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Abstract 
In surface reconstruction from planar slices it is necessary to build surfaces between 
corresponding 2D regions in consecutive levels. The problem has been traditionally 
attacked with (i) direct reconstruction based on local geometric proximity between the 
regions, and (ii) classification of topological events between the slices, which control the 
evolution of the cross cuts.  These approaches have been separately applied with mixed 
success. In the case (i), the results may be surfaces with over-stretched or unnatural 
branches, resulting from a local contour proximity which does not correspond to global 
similarity between regions. In (ii), the consequences from topological events upon the 
actual surface realization have not been drawn. In this paper an integration of (i) and (ii) is 
presented, which uses a criteria of similarity between composed 2D regions in consecutive 
slices to: (a) decide if a surface should actually relate those regions, (b) identify the 
topological transitions between levels and (c) construct the local surface for the related 
regions.  The method implemented hinders over-stretched and unnatural branches, therefore 
rendering a surface which adjusts to geometrically-sound topological events. This is a good 
alternative when the surface reconstructed needs to be topologically faithful (for example in 
flow simulation) in addition to represent the a rough geometrical space (for example in 
radiation planning). 
Glossary 
Πi, Πi+1 Consecutive cross section planes sampling an object surface. Also apply to 

the (polygonal) cross sections contained in these planes. 
A, B,... Jordan Curve on plane Πi, parallel to the xy-plane. 
1, 2,... Jordan Curve on plane Πi+1 parallel to the xy-plane. 
Si, Si+1 Sets of Jordan Curves on planes Πi and Πi+1 respectively. Si={ A, B,...}, 

Si+1={1, 2,...}. 
Area(B) Area enclosed by contour B, signed according to CCW / CW sense of B with 

respect to the Z vector. 
⊂(Ci,Cj) Containment relation. Contour Ci is contained in contour Cj, and no contour 

Ck exists such that contour Ci is contained in contour Ck and contour Ck is 
contained in contour Cj. In this case, it is said that “ Ci is a hole inside Cj ”. 
Contours Ci and Cj do not intersect. Area(Ci) and Area(Cj) have opposite 
signs. 

Fk Forest Graph whose nodes represent contours on plane Πk, and edges e of 
the graph Fk mirror the containment relation ⊂( ). Thus, an edge between 
contours Ci and Cj,  e(j,i), exists iff ⊂( Ci,Cj ). 
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Tk,i Tree. The k-th connected sub-graph of Fi. A tree is either the null tree, or a 
root node whose descendants are trees: (root child1 child2...childn), where 
each child may be itself a tree. Examples of trees are: (A), (A B (C D E F)), 
(1 (2 (3 4 5 (6) 7) 8) 9), ( ).  The trees A and (A) are equivalent. 

P, Q A planar polygon with holes. It is represented by a tree with 1 or 2 levels. 
Unless explicitly stated, it holds that Area( P ) > 0, which means that P is a 
solid region with holes, traversed in CCW direction according to the plane 
normal vector. 

mgk k-th Mapping Group “Gk,i={P1, P2,..,.PL } vs. Gk,i+1={ Q1, Q2,..,.QM }”, 
formed by two sets of polygons, Pr and Qs, from levels i and i+1 
respectively. Gk,i and Gk,i+1 conform 2D regions which are similar in shape 
and therefore assembled in the k-th mapping group. The set of all mapping 
groups between levels i and i+1 is named MGi,i+1. 

DTi, DTi+1 DTi is the 2D Constrained Delone Triangulation of the contour vertices on 
plane Πi, such that DTi contains all edges of contours on Πi (by inserting 
additional points on the original edges), such that those edges participate in 
Delone triangles whose circumcenters lie inside the polygonal regions in Πi. 
Similarly for DTi+1. 

