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Surface reconstruction from noisy point samples must take into consideration the stochastic nature of the sample. In otherwords, geometric algorithms
reconstructing the surface or curve should not insist in following in a literal way each sampled point. Instead, they must interpret the sample as a “point cloud”
and try to build the surface as passing through the best possible (in the statistical sense) geometric locus that represents the sample. This work presents two new
methods to find a Piecewise Linear approximation from a Nyquist-compliant stochastic sampling of a quasi-planarC1 curveC(u) : R → R3, whose velocity
vector never vanishes. One of the methods articulates in an entirely new way Principal Component Analysis (statistical) and Voronoi-Delaunay (deterministic)
approaches. It uses these two methods to calculate the best possible tape-shaped polygon covering the planarised point set, and then approximates the manifold
by the medial axis of such a polygon. The other method applies Principal Component Analysis to find a direct Piecewise Linear approximation ofC(u). A
complexity comparison of these two methods is presented along with a qualitative comparison with previously developed ones. It turns out that the method
solely based on Principal Component Analysis is simpler and more robust for non self-intersecting curves. For self-intersecting curves the Voronoi-Delaunay
based Medial Axis approach is more robust, at the price of higher computational complexity. An application is presented in Integration of meshes originated
in range images of an art piece. Such an application reaches the point of complete reconstruction of a unified mesh.

Keywords:Curve Reconstruction; Surface Reconstruction; Unorganised Points; Range Imaging; Principal Component Analysis; Delaunay Triangulation;
Voronoi Skeleton

1 Introduction

Reconstructing a curve or a surface from a point set is one of the most important problems in the reverse engineering
of geometric models. In some cases curve reconstruction plays an important role in the surface reconstruction
problem (Lee 2000). It is the goal of this paper to present two methods involving statistical (Principal Component
Analysis -PCA) and deterministic techniques (Voronoi-Delaunay) for reconstructing a set of curves from noisy
unorganised point sets. An application for surface reconstruction is presented, using data sets resulting from objects
captured by range images. The references examined indicate that such a combination of methods has not been tried
before for curve and surface reconstruction, or for range image mesh integration.

Even though this work will concentrate on quasi-planar curves, the statistical methods involved directly extend
to arbitrary curves in3D. Two types of noisy unorganised point sets have been considered. One of them results
from sampling and adding statistical noise to a set of mutually disjoint regular parametric curves (i.e. whose first
derivative vector is continuous and never vanishes)Ci(u) in R3. The other point sample is originated in a cluster
of individual meshes from range images. The point samples areassumed to comply with the Shannon or Nyquist
criteria for digital sampling.

Problem Statement.Given a sampleS = {p0, . . . , pN} from an (unknown) set of mutually disjoint regular
(open or closed) quasi-planar parametric curvesCi(u) in R3 and which may self-intersect, a PL (Piecewise Linear)
estimation of eachCi(u) is to be found. As seen later, without loss of generality we may assume thatC ⊂ R2.

The statistical methods which estimate the tangent to a curveCi(u) are not capable of determining by themselves
the correct sense of the±v tangent vector. For this reason we require that the curve hascertain continuity in the
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derivative and that in the neighbourhood of each of its points it is well approximated by a straight line. That is,
Ci(u) must beC1-continuous and its velocity vector must never vanish (i.e.the curve must beregular).

In this paper the stated problem is solved and an applicationof its solution is presented, for integration of range
image meshes. To integrate a set of meshes of individual range images, the set of meshes is sliced by parallel planes.
Each sliceSk turns out to be a coplanar set of pointsSk = {P0k

, P1k
, . . . , PNk

} with a strong statistical component
stemming from the optical sampling error. The proposed algorithm finds a PL estimation of the curveCk(u) that
adequately fits the points in the noisy unorganised point setSk. The Literature Review section illustrates that such
an integration of individual range meshes is still an open problem in several aspects. Section 5.1 discusses the
application of PL curve reconstruction in detail.

Another application of the proposed algorithms in integration of individual range meshes arises when a particular
slicek is missing or incomplete In the case of range imaging, this occurs when a portion of the object is not captured
by any of the images. In such a case, point samples from levelsk− 1 andk + 1 are projected onto the insufficiently
sampled planek. The resulting cross section on planek must then be recovered from a possibly noisy point set.
This point set should be treated with statistical tools, and the cross sections recovered should be the best fit to the
planar point cloud contained in planek.

A variant of the first type of noisy point sets (used to illustrate the Voronoi-Delaunay method) consists of a noisy
sample of a self-intersecting planar parametric curve. Figure 1 shows a situation in which the local geometry of a
planar slice (for example a Computer Axial Tomography - CAT) added to the presence of stochastic noise renders a
set of points that look like the one in Figure 10(a). Clearly, less extreme situations may render an “8”-like section in
the presence of a high level of stochastic noise. In the case of a sample of an “8”-like section two legal resulting PL
approximations are equally likely: (a)two separate circular polygons, and (b)onepolygon with a thin wasp waist.
It is clear that near the self-intersecting point any algorithm may be confused. A survey of reverse engineering
methods is presented in Varady, Martin and Cox (1997), beingevident the use of curve reconstruction from point
samples for generation of revolution or extrusion 2-manifolds. One of such applications is presented by Lee (2000).
This application is particularly important in reverse engineering when the designer interactively tests the fitting of
such surfaces to specific portions of the point set.

Figure 1. 2-manifold sample which renders a non-manifold curve.

2 Literature Review

Several solutions are available for curve reconstruction from point sets without noise. A survey on techniques for
the case of closed, smooth, and uniformly sampled curves canbe found in Edelsbrunner (1998). Methods for non-
uniformly sampled smooth curves, and for uniformly samplednon-smooth curves are cited by Althauset al.(2000).
Some TSP (Travelling Salesman Problem) and tour improvement heuristics were used by Althaus and Mehlhorn
(2000), and good experimental results were reported. In Amenta, Bern and Eppstein (1998) the PL approximation of
aC2 curve sampled in a dense pattern proportional to its local feature size (a modification of the Nyquist criterion)
is discussed. Two graphs, thecrustandβ-skeletonare discussed, whose edge set exhaust the point sample. It should
be noted that the curve reconstructed by these algorithms passes through each of the sampled points, and this type
of solution is not adequate for the noisy point sets considered in the present paper.

