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ABSTRACT. Triangulations of a connected subsetF of parametric surfacesS(u,v)
(with continuityC2 or higher) are required because aC0 approximation of suchF
(called aFACE) is widely required for finite element analysis, rendering,manu-
facturing, design, reverse engineering, etc. The triangulationT is such an approx-
imation, when its piecewise linear subsets are triangles (which, on the other hand,
is not a compulsory condition for beingC0). A serious obstacle for algorithms
which triangulate in the parametric spaceu− v is that such a space may be ex-
tremely warped, and the distances in parametric space be dramatically different
of the distances inR3. Recent publications have reported parameter -independent
triangulations, which triangulate inR3 space. However, such triangulations are not
sensitive to the curvature of theS(u,v). The present article presents an algorithm
to obtain parameter-independent, curvature-sensitive triangulations. The invariant
of the algorithm is that a vertexv of the triangulation if identified, and a quasi-
equilateral triangulation aroundv is performed on the planeΠ tangent toS(u,v)
at v. The size of the triangles incident tov is a function ofK(v), the curvature
of S(u,v) at v. The algorithm was extensively and successfully tested, rendering
short running times, with very demanding boundary representations.

INTRODUCTION

The object of this article is to describe the algorithms developed to calculate
a Piecewise Continuous approximation for a Boundary Representation (B-Rep),
whose FACEs are haveC2-continuous underlying parametric surfacesS: R2 → R3

as carrier geometries. In [12], a previous investigation ofthe CAD CAM CAE Lab-
oratory calculated patterned triangulations by laying a regular orthogonal grid of
Steiner vertices on the parameter space pre-imageS−1(F) of the FACEF to trian-
gulate. The triangulation calculated in this manner is limited in these aspects: (i)
constant vertex density in the triangulation ignores the local characteristics of the
surfaceS in R3. Ideally, a larger or smaller triangle density should be calculated, as
per the local curvature ofS. (ii) a serious flaw of triangulation algorithms in para-
metric space is that the parameterization(u,v) is in general warped: this means,
the parametric distance|(u1,v1)− (u2,v2)| is significantly different to the euclidean
distance|S(u1,v1)−S(u2,v2)|, and it is so in an irregular manner, usually suffer-
ing different warping in different local points and in different directions. These
characteristics may produce a non-manifold triangulationfor strongly warped pa-
rameterizations ([10]).
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In the current investigation, a triangulationT is sought, which is sensitive to the
surface curvature but not sensitive to parameterizations.In particular, no sensitive
to warped parameterizations.

1. LITERATURE SURVEY

Several classifications of the reviewed literature are possible: in the first place,
[11], [4] and [6] treat the re-meshing of an already triangulated B-rep. Level of
Detail is tangentially treated in [9], [6] and [16]. [2] and [5] deal with the quasi-
equilateral triangulation inF by iterative point search onU ×V 2D parametric
space. [18] and [1] pay special attention to the approximation of the face edges
as NURBS or Bezier curves inR2.

In [9] an initial mesh is refined according to the dispositionof the observer and
the scene lights. An emphasis is set on multi-resolution only on the triangles that
actually are seen by the observer. An directed acyclic graph(DAG) is formed, which
tracks the modification operations performed on the vertices, edges or faces of a
initial model. A Hausdorff distance between the reference and the current surfaces
at the modified feature (edge, vertex, face) is evaluated, and the modifications are
performed starting at sites with small value of such a measure (i.e. simplifications
which only slightly modify the current surface when compared with the original
one). The algorithms are designed to work inimage spacerather than inobject
space: subdivision is only performed if it does not surpass a threshold in the error
introduced in the model, and it has an effect on the image. Forexample, if a triangle
affects only one pixel there is no point in it being further subdivided.

In [18] an emphasis is set in producing watertight tessellations (borderless 2-
manifolds inR3) by using connectivity information. The face-face connectivity
between the contiguous facesF1 andF2 is represented as a planar trimming curve
C1,2(u) that is the common limit between the 2D regions (in parametric spaceU−V)
that boundF1 andF2. A curvature-sensitive algorithm places vertices on theC1,2(u)
curve. In the current article, theC1,2(u) curve is not required, as the implemented
algorithm directly samples the edge curve inR3 using thecurvesampling interval
specified by the user. In our algorithm, this sample onR3 is tracked back to the
U −V plane by forming a piecewise linear approximation of the trimming curve
C1,2(u).