VDi, VDi+1 2D Voronoi Diagrams on planes Πi and Πi+1, for DTi and DTi+1 respectively. 
TT k,i, i+1 the k-th tetrahedra built by using vertices, edges or faces of DTi and DTi+1, 

respectively. 
DT, VD Delone Triangulation and Voronoi Diagram for the contour vertex sets on 

planes Πi and Πi+1, considered together. 
M  A Piecewise Linear continuous 2-manifold whose cross sections with the 

planes Πi are the contour sets Si. 
Mi,i+1 The restriction of M to the inter-planar space between Πi and Πi+1. Mi,i+1 is a 

2-manifold (in general unconnected), whose borders are Si and Si+1. Building 
Mi,i+1 is the goal of the proposed work, since M = ∪i Mi,i+1. 

covering A covering of a set A is a set of subsets of A whose union is A. 

1. INTRODUCTION. 
In spite of considerable advance in surface reconstruction from point samples, the subject 
continues being an open problem, far away from being satisfactorily solved. The goal is to 
calculate implicit surfaces ( 2-manifolds in R3 ), either smooth or Piecewise Linear (PL), 
with or without border, connected or unconnected, which interpolate or fit a point data set. 
The problems may be traced to the fundamental assumption by all algorithms, that the 
Shannon principle of digital sampling is respected ([Shannon.49]). Its equivalent, the 
Nyquist principle applied to shape sampling, establishes that the surface recovered is 
distorted by samples whose spatial sampling interval is larger than half of the smallest 
detail to be captured. This is a fundamental fact, which can only be overcome in a correct 
way by collecting massive series of data. Since this is not desirable, the known methods 
propose heuristics which take advantage of data pattern (slice sampling, grid sampling, etc.) 
and use this underlying information to overcome the inherently insufficient data set. 
However, in all cases, limitations remain as a consequence of the mentioned trade off. 
Methods dealing with cross section data may be geometrical or topological. The 
geometrical ones concentrate in the building of the surface from metric considerations ( 
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[Barequet et al.96], [Bernardini et al.99], [Boissonat et al.93], [Oliva et al.96] ), using in 
many cases Voronoi-Delone (V-D) related algorithms, or minimization techniques. The 
topological contributions consider the evolution of the surface to be built as a history of 
topological events (additions of 0-, 1- and 2-handles) along the sampling axis ( [Fomenko 
et al.97], [Shinagawa et al.91], [Morse.34]). In the cases of grid data (range images) the 
basic steps of segmentation, meshing and mesh registration have been extensively studied 
and implemented ([Turk et al.94], [Curless et al.96], [Neugebauer.97]). Research is open to 
improve or deal with the low statistical quality of the data in the periphery of the images, 
which affects the whole process.  
Methods for unstructured point samples take basically two approaches: (i) Calculation of 
smooth analytical implicit functions which minimize some energy or potential function 
([Turk et al.02], [Carr et al.97], [Morse et al.01], [Bookstein.89], [Bloomenthal.88,97], 
[Hoppe et al.93]). Once the implicit function is available, one of the most popular 
algorithms is the Maching Cubes one ( [Lorensen et al.87] ). (ii) Calculation of PL implicit 
surfaces using interpolation on the local point set, by using a numerical parameter ( 
[Edelsbrunner.94], [Amenta et al.01] ). Approach (i) is extremely elegant, but it is mostly 
applicable in small data sets, since the model fitting implies matrix operations that become 
unpractical as the point set becomes large. Approach (ii) computes directly or indirectly the 
locii of hulls involving the given point set, calculated by using spherical subspaces instead 
of flat ones. Edelsbrunner et al. compute directly the alpha – shape, while Amenta et al. 
first compute the 3D Medial Axis Transform (3D-MAT) of the point set, and then infers the 
goal surface. Both cases are sensitive to irregular sample intervals, as are all known 
methods.  
In the perspective of the present article, it is preferred to exploit known information of the 
point sample (i.e. the planarity of the cross sections). The works described in [Bajaj et 
al.96], [Barequet et al.96], [Bernardini et al.99], [Boissonat et al.93] and [Oliva et al.96] act 
on the total set of contours Si and Si+1. All of them are good surfacing algorithms if the data 
set fed to them is a qualified one. Our approach is to pre-process and split Si and Si+1 into 
subsets, such that the algorithms mentioned above is only fed with a sequence of well 
screened sub-problems. This ensures that over-stretched or unnatural branches are not even 
tried. In order to proof the concept, we use a domestic implementation on the work of 
Boissonat & Geiger ([Boissonat et al.93], [Geiger.93]), which is called here the BG( ) 
algorithm. The Mi,i+1 surface is the union of the results of a of sequence calls to the BG( ) 
algorithm, each call being responsible for a well screened sub-problem.  