The methods proposed for the case of non self-intersecting unorganised noisy point sets include spring energy
minimization (Fang and Gossard 1992), implicit simplicialcurves (Taubin and Ronfard 1996),α-shape polygonal
boundaries and medial axes (Edelsbrunner and Mücke 1994), and moving least squares (Lee 2000). A review of
these methods along with their limitations can be found in Lee(2000). Verbeeket al. (2001) approximate an open
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curve byk segments that are least squares approximations of point subsets contained in Voronoi regions for sets
of segment. By increasingk, better approximations to the curveC(u) are found until a fitting criterion is met.
However, the segments still need to be joined in a Hamiltonian graph, significantly adding to the complexity of the
algorithm. The segments of the Hamiltonian graph may be larger than the segments found in fitting the point set.
This has the effect of producing a PL approximation that may be deformed when compared with theC(u) curve.

(Chenget al. 2005) attack the problem of noisy point samples by computinga new point set having less noise
as than the initial point set. The actual PL approximation toC(u) is computed using a crust algorithm (in this case
the NN Crust by Dey and Kumar (1999)). The new point set is calculated as follows: for each sample pointp a thin
rectangle is built with its main axis normal to the curve tangent and covering a certain number of point samples.
The centre of such rectangle replacesp for the remaining of the algorithm run. The rectangle centresare closer to
theC(u) curve than the original sampled points. From all these rectangle centres one keeps the most external ones.
In this way, the point set is pruned while a supporting width for crust algorithms is provided. At the end, a crust
algorithm is called. In the method discussed in our paper, a ball B(p, r) replaces the rectangle, and the centre of
mass of the points inside the ball is assumed to be onC(u). Also, the ball contains a point set whose main trend
is tangent toC(u) instead of normal to it. In our approach, no additional crustalgorithm is needed, since the PL
approximation toC(u) is directly built using the centre of mass of those points in the sample which are contained
in the ball.

Wang, Pottmann and Liu (2006) fit B-splines to a set of noisy pointsets using curvature - based squared distance
minimization. For this reason, the minimization requires the form of the equation (spline), and makes no attempt to
attack noisy point sets with self - intersecting conditions. On the other hand, no discussion of the complexity of the
algorithm is provided in time or in computational space. We feel that keeping the objective as a PL curve avoids the
literal formulation of B-splines in the algorithm. Also, our research has as a goal the representation of non-manifold
curve samples as PL non self-intersecting curves (i.e., manifold topologies), which allow for the subsequent usage
of the PL curves in geometrical or topological constructs.

Kegl (1999) and Kegl and Krzyzak (2002) explore the recoveryof a Principal Graph underlying a 2D point sample
(e.g. a character meant to by pen strokes). The authors set up anumerical optimization algorithm that weights two
competing criteria in the graph: (i) should as closely as possible follow the many pixels in the stroke, and (ii) should
not have high curvature portions. An important feature for the application of this algorithm is that, since a character
is sought, the final P.L. approximation does not have to be a manifold. Therefore, self-intersections are permitted
(like in the “H” or “8” characters). In our case, the final result of the reconstruction should be a set of disjoint non
self-intersecting curves, and therefore one must take careof higher requirements than the ones Kegl and Krzyzak
(2002) and Kegl (1999) met.

Range Images and Point Set SurfacesBecause the algorithms proposed in this paper are to be applied to the
integration of range images, the authors consider that a review on range images is worth as a motivation for the
reader. Range imaging offers a manner of digitizing the shape of three-dimensional objects. Because all opaque
objects self occlude, no single range image suffices to describe the entire object, making necessary the combination
of a collection of range images from diverse viewpoints intoa single polygonal mesh that completely describes
the object. Turk and Levoy (1994) create individual meshes for the different range images and clip them against
each other for integration. Unfortunately, their integration method shows instabilities documented in Curless and
Levoy (1996). Curless and Levoy (1996) integrate range imagesby creating a scalar field containing the minimal
signed distancef(x, y, z) from the point(x, y, z) to the object’s surface. Afterwards, a Marching Cubes algorithm
creates the B-Rep of the iso-surfacef(x, y, z) = 0. A shortcoming of this method is the fact that the signed
distance is calculated as a directional (instead of a scalar) property, and therefore there is no guarantee that the
scalar field correctly registers the signed distance from a point to the surface. In Soucy and Laurendeau (1995) the
very high computational cost of combining range image meshes after registration and surface meshing is discussed.
In this reference overlapping components of the meshes corresponding to different range images must be identified,
with a large computational cost, of the orderO(2N − 1) whereN is the number of range images. This reference
unrealistically assumes the accuracy of the range data, as precision of the range data deteriorates in the periphery of
each range image. In Zhou, Liu and Li (2006) a heuristic method for merging overlapping triangular meshes from
range images is discussed. This article does not prove the correctness of the method exposed, which is based on the
distance between triangles that are considered as overlapping. The less likely mesh is projected against the more
likely one, based on a purely geometric projection, giving rise to topological inconsistencies that are not dealt with
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rigorously.
For the direct treatment of the integrated point cloud from individual range images Hoppe et al (1992) use the

k nearest point neighbours of a particular pointp in the cloud to estimate the best local tangent plane. The plane
is then used to construct the signed distance functionf(q) : R3 → R from point q to such plane. A Marching
Cubes algorithm is then used to construct an approximation for the manifoldf(q) = 0. This reference does not
discuss the reconstruction of manifolds with border, nor the behaviour of the algorithm in incorrectly smoothing
sharp edges of the piece. Indeed, their examples show a strong trend to filter out high frequencies. For these reasons,
directly fitting surfaces to point sets has been an open research field since 1992. As a consequence, there has been
a steady stream of publications in this direction. Ohtake etal (2005) use spherical influence regions to calculate
most likely points on the surface and local normal vectors. For these authors and others, however, a difficulty with
direct reconstruction of the manifold from the integrated point cloud remains in the fact that stitching together the
local planes (triangles) gives rise to non-manifold topologies. Adamson and Alexa (2006) propose the computing
of ellipsoidal weighting functions per sample to representan implicit surface using supporting regions around each
sample (Point Set Surfaces). It must be noted that such an approach does not explicitly compute the Boundary
Representation of the model. Instead, it lends itself for visualization with ray casting.