In [11], the authors start with a watertight 2-manifoldM with C0-continuity (a
triangulated tessellation), and build a set of parameterizations forM. Each param-
eterization covers what is called aninternal node(representing anMi 2-manifold
with border) in the Reeb Graph describing the topological chances inM along the
range of a Morse functionf : M −→ R. As per the Morse theory,Mi represents a
portion of theM manifold, for which f has no singular points (topological changes
of M) and therefore represents the complete log of the topological evolution ofM.
Four types ofMi are possible: cylinders, cups, caps, and branchings, according to
the borders ofMi. For each type, a pre-defined routine is used, which parameterizes
Mi. The step of making compatible the parameterizations forMi, i = 0,1,2, ... is
avoided by remeshing the parameterizations with higher density at the borders of
Mi. In this form, still a series of parameterizations is possible, while guaranteeing a
watertight remeshedMr version ofM.
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In [2] and [3] a parameterization-independent algorithm isproposed to triangulate
a surface. The aim of the authors is to produce a nearly uniform triangulation. That
is, a triangulation in which the triangles be quasi-equilateral. A vertexp= S(u0,v0)
is chosen onS(u,v) and the plane tangent toSat p, Tp(p), is calculated. OnTP(p),
a circle with radiusRand its regular inscribed polygon withn sides (called Normal
Umbrella - NU) are constructed along with then incident triangles covering the 2Π
angle aroundp. Each angle that contributes to 2Π is projected ontoS, with vertex
p = S(u0,v0) and projection rays perpendicular toTp(p). The radiusR is inversely
proportional to the local curvature. Our own implementation of [3] was found that
when the region already sampled closes onto itself, in the EDGE neighborhoods or
near FACE holes, an illegal overlap of triangles is produced and the algorithm to
avoid it is difficult to control.

In [1] the display of a trimmed NURBS face is discussed, in whicha compila-
tion stage is performed. The compilation stage is equivalent to what other authors
call the triangulation. The face in parametric UV space corresponds to a 2D con-
nected region with holes, bounded by curved Bezier approximations of the NURBS
trimming curves. Bezier approximations are used because there exist reasonable
algorithms for the finding of a root of a Bezier curve. The region in UV space is cut
into sub-regions which have monotonically increasing or decreasing values of the
U and V parameters. These subregions are triangulated separately. As an improve-
ment, the algorithm implemented in this paper avoids the splitting of the UV region
into subregions. It also requires only linear intersections (not Bezier ones), leading
to a very simple implementation.

[4] presents a mesh-improving method that starts with a t opologically valid al-
though geometrically poor triangular mesh. The geometric degeneracies are classi-
fied asneedles(quasi isosceles triangles that have two vertices very close to each
other) andcaps (triangles with one angle very close to 180◦). The elimination
of needles is relatively simple. Elimination of each cap requires the slicing of the
wholemesh along a particular plane, producing an over-population of triangles. The
distance between the final and initial triangulations is used to accept or reject the
cap and needle elimination. [6] starts from reverse engineering or tessellation tri-
angular meshes to execute quality improvement and propertycontrol on them. The
article applies the subdivision and simplification functions to augment and dimin-
ish the degree of freedom of the mesh, respectively. Severalheuristics are applied
to refine the mesh: geometric error, face size, faces shape quality, edge size and
vertex valence. In neither [4] nor [6] the mesh modificationsare evaluated against
the original solid, but against an existing triangulation of it. A comparison with our
article is not possible, since our work seeks an initial triangulation for a given solid.

[5] propose a quasi - isometric local mapping from a parametric surfaceS(u,v) :
U ×V → R3 by using the control polyhedron (called there thesurface net) of the
parametric surface. The reasoning is that the surface net closely follows the warp-
ing of the parametric surface, while at the same time is very similar to a locally
developable surface (in turn a planar surface). If we assumethat a 1-1 function
f : U ×V → SD ⊂ R2 is known (SD is the developed surface net), then a quasi equi-
lateral triangulation could be calculated onSD, and taken to theU ×V domain by
using f−1. FromU ×V the triangulation is taken toR3 by using the parametric
equationsS(u,v). The image inU ×V of the quasi equilateral triangles inSD is not
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quasi-equilateral, but their image inR3 would be. The paper presents no examples
in whichSD does not exist for the original surface, and a subdivision must be done,
but mentions this possibility.

[16] discusses the issue of triangulation a trimmed surfaceF by sub-dividing a
rectangular domain in theU ×V space using Quadtrees. Each quadtree is recur-
sively subdivided if its corner points inR3 deviate from a plane beyond a prescribed
limit. The trimming NURBS curves, which limit the faceF to triangulate are rep-
resented as piecewise linear inR3 and in the parametricU ×V space also. The
quadtrees which are completely inside the piecewise linearboundary are trivially
triangulated. The ones cut by a loop segment are triangulated only in its internal
extent. The quadtree portions inU ×V external to the boundary loops are not trian-
gulated. The paper mentions but does not discuss a process ofconciliation between
the triangulations of adjacent faces in order to have a seamless triangulation at the
faces boundaries.

