data set from a planar non self-interggectirve sampled stochastically. This figure presents
a data set which has been already resized, its best plameagsdi, and their points projected onto this plane, which
produces a planar set. The Delaunay Triangulation of thistseit is displayed in Figure 5(b).

4.4.1 Polygon Synthesis based on Filtered Delaunay Triangulation. The polygonZ, obtained after application of
criteria (i) and (ii) is shown in Figure 5(d). Observe that has no holes for this example. In that figure light
triangles are the accepted ones based on the PCA criteriodaakdriangles are the ones accepted based on area
or edge length criteria. The following relations hold amongepted Delaunay triangles and their edges (Mantyla
1988) :

(i) Each edge of an accepted Delaunay trianglE has one or two accepted triangles incident to it.
(i) Edgese; ; in which Delaunay triangle®T; and DT are incident are internal to the tape-shaped re@ion
(i) Edgese; in which only one Delaunay trianglPT; is incident form the boundaT. They may be either in the
outermost or in an internal loop.

4.5 Medial AxisVS. Principal Curve

Figure 5(d) presents the minimal polyg®ithat covers the point sét Its borderoT, built by filtering the original
Delaunay Triangulation, is coloured black in Figure 5(e).efwfine resample of the bord@t") is then performed,
and a Delaunay triangulation for this new point set is calted. This new Delaunay triangulation also appears in
Figure 5(e).

An approximation to thenedial axisM A(T") of T'is a skeletor5 K (T"), which is built in the following manner
(Geiger (1993), Boissonnat (1988), Ogniewicz (1994)):

(i) Construct the Voronoi Diagrarii D(T') and Delaunay TriangulatioDT'(T") of the vertices ofl’ (see Figure
5(e)).
(i) Keep fromDT(T') only those Delaunay triangles containedinCall this setDT'(T).
(i) Keep fromV D(T') only those Voronoi edges which are finite and are dual to thegdgD7'(T"). Call this set
VD(T).

(iv) If VD(T) ¢ T then re-samplé&T with a smaller interval and go to step (i) above. Otherwis®(T') is the
sought skeleton df’, SK(T).

As it is evident from Figure 5(f), the skeletai¥(7T") of the polygonT is a PL approximation of the 1-manifold
C(u).

Notice that several resamplesd@f may be needed in order to convergeSta (T'). Figure 5(e) shows one such
resample. The bounda@yI’ of the S-shaped polygon in Figure 5(f) is sampled with a small enough interval.
This tight sampling guarantees that the portion of the Vor@nagram confined t@’, SK(T'), is acceptable as an
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(a) Point Sample of Planar S-shap@@u) Manifold. (b) Delaunay Triangulation of S-shaped Planar Point Sample.
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(c) Filtering of Delaunay Triangulation with PCA Balls. (d) Triangles Selected by Area and Length Criteria.
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(e) Tape Polygon and its Delaunay Triangulation. (f) Filtered DT and Skeleton.

Figure 5. Piecewise Linear Approximation of S-shap&d.) by Combined PCA and Voronoi-Delaunay Methods.

approximation ofM A(T'), the medial axis of .

5 Results

Section 5.1 illustrates three PCA curve reconstructionsimddisfor diverse point sets. It also discusses the appli-
cation of PCA-based curve reconstruction to surface rengetgin from range images. Section 5.2 illustrates the
results obtained using the Delaunay Triangulations metlogy in dealing with the PL Approximation of planar
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(a) Near Self-Intersecting, Non-Uniform Point Cloud. (b) Self-Intersecting Non-Uniform Point Cloud.

Figure 6. Curve reconstructions obtained for differenhpeets by Least-Squares-based process.

1-manifolds without Border (closed(u)).