The authors of the present article have found that the issues arising in curve reconstruction and in a possible
application of it to range mesh integration are still an openproblem in applied computational geometry. As seen
from the literature review, curve reconstruction of self-intersecting curves is also unsolved. In range images, a
reliable algorithm for mesh integration has not been proposed. Even in commercial systems (Geomagic 2006) such
an integration requires the user interaction for correcting self-intersecting portions, holes, etc., that are left after the
triangulation merges. Such facts have encouraged the authors to publish the present paper.

Section 3 examines the adaptation of statistical methods to be used in the present problem. Section 4 discusses the
concepts necessary to implement the algorithms and their articulation in reaching the solution. Results for several
types of point sets including non-smooth, self-intersecting, and non-uniform sets obtained with both methods are
presented in Section 5. Section 5.1 describes an interesting integration of one of the methods to surface reconstruc-
tion from range images, and presents the results obtained for a real object. Section 6 discusses the computational
complexity of the implemented methods. Finally, Section 7 draws the relevant conclusions, and proposes bases for
future work.

3 Statistical Approach

The statistical approach for curve reconstruction from point samples has precursors in Hastie and Stuetzle (1989).
In this reference, the authors define Principal Curves as smooth ones, which pass through the middle of, and are self-
consistent with, a sampled cloud ofn-dimensional data with dispersion (relative to the unknowncurve) following
a normal distribution(µ, σ).

3.1 Principal Component Analysis (PCA)

Although the following discussion treats noisy point sets in R2 andR3, it may be useful to know that the stochastic
analysis presented is applicable to samples inn dimensions (in fact, the Principal Component Analysis method was
developed for the treatment of samples inn-dimensional space, withn >> 3).

Let S = {pi ∈ Rn : 1 6 i 6 m} be a set ofm sample points inRn . Without loss of generality one may assume
that

µ1 = µ2 = .... = µn = 0 (1)

meaning that the expected value of then-dimensional distribution or thepi’s is the origin ofRn. Let Σ be the
covariance matrix of the sample, whereΣi,j is the covariance of theith against thejth component of thepi points.

One is interested in rotatingS with an orthogonal transformationR such that the new setS′ = {qi ∈ Rn : 1 6

i 6 m} of transformed sample pointsqi = R ∗ pi presents maximal dispersion in the direction of the first axis
of Rn, the second maximal dispersion in the direction of the second axis, and so on. For a3D point set that has
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a stochasticlinear trend, establishing the direction of maximal dispersion isequivalent to identifying the direction
vector of the line from which the sample was taken. For a3D point set with an stochasticplanar trend, establishing
the direction of minimal dispersion identifies the normal vector of the plane from which the sample was taken.

Let Xp, Yp, Zp be the unit vectors pointing in the directions in whichS has the largest (σx), second largest (σy)
and smallest variance (σz), respectively. It may be shown that

(i) The pairs(±Xp, σx), (±Yp, σy), and(±Zp, σz) are eigenvector - eigenvalue pairs of the matrixΣ:

Σ ∗ (±Xp) = σx ∗ (±Xp)

Σ ∗ (±Yp) = σy ∗ (±Yp)

Σ ∗ (±Zp) = σz ∗ (±Zp) (2)

(ii) ±Xp, ±Yp, ±Zp are mutually orthogonal:

Xp • Yp = Xp • Zp = Zp • Yp = 0 (3)

(iii) R ∗ [Xp, Yp, Zp, Op] = [Xw, Yw, Zw, Ow] and therefore:

R =

[

Xp Yp Zp Op

0 0 0 1

]

−1

=




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
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





XT
p 0

Y T
p 0

ZT
p 0

OT
p 1





















(4)

where[Xw, Yw, Zw, Ow] is the World Coordinate System or a fixed reference frame. Without loss of generality, one
may assume thatXw = [1, 0, 0]T , Yw = [0, 1, 0]T , Zw = [0, 0, 1]T , Ow = [0, 0, 0]T and therefore the right hand
side of item (iii) above is a clipped4 × 4 identity matrix. Because an eigenvector can always be normalized, it can
also be assumed that|Xp| = |Yp| = |Zp| = 1. Equation (4) results from the completion of the identity matrix in
item (iii) and its (trivial) inversion.

As a result,[Xp, Yp, Zp, Op] is easily found and constitutes a right handed coordinate system. In particular,
[Xp, Yp, Zp] is an orthogonal matrix. As desired, a parametric linep(η) = Op + η ∗ Xp which passes through
the centre of gravity of the point cloudS is found by sorting and naming the eigenvector-eigenvalue pairs ofΣ so
thatσx ≥ σy ≥ σz.

From Equations (2) and (4) it is clear that for quasi-planar data set, the eigenvectorZp associated toσz is the
estimation of the direction normal to the fitting plane, sinceσz is by definition the direction of minimal dispersion
of the (quasi-planar) set of points. Conversely, for line data, the estimation of the direction vector of the line is the
eigenvectorXp, since it is associated to the eigenvalueσx representing the maximal dispersion.

3.2 Least Squares Fitting

Section 3.1 explained how the coordinate system[Xp, Yp, Zp, Op] is calculated using PCA, by computing the
eigenvector-eigenvalue pairs(±Xp, σx), (±Yp, σy), and(±Zp, σz), of matrix Σ . Because geometric kernels do
not usually have routines for calculation ofn-dimensional eigenpairs, a method was devised for the 3-dimensional
case at hand. The method takes advantage of the fact that pointsamples from Coordinate Measurement Machines,
Machine Tool stylos, CAT scans, etc., are planar or quasi-planar. As a consequence, a very close estimation of the
lowest dispersion direction (the vectorZp normal to the plane) can be easily achieved. The point cloud projected
on this plane loses one dimension and therefore the problem becomes 2-dimensional. Therefore, a solution of the
eigenpair problem in Equation (2) can be achieved as an extension of a Least Squares (LS) fitting. The LS method
cannot be directly applied since it is based on theimplicit equationy = mx + b , which has no solution ifm is the
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tangent of±90o. A random rotation aroundz, followed by LS fitting and the corresponding counter rotationof the
point data set, avoids this problem and allows to express the3D trend of the point cloud in terms of aparametric
equationp(η) = Op + η ∗ Xp.