2. BACKGROUND. 
The literature survey will concentrate on the algorithms which exploit the planarity of the 
point samples to build Mi,i+1 for every two consecutive levels. Algorithms working with 
general point samples will not be discussed here. 
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2.1. Topological Evolution of the Cross Sections. 
Φ + + += = = =

(b)

Φ +

(a) (c) (d)

Πi Πi+1 Πi Πi+1 Πi Πi+1 Πi Πi+11-h 1-h0-h 2-h

 
Figure 1. Morse transitions and their effects on contour population (Φ: no contour in level). (a) Creation: 

add 0-handle. (b) Splitting: add 1-handle, (c) Merging: add 1-handle, (d) Annihilation: add 2-handle. 

The population and relations among contours between slices Πi and Πi+1 evolve as a result 
of the changes in the cross sections of M. Based on [Morse.34], other works such as 
[Fomenko et al.97] and [Shinagawa et al.91] present a set of conceptual operators (addition 
of 0-, 1- or 2-handles, Figure 1), which cause the evolution of cross sections of M. The 
record of these events is known as Reeb graph ([Shinagawa et al.91b]), and encodes the 
surface in what respects to topology. The geometry (position and shape) of the manifold 
requires what is called a homotopy model to reconstruct the surface. In [Shinagawa et 
al.91b] the authors construct the Reeb Graph from geometrical considerations such as 
similarity of single contours, therefore completing one part of the geometrical aspect of 
[Shinagawa et al.91]. However, none of the three contributions actually presents results in 
constructing the surface. The 2D similarity of composed contours is not discussed, and 
therefore the complications of having topological changes such as addition of 1-handles 
involving internal holes are not addressed. In [Ruiz et al.02.a]. a preliminar work of surface 
realization using 0-, 1- and 2-handles is discussed. In [Ruiz et al.02.b] a heuristic algorithm, 
linear in the number of contours was presented for identifying similar 2D composed shapes. 
In the present work, rules are given to post-process the sets of 2D similar regions to detect 
occurrence of 0-, 1- and 2-handles, and to use the similar 2D composed regions to drive the 
construction of the Mi,i+1 manifold. 