5.1 Least Squares Fitting Results

The PCA-based algorithm was tested on several noisy unogghpigsint sets, which include non-uniform, non-
smooth, near self-intersecting, and self-intersectirgsofigures 6(a) and 6(b) present the results obtained for two
sets, each one having some of these features. Near sefdoteg, non-uniform point clouds, as the one shown in
Figure 6(a), can be adequately reconstructed by varyingetigth of the segments of the reconstructed polyline,
considering the dispersion of points contained in each bak radius optimization process, described in section
4.2.1, turns out to be useful for this purpose.

In Figure 6(b) a point set sampling a self-intersecting cut\(@) is displayed. As mentioned in Section 4.3,
a PCA algorithm alone is not robust enough for reconstrucsielfrintersecting point clouds. However, due to
the randomness of the starting point of the reconstructientioned in Section 4.2.1, certain runs can result in
adequately reconstructing the PL approximatiorCdf.), while other runs will not. Because of this, the skeleton
method for curve reconstruction was considered.

Notice that criteria for identifying the ends opennoisy point sets are needed in ordecctwrectly reconstruct
open curves. These criteria include the fact that when the Pgéritnm finds an end of the curv€'(u), the
evolution to a next centre of the fitting balt(p, ) is possible only in one direction. This condition allows to
discriminate samples of open vs. closed curves. In the ebeadipcussed, (Aphrodite data set), however, all the
sampled curves are closed.

5.1.1 Application to Surface Reconstruction from Range Images. Range imaging is a technique for digitizing three-
dimensional objects, given a set of range images. A ranggén®a function/ x J — R3, (i, j) — P,;, where

I x J is the grid of pixels in the range image, ai} = (x5, yi;, 2i;) IS the point in the surface of the optically
sampled object, captured by the pixel in positiory) of the grid of pixels.

As no single range image suffices to describe the entire ghjéstnecessary to combine a collection of range
images (see Figs. 7(a) and 7(b)) into a single triangular rtregtcompletely describes the object. The steps listed
below were followed in order to generate such mesh from td&idual pictures (considered already registered
with respect to each other): (i) Construction of the indiatimesh)/; for each individual range image; (Figs.

7(a) and 7(b)) ; (ii) slicing of the complete set of meshids i = 1,2,... with a set of parallel, equi-spaced
planes, thus building planar samples of points; (iii) restarction of a set of curves (contours) from the sampled
points by using the algorithm discussed in Section 4.2 (sa®aes in Figure 8); and (iv) use of an algorithm for
surface reconstruction from planar slices. In this caseatgorithm discussed in Ruét al. (2005) was used. The
reconstruction of Aphrodite’s head is presented in orddhusirate the mesh integration process. The range images
used were a courtesy of Fraunhofer Inst. for Computer Grapbiarmstadt, Germany.

In step (ii), a set of parallel planes are defined, and thesatgion between each plane and the collection of shells
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(a) ¢« — th Mesh from Front Range ImageAphrodite. (b) & — th Mesh from Front Range ImadeAphrodite.
Figure 7. Range Image Data Set. Courtesy from Fraunhofer@oshputer Graphics, Darmstadt, Germany.
recovered from the range images is calculated. A set of plaraples of point$, So, ..., Sk, ... IS generated

by sampling the polylines resulting from each intersectiBigure 3(a) shows one such coplanar santfle=
{Py,,--.,Pn,} for Aphrodite’s head model.

Figure 8. Aphrodite’s head contours recovered from plaaanes of points. Test data courtesy from Fraunhofer InsCénputer Graphics, Darmstadt,
Germany.

More than 100 levels (the number and separation dictatetldiyquist criterion applied in the axial direction)
of slicing were obtained from sampling the collection of mes corresponding to Aphrodite’s sculpture head and
neck, and the same number of polylines were reconstruatettfiese sets (Figure 8). In spite of the large number of
range images available for Aphrodite’s sculpture, somesatgions were not covered by any of these, and therefore
several sets of points needed to be manually completed. thacgets were completed, none of the reconstructed
polylines were edited. The surface reconstructed from ttegrated, stochastically recovered contours is shown
in Figures 9(a) to 9(c). Figures 9(a) and 9(b) correspond tamesing planes which are not orthogonal, and to
an unfinished reconstruction (there is still a border). Fig(® represents the integrated result for slicing planes
parallel to planeX'Y'. The final Aphrodite’s surface reconstruction is shown in fig(a.