In two dimensions, the LS method detects the trendm of a linear phenomenon. Since the 3D problem at hand is
projected into 2D space, findingm in 2D reduces to calculating the projection of the 3D direction vectorXp of p(η)
onto the best fitting plane for the point set. Notice that the point set is not exactly planar because of the machine tool
sampling errors. Since Least Squares is just a PCA in two dimensions, in what follows, “PCA” and “Least Squares”
should be read as synonyms.

3.3 Point Sample Partition

Regardless of the method employed to estimate a PL approximation for the curves, it is capital to recognize the
fact that the data set must be partitioned into the data sets originated from the individual curvesCi(u). In order
to perform such a partition let us define an equivalence relation on the point setS, as follows. If the sampling
conditions are anisotropic and constant overR3, a pointp ∈ S is said to “be the extended neighbour” of a point
q ∈ S , if and only if there exists a sequence of points of the sampleS starting atp and ending atq such that no
two consecutive points of the sequence are farther apart by more than a fixed distanceǫ from each other. Letr(p, q)
be read as “p is an extended neighbour ofq”. Formally, two pointsp, q are Extended Neighbours of each other,
whenever there exists a sequence[q1, ..., qw] such that eachqi ∈ S, q1 = p, qw = q and|qi − qi+1| ≤ ǫ. Ther( )
relation defined above is an equivalence relation since it satisfies:

(i) r(Pi, Pi) (reflexive: a pointPi is extended neighbour of itself).
(ii) r(Pi, Pj) ∧ r(Pj , Pk) → r(Pi, Pk) (transitive: ifPi andPj , andPj andPk are extended neighbours,Pi andPk

are so).
(iii) r(Pi, Pj) → r(Pj , Pi) (symmetric: ifPi is extended neighbour ofPj thenPj is extended neighbour ofPi).

This equivalence relationr( ) splitsS into subsetsS1, S2, ... with the property thatr(Pi, Pj) holds (are extended
neighbours) if and only ifPi andPj belong to the sameSk. Properties (i), (ii) and (iii) of the relationr( ) imply
that∪iSi = S andSi ∩ Sj = φ, i 6= j. EachSi of the partition happens to be the set of points sampled from the
curveCi(u). The partition of the setS by the equivalence relationr( ) is realized by using a standard algorithm of
transitive closurewhich will not be discussed here.

4 Algorithms

Two algorithms for determining a PL approximation for quasi-planar 1-manifolds inR3 are presented in this section,
along with two figures that show partial results obtained at the main steps of each one of them.

4.1 Data Pre-Processing

The point data must be pre-processed in the following sequence: (i) Scaling: to guarantee that a standard bounding
box of the setS is available (PCA requires such a box). (ii) Partition: to divideS into subsets, each one containing
the points ofS corresponding to an individualCi(u) curve. (iii) Identification of Best Plane: to find a statistical
planeΠ fitting the quasi-planar point setS. (iv) Correction to Planar Set: to projectS ontoΠ in order to have a
perfectly planar point set. (iv) Transformation toXY Plane: to use the algorithmic results in literature which deal
with point sets in theXY plane. Step (ii) is required since severalCi(u) curves may have been sampled and the
point set would represent several unrelated curves. In whatfollows, the notationCi(u) will be changed toC(u)
since the analysis is per curve. A post-processing step consisting in reversing the transformations performed in the
pre-process, is necessary in order to bring the found solution back to the original space.
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4.2 Curve Reconstruction with Least Squares

After the data pre-processing steps mentioned in Section 4.1take place, the Least-Squares-based algorithm takes
as input a quasi-planar setS, and returns a polyline that fits these points by performing the steps discussed below
and displayed in Figure 2.

point set?
Unprocessed

Yes

No

ball B(p,r)

Linear Trend
Identification

store
CG(B(p,r))

Point Set

PL Curve

PL Curve

initial r

Optimize
Local Ball B(p,r)

initial p

next p(d)= CG(B(p,r)) + d*v

Figure 2. Curve Reconstruction with Principal Component.

4.2.1 Optimal Local Point Set Estimation. Given a noisy unorganised point set, resulting from a stochastic sample
with variance[σx, σy, σz] of a planar 1-manifoldC(u) (possibly open) lying on planeΠ in R3, one is interested in
estimating the tangent linedC(u)/du|u=u∗ , at pointC(u∗) of the curveC(u). PCA and Least Squares are applied
to points of the sample which are contained inside a ballB(Ps, R), centred at a seed pointPs and having radius
R. Two competing aspects must be compromised: (i) the ball should be small enough so that data setS can be
considered to fit a linear estimation of the local tangent; (ii) the ball should be large enough so that the goodness
of the linear estimation is kept. To achieve (i) and (ii) an iterative search is conducted for a combination ofPs and
R, optimal for the linear fitting of local neighbourhoods ofS. The iterative search starts with a ballB(p(0), r(0))
enclosing a setS(0) of points. Letǫ (p, r) be a function that associates a least-square regression fitting error to the
points inside a ball with centrep and radiusr. It is desired to find the values ofp andr that minimizeǫ. Applying
the PCA to the point set, a measurement of the fitting error is found. In thek − th iteration a new value otr(k) is
proposed (r(k + 1)), which changes the size of the ballB(r(k + 1), p(k)). This ball, in turn will enclose a different
set of pointsS(k + 1), with new centre of gravityp(k + 1). The fitting of a new straight line to the setS(k + 1)
will render a new fitting error. The iterations stop when such anerror has a local minimum. Thisad hocprocess
was found to have good convergence.
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4.2.2 Piecewise Linear Reconstruction of C(u). In the following discussion the termB(p, r) will mean both the
ball with radiusr centred atp, and the subset of the point sample contained in such a ball. The context will
define which meaning is intended. The algorithm in Figure 2 performs an estimation of the linear trend of the
points in the optimized ballB(p, r). Such an estimation produces a parametric equation for a straight line in space
p(η) = Op + η ∗ v with |v| = 1, whereOp is the centre of gravity of the points insideB(p, r), v is the linear trend
of the line (also calledXp in section 3.1).Op is denoted asCG(B(p, r)) in Figure 2. Such a point is stored directly
in the linear estimation of theC(u) curve. The ball for the next iteration is initially centred atOp + d ∗ v, whered
is the progression step of the algorithm and|v| = 1. SinceB(pi, ri) andB(pi+1, ri+1) intersect, it is clear that each
sampled point may be used in several balls, and therefore in the estimation of successive tangents. Notice that the
indexi corresponds to already optimised balls in evolving localities of the curveC(u) such that|pi+1 − pi| ≈ d. In
Figure 2 the need for determining whether+v or −v is the correct trend is omitted (recall that PCA returns±v).
This is easily done by ensuring thatvi • vi+1 > 0. The later requirement is reasonable since the curveC(u) is
assumed to be regular.