2.2. Geometrical Evolution of the Cross Sections.  
Algorithms of the V-D (Voronoi-Delone) variety build surfaces based on local geometric 
proximity criteria. Here, the most important ones are discussed.   
[Barequet et al.96] classify portions of polygonal regions in Πi and Πi+1 into matching and 
non-matching ones. The matching ones are threaded completing closed paths with edges in 
Πi, Πi+1 and the space between the planes.  Regions spanned by these closed paths are 
triangulated. The remaining, non-similar parts of contours are also threaded into non-planar 
closed paths called “clefts”. Clefts have holes, similar to a planar polygonal region. Those 
holes are integrated to the external edge path by a bridging pattern, therefore leaving clefts 
without holes, which are triangulated by minimizing the summation of the triangle areas. 
This approach was not chosen in our work to complement the pre-processing proposed 
here, because the authors indicate the possibility of selfintersections and the minimization 
considerably increases the complexity of the algorithm.  
The approach by [Boissonat et al.93] (the BG( ) algorithm) constructs Mi,i+1 by using 
contour sets Si and Si+1 to build tetrahedra TTk,i,i+1, k=1, 2, ..., whose faces, edges and 
vertices are inside the polygonal regions implicit in Si , and Si+1 . The tetrahedra are built by 
either (a) joining a triangle of DTi with a vertex of DTi+1 (or vice versa) or (b) joining two 
edges of DTi, and DTi+1, if their dual edges in VDi and VDi+1 intersect when projected on 
the xy-plane. In either case, the tetrahedra are then merged, disappearing their connecting 
faces, leaving only external faces (triangles), which form Mi,i+1. The BG( ) algorithm has 
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the following characteristics: (a) it is indifferent to distance d( Πi, Πi+1 ) between the planes. 
(b) Tetrahedra are built based on the projections of DTi and DTi+1 on the xy-plane, and not 
on the DT and VD. Therefore, these tetrahedra  are not the restriction of DT  to the mid-
space between Πi and Πi+1. (c) Because of (b), some resulting tetrahedra may be very 
slanted, since they join very distant (not even frontally faced) regions of polygons on Πi 
and Πi+1. (d) The surface built is not guaranteed to be a 2-manifold. 
The algorithm presented here ( contour-map-BG( ) ) recognizes and uses the advantages of 
the Boissonat & Geiger approach, while applying it to restricted subsets of the original 
problem to offset its limitations. A sequence of subsets of the original problem is built to 
avoid the characteristic (c) mentioned above, which results in counter – intuitive branches 
being built. In BG( ) the criteria to build tetrahedra between contours of Si and Si+1 is of 
local geometric proximity between projections of the VDi, VDi+1, DTi and DTi+1 on the xy-
plane. The actual inter-planar distance may be large, and therefore the tetrahedra so built 
are not Delone ones, but approximations of them, dictated by rule (b) above.  
The algorithm proposed (and implemented) pre-processes the Si and Si+1 contour sets 
identifying subsets of them which represent composed 2D similar regions, facing each 
other. Those regions are considered as corresponding to each other under a global shape 
criterion. These matching regions are entered to the BG( ) algorithm, which is therefore fed 
only with reasonable contour matches, avoiding counter – intuitive branches or 
equivalently, highly slanted tetrahedra. Notice that this avoidance is desirable when the 
surface reconstruction must be faithful both in geometry and topology (for example when 
the cavity and conduit topology are crucial), as opposed to applications in which only an 
approximation of the mass enclosed in the surface is required (for example, radiation 
planning).  

3. METHODOLOGY. 
A covering of the original Si and Si+1 sets is seek, in such a way that subsets of contours 
with similar 2D shapes are identified. Such sets, which represent a likely shape evolution 
across cutting planes are then screened for redundancies, and the cases of 0-, 1- and 2-
handle additions are classified. The surface algorithms of the V-D variety are then fed with 
the pre-processed sub-problems, and Mi,i+1 is built. The methodology followed in this 
approach is: 
(a) Contour orientation and inclusion calculation. The polygon sets are pre- 

processed to ensure a correct sense of their Jordan curves and consistent area signs, 
inclusion of holes in polygons, etc. (see Glossary). This stage takes the Si and Si+1 
sets of Jordan Curves on planes Πi and Πi+1, and builds the corresponding trees Tk,i 
and Tm,i+1 (therefore identifying polygons with holes) and forests Fi and Fi+1.  

(b) Calculation of 2D-similar composed shapes or mapping groups. Sets of 
polygons with holes of level Πi are matched against 2D similar ones on level Πi+1, 
forming mapping groups. Coverings of the node sets of Fi and Fi+1 are given by the 
so obtained mapping groups “Gk,i vs. Gk,i+1” k = 1, 2,...  . When a contour A of level 
i cannot be mapped to any other in level i+1, the mapping group “{A} vs. Φ” is 
formed. Regions with negative area Area( ) are also matched (holes are matched to 
holes), recalling that holes may have holes inside (which are of course, solid 
regions).  
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(c) Post-processing of mapping groups. From step (b), a contour may appear in 
several mapping groups. The mapping groups are then purged of repetitions by 
factoring out sub-shapes. In addition, mapping groups which represent impossible 
topologies are eliminated. 