[13] and [15] are quite important references, used in this paper, regarding the
triangulation of 2D regions. In the present work, a Constrained Delaunay Triangu-
lation was used, which respects prescribed edges defined on aset of planar points.

FIGURE 1. The iso-distance sample of edges onF generate the tri-
angulation initial vertex set.

(a) Parametric Sampling Edge (b) Arc Length Edge Sampling

FIGURE 2. Warping of the parameter in a parametric curve

2. METHODOLOGY

Two algorithms for the triangulation of a faceF will be discussed here: (a) a
random sprinkle of triangulation vertices in the parametric pre-image of the face
S−1(F), and (b) a star shape proposal of vertices centered on an ’accepted’ triangu-
lation vertex. These algorithms will be called ’sprinkle’ and ’star’, respectively.



A CURVATURE-SENSITIVE PARAMETERIZATION-INDEPENDENT TRIANGULATION ALGORITHM5

(a) Tangent PlaneΠv0 at the pointp. (b) Growth of the sampled region

FIGURE 3. Algorithm Initial steps: (i) equi-angled sample star , (ii)
growth of the point sampled region

FIGURE 4. Accepted and rejected vertices in star expansion.

(a) Sampling distance as function of the cur-
vature

(b) Sampling density as function of the cur-
vature

FIGURE 5. Regions with higher curvature are sampled with smaller
sampling interval.

In both cases the algorithms will be sensitive to the local curvatures ofF and
independent to the parameterizationu,v of S.
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2.1. Differential Geometry of S. The Gaussian (K) and Mean (H) curvatures of a
surface are given by ([8],[17]):

K =
ln−m2

EG−F2 H =
En−2Fm+Gl

2(EG−F2)
(1)

with :

E = I 〈~u,~u〉 , F = I 〈~u,~v〉 , G = I 〈~v,~v〉 , l = II 〈~u,~u〉 , m= II 〈~u,~v〉 , n = II 〈~v,~v〉 (2)

being I and II the First and Second fundamental forms of the surfaceS(u,v), re-
spectively.

2.2. Implemented Algorithms. The sprinkle and star implemented algorithms have
in common: (i) The pre-image ofF underS(u,v), named hereS−1(u,v) must be cal-
culated. This must be a connected region in theU −V parametric space, which is
approximated as the interior of a polygon, simple, with holes, inU −V (R2) space.
(ii) The density of sampled points on the faceF , at the pointp = S(u,v) ∈ F is pro-
portional to the local curvature of the supporting surfaceS(u,v), as per equations 1
and 2. (iii) The different velocities of the parameterization u,v in the directionsu
andv are taken into consideration in order to isolate the triangulation of such veloc-
ities. Each algorithm has a different approach for such a goal. (iv) The algorithms
start with the generation of an initial triangulation vertices on the edges of the inter-
nal and external loops of the faceF boundary (∂F). The iso-metric sample of∂F
appears in figures 1 and 2(b). The Sprinkle and Star algorithms generate the trian-
gulation vertex set. The calculation of the connectivity proceeds independently, and
several algorithms are used, regardless of the vertex generation algorithm used.

2.3. Sprinkle Algorithm. The Sprinkle algorithm for the triangulation of a face
F ⊂ R3 mounted on (i.e being a connected subset of) a parametric surfaceS(u,v)
consists of the following steps: 0- Iso-metric sample of theedges of the loops∂F
which boundF (Figure 1 ). 1- Calculation of the pre-image ofF , S−1(F). 2-
Calculation of the bounding box ofS−1(F), namedminmax(S−1(F)) here. 3- It-
erative generation of a setV of euclidean pointsp = S(u,v) ∈ R3 by a random
process(u,v) = (random, random) in S−1(F), by mapping the(u,v) point onto
minmax(S−1(F)). 4- Validation of the(u,v) points generated in (3) if a ball in
euclidean spaceR3, B(r(K),S(u,v)) of radiusr(K), centered inS(u,v), contains
no other generated pointS(random, random). The generation stops when a given
number (N = 1000) of attempts to sprinkle the random points onS−1(F) fail. 5-
Calculation of a modified Delaunay Triangulation with the points inV. Results are
shown in Figure 6(a).

It must be pointed out that the radius of the ballr(K) is sensitive to the curvature
K in the surfaceS at the pointS(u,v) (Equations 1, 2). In this manner, the vertex
density per area is proportional to the local curvature measure of the surface.