The algorithm will continue as long as there are enough available points of the setS (see section 3.3) which fall
inside a ball. Each point can be used in several balls, being their number set by the user. In Figure 2 the marking of
the multiply used points ofS is omitted for the sake of clarity. When this algorithm terminates, the curveC(u) has
been piecewise linearly estimated.

A noisy point set generated from a range image Multi-Mesh sample is shown in figure 3(a), together with the
balls used by the reconstruction algorithm. Figure 3(b) shows the resulting reconstructed curve.

(a) Noisy Point Set from Range Image Multi-Mesh sample and Balls used in the
reconstruction process.

(b) Reconstructed Curve.

Figure 3. PCA-based Reconstruction.

4.3 Principal Curve via Delaunay Triangulation

The following discussion will be illustrated using a planar 1-manifold with border (openC(u)). Later on, the
concepts explained will be applied on self-intersecting (i.e. non-manifold) planar curves.

For planar self-intersecting curves, PCA alone is not robustenough. Additional processing is required since
the points in the neighbourhood of the self-intersection are exhausted for purposes of PCA estimation as the PL
approximation crosses the first time over the intersection neighbourhood. As the PL curve revisits the intersection
neighbourhoods no points are available for identifying thetrend of the curve, and the algorithm tends to look for
another point (i.e. curve) neighbourhood where to work, without really having reproduced the intersection. The
result is an incomplete curve stage, therefore missing the self-intersection detail.

To deal with self-intersecting curves, it was decided to determine the tape-shaped polygonTσ coveringS (defi-
nition below). Figure 4 displays the algorithm discussed next.

Definition. Tape-shaped PolygonTσ. Let C : R → R3 be a planar regular parametric curve, which may self-
intersect. Without loss of generality let us assume thatC ⊂ R2.

Givenσ > 0 a real number, defineTσ = {p ∈ R2 : d(p, C) ≤ σ}. There existsσ0 > 0 such that if0 < σ ≤ σ0

then for everyp ∈ Tσ (i) the set of points{qp,1, ..., qp,rp
} ⊂ C formed by those points whose distance top

equalsd(p, C) is finite. Theqp,i points inC are the ones which realise the distance fromp to C; (ii) the distance
between any two points in the set{qp,1, ..., qp,rp

} is less than2σ. Observe thatσ is dictated by the precision of the
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Figure 4. Line Reconstruction through Delaunay-Voronoi Techniques.

measurement device which samplesC. We assume that the measurement device allows a precision ofσ ≤ σ0 and
therefore thatS ⊂ Tσ. Note that theqp,i could be regarded as the points to be sampled in the curveC in absence of
sampling noise and that ifC is non self-intersecting thenq is unique for eachp ∈ S.

For small enough values ofσ0 (Nyquist samples)Tσ resembles a tape region covering the curveC. Let us define
QS = {q ∈ C : d(p, q) = d(p, C), for somep ∈ S}. Note that ifS has no statistical noise,QS = S andQS would
be a noise-free Nyquist sample ofC.

4.4 Approximation of Tσ

Under the condition ofS being a Nyquist-compliant sample, this article proposes analgorithm to approximate the
tape-shaped polygonTσ. The algorithm follows three steps:

(i) calculates the Delaunay Triangulation ofS, DT (S);
(ii) then selects fromDT (S) small triangles;

(iii) and finally, makesTσ the boundary of the union of the triangles selected in (ii).

In order to apply such a method, an estimation of what a “smalltriangle” is, should be made precise. For this
purpose the typical area and edge length of Delaunay triangles belonging toTσ need to be estimated. To do that,
PCA is iteratively run on neighbourhoods of the data set, thusdetermining the linep(η) = P0 + η ∗ v that best
approximates the tangent to theC(u) curve in that neighbourhood. The points ofS that produce such a fit are
contained inside a ballfD∗B(P0, R0) approximately centred on a local neighbourhood ofC(u). Delaunay triangles
contained within a scaled version of this ball, namelyfD ∗ B(P0, R0) (with fD = 1.3 being an empirically chosen
enlarging factor) might be considered as “typical” of the ones formingTσ, rendering “typical area”̄A and “typical
edge length”̄l values.

One considers that a triangle is small if either of the following criteria (Fortune (1992) and Guibas and Stolfi
(1985)) holds:

(i) Enclosure: Accept a Delaunay triangleDTi if it is contained within the local PCA ball, that is, ifDTi ⊆
B(P0, R0) whereB(P0, R0) is the best local PCA ball (see Figure 5(c)).
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(ii) Area and Edge Length: Accept a Delaunay triangleDTi if its Area or maximal Edge Length are small. That
is, if Area(DTi) ≤ fA ∗ Ā or if Emax ≤ fl ∗ l̄, respectively, for fixed constantsfA andfl.