5.2 Medial-Axis, Delaunay Triangulation Results

Application of Medial Axis or Delaunay Triangulation meti®is justified when the sampled cur¢gu) is self-
intersecting. For this reason, these methods were notdtegth the Aphrodite data set, but with planar self-
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(a) Integrated Aphrodite with border. Smooth Render. (b) Integrated Aphrodite with border. Wireframe.

= N

(c) Integrated Aphrodite without Border. Wireframe. (d) Integrated Aphrodite without Border. Smooth Render.

Figure 9. Results of Range Image Integration. Test dataesuftom Fraunhofer Inst. for Computer Graphics, Darmstaétn@ny.

intersecting Bezier curves sampled with stochastic ndise.discussion of such tests follows.

5.2.1 Preprocessing to Transform into XY Plane. As before, the point sample @f(u) renders a quasi-planar
point set. According to the discussion, an isotropic scalims applied to the point set, because PCA is sensitive
to dimensional issues. PCA was then applied to estimate thepbenell fit to the point set, and a modified
Householder transformation was used to project all points ol. In addition, a rigid transformation is used to
bring the (now perfectly) planar point set to th&” plane, following the process described in section 4.1. eigur
10(a) shows the initial point set, along with a coordinatarfe attached to the plahke

5.2.2 Delaunay-based Medial Axis Processing. The Delaunay Triangulation of the point set projected ditand
then transformed tXY is illustrated in Figure 10(b). In the construction of thedahaped polygoi’, Delaunay
Triangles included in PCA balls are accepted ( Figure 10(c) & fflangles not entirely included in PCA balls
may still be accepted based on the Edge Length or Area crig@igure 10(d)). Notice thdt is a connected
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(e) Tape Polygon and its Delaunay Triangulation. (f) Filtered DT and Skeleton.

Figure 10. Process of P.L. Approximation of Double-8 setéisecting” (v) by Combined PCA and Voronoi-Delaunay Methods.

2-dimensional region with boundaé&i” = Lo U L, U ... U L,, in Figure 4. After the regiofi’ has been synthesized
by consolidating Delaunay triangles chosen accordinga@tiove criteria the bordéf” must be determined. This
step is a standard procedure in Boundary Representatiagtraotion and is conducted according to the rules in
section 4.4.1. The next goal is to identify the Medial Axis (M#& T'. An exact calculation is out of question because
MA produces curved portions. However, if a resamBiE of T' is fine enough, its medial axis may be approximated
as the sequence of Voronoi Edgesitif completely included if". TheborderdT is resampled (see Figure 10(e))
and a new Delaunay Triangulation is calculated. The Deladm@ngulation DT (RT') of RT is purged to keep
only those Delaunay Triangles internal’fo In this form, again;" is re-triangulated, but this time with triangles
whose circumscribed centre lie inside The loci of such centres iISK (T'), the skeleton approximation for the
medial axisM A(T) of T (see Figure 10(f)). As can be seen in Figure 10(f), it is posgshmt the re-triangulation of
T breaks this region into separate ones. This result is exppesitece it indicates the presence of self-intersections
in the original set. The algorithm corrects them by splitting tape polygof” into annular sub-partsg;. Care must
still be exercised, a§ K (T') may be outside of &; region, as shown in Figure 10(f). This situation, however, is
not harmful since the skeletost’; do not intersect each other, and therefore serve as PL apmpat&ns of the
original C; (u) curves.