2.4. Star Algorithm. The Star algorithm consists of the following steps: 0- Iso-
metric sample of the edges of the loops∂F which boundF and queueing of such
vertices in queueQ. 1- Calculation of the pre-image ofF , S−1(F) (Figure 1 ). 2-
For each vertexv= S(u,v) ∈ Q: 2.1 calculation of the osculating planeΠv,n tangent
to SatS(u,v), 2.2 generation of a regular hexagonX with radiusr(K) and center at
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S(u,v), embedded inΠv,n. 2.3- rejection of the vertices ofX which are too close to
the current set of vertices onF . 2.4- rejection of the vertices ofX whose projection
on S falls outsideF . 2.5 projection of the remaining vertices ofX back ontoF and
inclusion in queueQ. 2.6 Elimination ofv from Q and inclusion ofv into the set of
final triangulation verticesV. 3. Calculation of a modified Delaunay Triangulation
with the points inV.

In the Star algorithm, the rejection in point 2.3 uses also the curvature-sensitive
radiusr(K).

(a) Random Sprinkle of points in
U −V space.

(b) Star Sampling of points on oscu-
lating planesΠv,n tangent toS

FIGURE 6. Vertex Layout Methods: Sprinkle vs. Star Sampling.

2.5. A Pseudo - Delaunay Triangulation. To generate the connectivity informa-
tion of the set of discretized points two approaches were used. The first one is to
calculate a triangulation in parametric space (using [14]), resulting in Figure 8(a).
The second one (calledPseudo-Delaunay) is a contribution of our work and it is
described next.

An initial PL approximation of∂F , the loops boundingF , is available (see previ-
ous sections) in a queueQE. The implemented algorithm consists of the following
steps: 1- Extraction of the next edgee= (vi ,v j) from QE. 2- Identification of the
vertexv∈V such that the trianglet = (vi,v j ,v) is a pseudo-Delaunay one (see be-
low). 3- Addition of the edges(vi ,v) and(v j ,v) to the queueQE.

A pseudo-Delaunay trianglet = (vi,v j ,v) with vi ∈ F is tested in this manner:
(a) Find the circumcenterct of the trianglet and the radiusrt of the planar circle
containingt. (b) Consider the ballBt(ct , tt) centered inct with radiusrt . (c) Test
every vertexw of V for inclusion onBt . If no w ∈ V is insideBt , t is a pseudo-
Delaunay triangle (Figure 7).

The results a triangulation in parametric spaceU −V vs. the pseudo-Delaunay
one inR3 are displayed in Figures 8(a) and 8(b), respectively.

3. RESULTS

The algorithm was tested with several solids: Bearing, Helmet, Crank, Support.
The Figures 9(a), 9(b), 9(c), 9(d) represent the results of the algorithm with solid of
different characteristics. The test solidsB in which the star algorithm was applied



8 OSCAR RUIZ, JOHN CONGOTE, CARLOS CADAVID, JUAN G. LALINDE

FIGURE 7. Pseudo-Delaunay validation of triangles lying on the
faceF .

(a) Parametric Triangulation(b) Pseudo-Delaunay Trian-
gulation in Space

FIGURE 8. Triangulations in Parametric Space and Directly in 3D Spaces

have the following characteristics: (a) the boundary representation ofB, ∂B, must
have several connected components (i.e. several shells), (b) ∂B must have a number
of facesF with high curvature variations, (c) the boundary of a numberof facesF
must have several connected components (i.e. the faceF must have holes), (d) the
facesF of B must have a large variation in size (i.e. no sampling rate is applicable
to all ∂B, but instead the algorithm must find correct sampling intervals for each
faceF).

4. CONCLUSIONS ANDFUTURE WORK

The algorithms implemented present advantages with respect to their closest
counterpart, the algorithms by Attene et al ( [3]), as follows: (i) in Attene’s al-
gorithms (implemented as part of our work), the triangles present poor quality as
the mesh closes onto itself, approximately at the medial axis of the faceF . (ii) In
[3] no reference is made to faces with holes, while our results sufficiently prove
that our algorithm addresses such cases. (iii) [3] takes into consideration the high
curvature regions by expanding a n-side regular polygon with highn, which leads
to more extreme isosceles triangles. In our approach, localhigh curvature regions
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(a) Helmet (b) Crank

(c) Bearing Support (d) Central Support

FIGURE 9. Case Studies Run

produce a star expansion with a small-radius, regular hexagon onPin,v, which leads
to approximately equilateral triangles onF .

The following points need to be addressed in a near future: (a) theoretical proofs
of the correctness of the implemented algorithms and heuristics, (b) introduction of
Finite Element Analysis measures for the goodness of the triangles generated and
adequation of the algorithm to observe such measures, (c) reduction of the time and
memory complexity of the algorithms, (d) modification of thealgorithms in order
to triangulate surfaces whose parametric functionS(u,v) is not an injection.
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