We give an informal discussion for the correctness of the procedure to obtain an approximation ofTσ. The tests
run gave a good performance in the filtering of Delaunay triangles. An advantage of the implemented algorithm is
that the application of PCA to the local neighbourhoods of thepoint cloud allows the estimation of the sizes of the
triangles to be deleted and to be kept.

Let us suppose that, contrary to the assumption, a large triangle DTi = [vj , vk, vl] belongs toTσ. Since it is a
Delaunay triangle, its circumcircle contains no points ofS. But sinceDTi is a large part ofTσ, a large portion of
Tσ contains no sample points, contradicting the fact thatS is a Nyquist sample. On the other hand, suppose that a
small triangleDTi = [vj , vk, vl] is not entirely contained inTσ. If DTi is completely outsideTσ, then it creates a
contradiction sinceS ⊂ Tσ . If vj , vk, vl are inTσ but the triangle joins two approaching branches ofC, the sample
S is characteristic of a non-manifold situation and thereforeDTi is part ofTσ.

For the sake of simplicityTσ will be denoted simply byT . An approximationof the medial axis ofT , called here
theskeleton of T, is the sought PL approximation of theC(u) curve. Since the skeleton is a graph, it needs to be
post-processed in order to extract from it the PL approximation ofC(u).

Figure 5(a) shows a data set from a planar non self-intersecting curve sampled stochastically. This figure presents
a data set which has been already resized, its best plane estimated, and their points projected onto this plane, which
produces a planar set. The Delaunay Triangulation of this point set is displayed in Figure 5(b).

4.4.1 Polygon Synthesis based on Filtered Delaunay Triangulation. The polygonL0 obtained after application of
criteria (i) and (ii) is shown in Figure 5(d). Observe thatL0 has no holes for this example. In that figure light
triangles are the accepted ones based on the PCA criterion anddark triangles are the ones accepted based on area
or edge length criteria. The following relations hold among accepted Delaunay triangles and their edges (Mantyla
1988) :

(i) Each edge of an accepted Delaunay triangleDTi has one or two accepted triangles incident to it.
(ii) Edgesei,j in which Delaunay trianglesDTi andDTj are incident are internal to the tape-shaped regionT .

(iii) Edgesei in which only one Delaunay triangleDTi is incident form the boundary∂T . They may be either in the
outermost or in an internal loop.

4.5 Medial Axis VS. Principal Curve

Figure 5(d) presents the minimal polygonT that covers the point setS. Its border∂T , built by filtering the original
Delaunay Triangulation, is coloured black in Figure 5(e). A very fine resample of the border∂T ) is then performed,
and a Delaunay triangulation for this new point set is calculated. This new Delaunay triangulation also appears in
Figure 5(e).

An approximation to themedial axisMA(T ) of T is a skeletonSK(T ), which is built in the following manner
(Geiger (1993), Boissonnat (1988), Ogniewicz (1994)):

(i) Construct the Voronoi DiagramV D(T ) and Delaunay TriangulationDT (T ) of the vertices ofT (see Figure
5(e)).

(ii) Keep fromDT (T ) only those Delaunay triangles contained inT . Call this setDT (T ).
(iii) Keep fromV D(T ) only those Voronoi edges which are finite and are dual to the edges inDT (T ). Call this set

V D(T ).
(iv) If V D(T ) * T then re-sample∂T with a smaller interval and go to step (i) above. Otherwise,V D(T ) is the

sought skeleton ofT , SK(T ).

As it is evident from Figure 5(f), the skeletonSK(T ) of the polygonT is a PL approximation of the 1-manifold
C(u).

Notice that several resamples of∂T may be needed in order to converge toSK(T ). Figure 5(e) shows one such
resample. The boundary∂T of the S-shaped polygonT in Figure 5(f) is sampled with a small enough interval.
This tight sampling guarantees that the portion of the Voronoi Diagram confined toT , SK(T ), is acceptable as an
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(a) Point Sample of Planar S-shapedC(u) Manifold. (b) Delaunay Triangulation of S-shaped Planar Point Sample.

(c) Filtering of Delaunay Triangulation with PCA Balls. (d) Triangles Selected by Area and Length Criteria.

(e) Tape Polygon and its Delaunay Triangulation. (f) Filtered DT and Skeleton.

Figure 5. Piecewise Linear Approximation of S-shapedC(u) by Combined PCA and Voronoi-Delaunay Methods.

approximation ofMA(T ), the medial axis ofT .

5 Results

Section 5.1 illustrates three PCA curve reconstructions obtained for diverse point sets. It also discusses the appli-
cation of PCA-based curve reconstruction to surface reconstruction from range images. Section 5.2 illustrates the
results obtained using the Delaunay Triangulations methodology in dealing with the PL Approximation of planar
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(a) Near Self-Intersecting, Non-Uniform Point Cloud. (b) Self-Intersecting Non-Uniform Point Cloud.

Figure 6. Curve reconstructions obtained for different point sets by Least-Squares-based process.

1-manifolds without Border (closedC(u)).

5.1 Least Squares Fitting Results

The PCA-based algorithm was tested on several noisy unorganised point sets, which include non-uniform, non-
smooth, near self-intersecting, and self-intersecting ones. Figures 6(a) and 6(b) present the results obtained for two
sets, each one having some of these features. Near self-intersecting, non-uniform point clouds, as the one shown in
Figure 6(a), can be adequately reconstructed by varying the length of the segments of the reconstructed polyline,
considering the dispersion of points contained in each ball. The radius optimization process, described in section
4.2.1, turns out to be useful for this purpose.

In Figure 6(b) a point set sampling a self-intersecting curveC(u) is displayed. As mentioned in Section 4.3,
a PCA algorithm alone is not robust enough for reconstructingself-intersecting point clouds. However, due to
the randomness of the starting point of the reconstruction mentioned in Section 4.2.1, certain runs can result in
adequately reconstructing the PL approximation ofC(u), while other runs will not. Because of this, the skeleton
method for curve reconstruction was considered.

Notice that criteria for identifying the ends ofopennoisy point sets are needed in order tocorrectly reconstruct
open curves. These criteria include the fact that when the PCA algorithm finds an end of the curveC(u), the
evolution to a next centre of the fitting ballB(p, r) is possible only in one direction. This condition allows to
discriminate samples of open vs. closed curves. In the example discussed, (Aphrodite data set), however, all the
sampled curves are closed.