Figure 11 shows comparative results for a self-intersectinge C'(u) (double “8”) obtained using PCA (Fig-
ure 11(a)) and Voronoi-Delaunay (Figure 11(b) and Figure )} I{ethods. Figure 11(a) shows that PCA alone
processes the total point set but is not able to solve thergelfsection issue. The Voronoi-Delaunay result in
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(a) PCA-based Algorithm. Result. (b) VD-based Algorithm. Multi-Polygon Result.  (c) VD-based Algorithm. Single-Polygon Result.

Figure 11. Final Results. PL Approximations of Double-8-seférsectingC'(u) by PCA and Voronoi-Delaunay Methods.

Figurell(b) solves the self-intersection by generatingrsdtangent closed curves. The Voronoi-Delaunay result
in Figure 11(c) generates a PL approximation with wasp waist.

6 Complexity Analysis

For this complexity analysis, worst-case scenarios wiltbasidered. In the case of the Delaunay Triangulation
of N points in R? a complexity ofO(N?) is counted, instead aP(N) reported in Boissonat (1998), due to the
fact that no special data structure is assumed. An sketdieofdmplexity analysis performed is presented in the
following subsections. Since only well known facts on the ptexity of the Delaunay Triangulations and Graph
Theory are used, the reader is invited to consult the most higesiature on such topics.

Pre-processing. Point Sample PartitionSince in both cases (self-intersecting and non self-intéirggecurves)
the closure operation needs to be performed, such a partiitedrin the discussion. Instead, it is assumed that a
pre-process to separate all possible curve samples initiz $et is performed. Therefore, the following discussion
is per curve.

6.1 Alternative 1. Non Self-intersecting curve. PCA Analysis.

The algorithm has a worst-case complexity@fN?) in classifying N points in at mostV balls. For each ball,
the cost of PCA in a constant dimensional space (2D or 30)(i%). Therefore, a worst-case cost©f N3) is
calculated. Figure 12 shows the execution times for the m@hAphrodite in a computer Pentium IV, Processor
Clock at 3.2GHz with 2GB RAM. The curve presents an averageptaxity of O(N'-5%), which confirms that the
expected value of complexity is much better than the worst sgenario discussed above.
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Figure 12. Execution Time of Principal Component Analysisiéivs. number of points).
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6.2 Alternative 2. Self-intersecting curve. Delaunay Triangulation and Medial Axis
The complexity analysis for the approximation of the skelaibthe tape polygofi’ follows.

(i) Initial Delaunay Triangulation. First box in Figure 4. Thember of triangles i©)(N). Cost:O(N?).

(i) First Purge Process (using only edge length and areaiajitier a set of N triangles. Part of second box in
Figure 4. CostO(N).

(iii) Determination ofoT = Lo U L1 U ..... from a set ofV triangles. Part of second box in Figure 4. C@3tN?).

(iv) Resampling of each edge 8f" in k points. Part of third box in Figure 4. Cos#(k.N).

(v) Second Delaunay Triangulation for a settoiV points, givingO(k.N) as the number of triangles. Part of the
third box in Figure 4. CostO(k?.N?).

(vi) Second Purge Process, to see which onds &ftriangles fall insidel” (1" is already known from step (iii)). In
the worst case, one ha¥k.N) as the number of vertices of the skeleton. Part of third bdxigure 4. Cost:
O(N?).

(vii) Construction of the Skeleton Graph with(k.N) vertices. The initial point sample for the self-intersewtio
curve respects the Nyquist criterion (the level of stodbasiise is smaller than half of the minimal geometric
detail to be sampled). Fourth box in Figure 4. Ca3tk>.N3).

In conclusion, the whole process coéték®. N?) if the initial curve is self-intersecting, with the consttion of
the final graph being the most expensive patrt.

7 Conclusions and Future Work

Two methods have been presented for obtaining the PL appatiximof a collection of planar regular curves
C'(u) stochastically sampled. The Principal Component AnalysisA-R@ethod is useful for cases when the point
set corresponds to a sample of non self-intersecting cuit@s method returned correctly reconstructed PL 1-
manifolds for non-trivial point sets (open, unorganisealsy, non-uniform, non-smooth, near self-intersecting).