5.1.1 Application to Surface Reconstruction from Range Images. Range imaging is a technique for digitizing three-
dimensional objects, given a set of range images. A range image is a functionI × J → R3, 〈i, j〉 7→ Pij , where
I × J is the grid of pixels in the range image, andPij = 〈xij , yij , zij〉 is the point in the surface of the optically
sampled object, captured by the pixel in position〈i, j〉 of the grid of pixels.

As no single range image suffices to describe the entire object, it is necessary to combine a collection of range
images (see Figs. 7(a) and 7(b)) into a single triangular meshthat completely describes the object. The steps listed
below were followed in order to generate such mesh from the individual pictures (considered already registered
with respect to each other): (i) Construction of the individual meshMi for each individual range imageRi (Figs.
7(a) and 7(b)) ; (ii) slicing of the complete set of meshesMi, i = 1, 2, ... with a set of parallel, equi-spaced
planes, thus building planar samples of points; (iii) reconstruction of a set of curves (contours) from the sampled
points by using the algorithm discussed in Section 4.2 (see contours in Figure 8); and (iv) use of an algorithm for
surface reconstruction from planar slices. In this case, the algorithm discussed in Ruizet al. (2005) was used. The
reconstruction of Aphrodite’s head is presented in order toillustrate the mesh integration process. The range images
used were a courtesy of Fraunhofer Inst. for Computer Graphics, Darmstadt, Germany.

In step (ii), a set of parallel planes are defined, and the intersection between each plane and the collection of shells
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(a) i − th Mesh from Front Range Imagei Aphrodite. (b) k − th Mesh from Front Range Imagek Aphrodite.

Figure 7. Range Image Data Set. Courtesy from Fraunhofer Inst. Computer Graphics, Darmstadt, Germany.

recovered from the range images is calculated. A set of planar samples of pointsS1, S2, . . . , Sk, . . . is generated
by sampling the polylines resulting from each intersection. Figure 3(a) shows one such coplanar sampleSk =
{P0k

, . . . , PNk
} for Aphrodite’s head model.

Figure 8. Aphrodite’s head contours recovered from planar samples of points. Test data courtesy from Fraunhofer Inst. for Computer Graphics, Darmstadt,
Germany.

More than 100 levels (the number and separation dictated by the Nyquist criterion applied in the axial direction)
of slicing were obtained from sampling the collection of meshes corresponding to Aphrodite’s sculpture head and
neck, and the same number of polylines were reconstructed from these sets (Figure 8). In spite of the large number of
range images available for Aphrodite’s sculpture, some of its regions were not covered by any of these, and therefore
several sets of points needed to be manually completed. Oncethe sets were completed, none of the reconstructed
polylines were edited. The surface reconstructed from the integrated, stochastically recovered contours is shown
in Figures 9(a) to 9(c). Figures 9(a) and 9(b) correspond to resampling planes which are not orthogonal, and to
an unfinished reconstruction (there is still a border). Figure9(c) represents the integrated result for slicing planes
parallel to planeXY . The final Aphrodite’s surface reconstruction is shown in figure9(d).

5.2 Medial-Axis, Delaunay Triangulation Results

Application of Medial Axis or Delaunay Triangulation methods is justified when the sampled curveC(u) is self-
intersecting. For this reason, these methods were not tested with the Aphrodite data set, but with planar self-
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(a) Integrated Aphrodite with border. Smooth Render. (b) Integrated Aphrodite with border. Wireframe.

(c) Integrated Aphrodite without Border. Wireframe. (d) Integrated Aphrodite without Border. Smooth Render.

Figure 9. Results of Range Image Integration. Test data courtesy from Fraunhofer Inst. for Computer Graphics, Darmstadt, Germany.

intersecting Bezier curves sampled with stochastic noise.The discussion of such tests follows.

5.2.1 Pre-processing to Transform into XY Plane. As before, the point sample ofC(u) renders a quasi-planar
point set. According to the discussion, an isotropic scaling was applied to the point set, because PCA is sensitive
to dimensional issues. PCA was then applied to estimate the best planeΠ fit to the point set, and a modified
Householder transformation was used to project all points onto Π. In addition, a rigid transformation is used to
bring the (now perfectly) planar point set to theXY plane, following the process described in section 4.1. Figure
10(a) shows the initial point set, along with a coordinate frame attached to the planeΠ.

5.2.2 Delaunay-based Medial Axis Processing. The Delaunay Triangulation of the point set projected ontoΠ and
then transformed toXY is illustrated in Figure 10(b). In the construction of the tape shaped polygonT , Delaunay
Triangles included in PCA balls are accepted ( Figure 10(c) ). The triangles not entirely included in PCA balls
may still be accepted based on the Edge Length or Area criteria (see Figure 10(d)). Notice thatT is a connected
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(a) Point Sample of Planar Double-8C(u) Manifold. (b) Delaunay Triangulation of Planar Double-8 Point Sample.

(c) Filtering of Delaunay Triangulation with PCA Balls. (d) Selected Triangles by Area and Length Criteria.

(e) Tape Polygon and its Delaunay Triangulation. (f) Filtered DT and Skeleton.

Figure 10. Process of P.L. Approximation of Double-8 self-intersectingC(u) by Combined PCA and Voronoi-Delaunay Methods.