A new application of the PCA method for surface reconstrucfiom Range Imaging is also discussed, and
results for a real model are presented. The integration rdatborectly merged together a set of meshes obtained
from several individual range images, into a single meshs @pproach of merging individual meshes from range
pictures overcomes some of the limitations present in comuasage methods based on the direct meshing from the
integrated point cloud from the range pictures. The direc¢hiods do not render a manifold topology even when the
model sampled is a manifold. Our method always renders afalapirovided that it works on a Nyquist sample.

The second method (Delaunay-based Medial Axis ) can be used sdif-intersecting curves have been sampled,
and therefore when the PCA algorithm is not applicable. Thig method synthesizes theK (T') skeleton of the
tape-shaped 2D region covering the point$ethis skeleton is a 1-manifold for Nyquist samples of the euishe
existing literature has not considered the reconstrudtmn samples of self-intersecting (or non-manifold) cwve

Future Work.When the point sample of a self-intersecting curve has loglitwbuilding a graph, which is the
PL approximation of the curve, out of the medial axis of theetpplygonI” covering the curve needs improvement.
In this case the graph representing the principal shapemi®shair”, (i.e. high frequency artifacts), that need to
be eliminated.

REFERENCES

Adamson A., and Alexa M., Anisotropic Point Set SurfacesAfingaph '06: Proceedings of the 4th international
conference on Computer graphics, virtual reality, vissation and interaction in Africa006, p. 7-13.

Althaus, E., Mehlhorn, K., Bher, S. and Schirra, S., Experiments on Curve ReconstructiégsLENEX 2000p.
103-114, 2000.

Althaus, E., and Mehlhorn, K., Polynomial time TSP-based curgenstruction. IrSymposium on Discrete Algo-
rithms (SODA)p. 686-695, 2000.

Amenta, N., Bern, M. and Eppstein, D., The Crust and the Betéefite Combinatorial Curve Reconstruction.
Graphical Models and Image Processing: GM1R98,6(0(2), 125-153.



December 6, 2006 11:30 Journal of Engineering Design P@ahCgmponent VoronoiSkeleton

18 PCA and Voronoi Skeleton for curve reconstruction

Boissonnat, J.D., Shape reconstruction from planar crestsesis.Computer Vision, Graphics and Image Process-
ing, 1988,44, 1-29.

Boissonnat, J.D., and Yvinec, MAJgorithmic Geometry1998 (UK: Cambridge University Press).

Cheng, S.W.,, Funke, S., Golin, M., Kumar, P., Poon, S.H. and Ra&moSurve reconstruction from noisy samples.
Computational Geometr005,31, 63-100.

Curless, B., and Levoy, M., A Volumetric Method for Buildingp@plex Models from Range ImageSomputer
Graphics,1996,30, 303-312.

Dey, T.K., and Kumar, P., A simple provable algorithm forvaireconstruction. 110th. Annual ACM-SIAM Sym-
posium on Discrete Algorithm4999.

Edelsbrunner, H., and ttke, E.P., Three-dimensional alpha shapesM Transaction on Graphicg,994,13,
43-72.

Edelsbrunner, H., Shape reconstruction with the Delaunaytmin LATIN'98: Theoretical Informatics, volume
1380 of Lecture Notes in Computer Scienzel19-132, 1998.

Fang, L., and Gossard, D.C., Fitting 3D curves to unorganizdd goints using deformable curves. \fisual
Computing, Proceedings of CG Internationpl 535-543, Berlin, 1992.

Fomenko, A., and Kunii, T.Topological Modeling for Visualizatiqri997 (Tokio: Springer Verlag).

Fortune S., Voronoi Diagrams and Delaunay Triangulatiaom®u DZ, Hwang F, editors. Computing in Euclidean
Geometry, Lecture Notes Series on Computitigrld Scientific, 1992.