2-dimensional region with boundary∂T = L0 ∪L1 ∪ ...∪Lm in Figure 4. After the regionT has been synthesized
by consolidating Delaunay triangles chosen according to the above criteria the border∂T must be determined. This
step is a standard procedure in Boundary Representation construction and is conducted according to the rules in
section 4.4.1. The next goal is to identify the Medial Axis (MA) of T . An exact calculation is out of question because
MA produces curved portions. However, if a resampleRT of T is fine enough, its medial axis may be approximated
as the sequence of Voronoi Edges ofRT completely included inT . Theborder∂T is resampled (see Figure 10(e))
and a new Delaunay Triangulation is calculated. The DelaunayTriangulationDT (RT ) of RT is purged to keep
only those Delaunay Triangles internal toT . In this form, again,T is re-triangulated, but this time with triangles
whose circumscribed centre lie insideT . The loci of such centres isSK(T ), the skeleton approximation for the
medial axisMA(T ) of T (see Figure 10(f)). As can be seen in Figure 10(f), it is possible that the re-triangulation of
T breaks this region into separate ones. This result is expected, since it indicates the presence of self-intersections
in the original set. The algorithm corrects them by splittingthe tape polygonT into annular sub-partsTi. Care must
still be exercised, asSK(T ) may be outside of aTi region, as shown in Figure 10(f). This situation, however, is
not harmful since the skeletonsSKi do not intersect each other, and therefore serve as PL approximations of the
originalCi(u) curves.

Figure 11 shows comparative results for a self-intersectingcurveC(u) (double “8”) obtained using PCA (Fig-
ure 11(a)) and Voronoi-Delaunay (Figure 11(b) and Figure 11(c)) methods. Figure 11(a) shows that PCA alone
processes the total point set but is not able to solve the self-intersection issue. The Voronoi-Delaunay result in
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(a) PCA-based Algorithm. Result. (b) VD-based Algorithm. Multi-Polygon Result. (c) VD-based Algorithm. Single-Polygon Result.

Figure 11. Final Results. PL Approximations of Double-8 self-intersectingC(u) by PCA and Voronoi-Delaunay Methods.

Figure11(b) solves the self-intersection by generating several tangent closed curves. The Voronoi-Delaunay result
in Figure 11(c) generates a PL approximation with wasp waist.

6 Complexity Analysis

For this complexity analysis, worst-case scenarios will beconsidered. In the case of the Delaunay Triangulation
of N points inR2 a complexity ofO(N2) is counted, instead ofO(N) reported in Boissonat (1998), due to the
fact that no special data structure is assumed. An sketch of the complexity analysis performed is presented in the
following subsections. Since only well known facts on the complexity of the Delaunay Triangulations and Graph
Theory are used, the reader is invited to consult the most basic literature on such topics.

Pre-processing. Point Sample Partition.Since in both cases (self-intersecting and non self-intersecting curves)
the closure operation needs to be performed, such a part is omitted in the discussion. Instead, it is assumed that a
pre-process to separate all possible curve samples in the initial set is performed. Therefore, the following discussion
is per curve.

6.1 Alternative 1. Non Self-intersecting curve. PCA Analysis.

The algorithm has a worst-case complexity ofO(N2) in classifyingN points in at mostN balls. For each ball,
the cost of PCA in a constant dimensional space (2D or 3D) isO(N). Therefore, a worst-case cost ofO(N3) is
calculated. Figure 12 shows the execution times for the pointset Aphrodite in a computer Pentium IV, Processor
Clock at 3.2GHz with 2GB RAM. The curve presents an average complexity of O(N1.55), which confirms that the
expected value of complexity is much better than the worst case scenario discussed above.

Figure 12. Execution Time of Principal Component Analysis (time vs. number of points).
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6.2 Alternative 2. Self-intersecting curve. Delaunay Triangulation and Medial Axis

The complexity analysis for the approximation of the skeleton of the tape polygonT follows.

(i) Initial Delaunay Triangulation. First box in Figure 4. The number of triangles isO(N). Cost:O(N2).
(ii) First Purge Process (using only edge length and area criteria) in a set ofN triangles. Part of second box in

Figure 4. Cost:O(N).
(iii) Determination of∂T = L0 ∪ L1 ∪ ..... from a set ofN triangles. Part of second box in Figure 4. Cost:O(N2).
(iv) Resampling of each edge of∂T in k points. Part of third box in Figure 4. Cost:O(k.N).
(v) Second Delaunay Triangulation for a set ofk.N points, givingO(k.N) as the number of triangles. Part of the

third box in Figure 4. Cost:O(k2.N2).
(vi) Second Purge Process, to see which ones ofk.N triangles fall insideT (T is already known from step (iii)). In

the worst case, one hasO(k.N) as the number of vertices of the skeleton. Part of third box inFigure 4. Cost:
O(N2).

(vii) Construction of the Skeleton Graph withO(k.N) vertices. The initial point sample for the self-intersection
curve respects the Nyquist criterion (the level of stochastic noise is smaller than half of the minimal geometric
detail to be sampled). Fourth box in Figure 4. Cost:O(k3.N3).

In conclusion, the whole process costsO(k3.N3) if the initial curve is self-intersecting, with the construction of
the final graph being the most expensive part.

7 Conclusions and Future Work

Two methods have been presented for obtaining the PL approximation of a collection of planar regular curves
C(u) stochastically sampled. The Principal Component Analysis -PCA- method is useful for cases when the point
set corresponds to a sample of non self-intersecting curves. This method returned correctly reconstructed PL 1-
manifolds for non-trivial point sets (open, unorganised, noisy, non-uniform, non-smooth, near self-intersecting).

A new application of the PCA method for surface reconstruction from Range Imaging is also discussed, and
results for a real model are presented. The integration method correctly merged together a set of meshes obtained
from several individual range images, into a single mesh. This approach of merging individual meshes from range
pictures overcomes some of the limitations present in common usage methods based on the direct meshing from the
integrated point cloud from the range pictures. The direct methods do not render a manifold topology even when the
model sampled is a manifold. Our method always renders a manifold provided that it works on a Nyquist sample.

The second method (Delaunay-based Medial Axis ) can be used when self-intersecting curves have been sampled,
and therefore when the PCA algorithm is not applicable. This new method synthesizes theSK(T ) skeleton of the
tape-shaped 2D region covering the point setS. This skeleton is a 1-manifold for Nyquist samples of the curve. The
existing literature has not considered the reconstructionfrom samples of self-intersecting (or non-manifold) curves.

Future Work.When the point sample of a self-intersecting curve has low quality, building a graph, which is the
PL approximation of the curve, out of the medial axis of the tape polygonT covering the curve needs improvement.
In this case the graph representing the principal shape presents “hair”, (i.e. high frequency artifacts), that need to
be eliminated.
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