Geiger, B., Three dimensional modeling of human organs andpiplication to diagnosis and surgical planning.
1993, Research Report 2105, INRIA, Sophia-Antipolis, Valt® France.

Guibas, L., and Stolfi, J., Primitives for the manipulation of gah subdivisions and the computation of Voronoi
diagramsACM Transactions on Graphic$985,2(4), 74-123.

Hastie, T., and Stuetzle, W., Principal curvésurnal of the American Statistical Associatid®89,84, 502-516.
Hoppe, H., DeRose, T., Duchamp, T., McDonald J. and Stuét¢leSurface Reconstruction from Unorganized
points. INACM SIGGRAPH. 19th Annual Conference on Computer Graphics ardabitive Techniquep.

71-78, Chicago, 1992.

Kegl, B., Principal Curves: Learning, Design, and Applicatio PhD thesis, Concordia University, Montreal,
Canada, 1999.

Kegl, B., and Krzyzak, A., Piecewise Linear Skeletonizatiomg#$rincipal CurvesEEE Transactions on Pattern
Analysis and Machine Intelligenc2002,24(1), 59-74.

Lee, I.K., Curve reconstruction from unorganized poi@emputer Aided Geometric DesigQ00,17(2), 161—
177.

Mantyla, M.,An Introduction to Solid Modelindl988 (Maryland: Computer Science Press).

Morse, M., The calculus of variations in the larg@934 (New York: American Mathematical Society).

Ogniewicz, R., Skeleton-Space: a Multiscale Shape Desani@mmbining Region and Boundary Information. In
IEEE Conference on Computer Vision and Pattern Recognifiori46—751, Seattle, 1994.

Ohtake, Y., Belyaev, A. and Seidel, H., Skeleton-Space: n tategy Approach to Meshing Scattered Point Data.
In SPM ’'05: Proceedings of the 2005 ACM Symposium on Solid andé&hysodeling p. 61-69, Cambridge,
2005.

Raindrop Geomagi®Inc. Studio 8 http://www.geomagic.contg)2006.

Ruiz, O.E., Cadavid, C.A., Granados, M.A.,iRe S. and ¥squez, E2D shape similarity as a complement for
Voronoi—Delone methods in shape reconstructBisevier J. on Computers and Graphi@§05,29(1), 81—
94.

Soucy, M., and Laurendeau, D., A General Surface Approach tintbgration of a Set of Range ViewkEEE
Transactions on Pattern Analysis and Machine Intelliged®85,17(4), 344—-358.

Taubin, G., and Ronfard, R., Implicit simplicial models faiaptive curve reconstructioleEE Transactions on
Pattern Analysis and Machine Intelligend€96,18(3), 321-325.

Turk, G., and Levoy, M., Zippered Polygon Meshes from Range ématnSIGGRAPH'94: Computer Graphics
Proceedings, Annual Conference Serigs311-318, Orlando, Florida, 24—-29 July, 1994.

Varady, T., Martin, R. and Cox, J., Reverse Engineering ofritdac Models. An introductionComputer Aided
Design,1997,29(4), 255-268.

Verbeek, J., Vlassis, N. and &se, B., A Soft k-Segments Algorithm for Principal CurvesDiorffner G, Bischof



December 6, 2006 11:30 Journal of Engineering Design P@ahCgmponent VoronoiSkeleton

Oscar Ruiz, Carlos Vanegas, Carlos Cadavid 19

H, Hornik K, editors. ICANN 2001, LNCS 2138001, p. 450-456.

Wang, W., Pottmann, H. and Liu, Y., Fitting B-spline curves tinpalouds by curvature-based squared distance
minimization.ACM Transactions on Graphic2006,25(2), 214-238.

Zhou, H., Liu, Y. and Li, L., Incremental Mesh-based IntegratibiRegistered Range Images: Robust to Registra-
tion Error and Scanning Noise. Beventh Asian Conference on Computer Vision, Hyderabai, 12006, p.
958-968.