(d) Skin construction. The remaining mapping groups are used for sequential calls to 
BG(Gk,i , Gk,i+1) k=1,2,...etc. These calls with coverings of the original problem 
avoid over-stretched faces and branches. 

(e) Topological test. A Boundary Representation (B-Rep) is built using the triangular 
facets produced in the calls to the BG( ) algorithm. The B-Rep structure enforces the 
characteristics of Piecewise Linear 2-manifolds with border, while making explicit 
the neighborhood relations, normal vector uniformity and borders. Complete, 
“watertight” 2-manifolds are only a particular case of bordered ones.  

Since several of the outlined steps are well known algorithms, only (b) and (c) will be 
discussed in detail.  

3.1. Calculation of 2D-similar composed shapes or mapping groups.  
Fi and Fi+1 are graphs whose nodes are polygons with holes of levels Πi and Πi+1, 
respectively. In this stage, from sets of polygons, nodes( Fi ) and nodes( Fi+1 ), mapping 
groups Gk,i vs. Gk,i+1  k=1,2,...etc. are formed. For each k, Gk,i ⊆ nodes( Fi ) and similarly 
Gk,i+1  ⊆ nodes( Fi+1 ).  The 2D composed region represented by the union of polygons in 
Gk,i is similar to the corresponding 2D composed region represented by the union of 
polygons in Gk,i+1. There are N mapping groups between levels i and i+1, and so,  

MGi,i+1 = { G1,i vs. G1,i+1, G2,i vs. G2,i+1, ..., GN,i vs. GN,i+1} 
the Gk,i satisfy the following relations:  

)Fnodes(G),Fnodes(G 1i

N

1k
1ik,i

N

1k
ik, +

=
+

=

== UU  

kjkj ≠≠≠≠ ++ someforandsomeforgeneral,in ΦGGΦ,GG 1ij,1ik,ij,ik, II  

Equation 1. Set Relations among Mapping Groups. 

Since every polygon must appear in at least one Gi,k , Φ is used to express mapping groups 
in which a polygon A of one level is not related to any other in the opposite level (“{A} vs. 
Φ” ).  
Mapping groups of holes must also be determined. Holes are polygonal regions with 
negative area Area( ), which have internal polygons with positive area. Therefore, the holes 
of holes are solid regions. 
The combinatorial algorithm of testing all possible subsets of nodes( Fi ) and nodes( Fi+1 ) 
against each other to determine the mapping groups is, of course, too expensive. A linear 
(in the number of contours) approximation to the solution has been implemented. The 
algorithm appears in Table 1. 
 

Table 1. Mapping - Group Algorithm 
function mapping_groups( S1, S2: set of polygons ): set of mapping groups 
1 result = {} 
2 while (S1 is not empty) or ( S2 is not empty) 
3  if ( S1 ) 
4   seed_polygon = extract_next( S1 ); 
5   group_n = {}; 
6   group_m = { seed_polygon }; 
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7  else 
8   seed_polygon = extract_next( S2 ); 
9   group_n = { seed_polygon }; 
10   group_m = {}; 
11  end_if 
12  queue = { seed_polygon }; 
13 
14  while ( queue ) 
15   polygon p = extract_first( queue );    
16   for each polygon q in level opposite to p do 
17    if (min( Area( p∩q )/Area(p), Area( p ∩ q )/Area(q) ) > threshold ) 
18     add q to queue 
19     add q to group_m (or group_n) 
20     extract q from S1 (or S2); 
21    end_if 
22   end_for 
23  end_while 
24  result = result + { (group_m vs. group_n) } 
25 end_while 

The strategy used to find an approximation to the mapping groups is similar to the strategy 
used in calculating the partition of an equivalence relation: all elements q related to an 
element p, already in the set, are included in the set (line 16), with p eliminated from the 
search space (line 15). Eventually, all elements take the role of p, and their related ones q 
are brought in. The queue of expandable elements grows, stabilizes, shrinks and is 
eventually exhausted, bringing the end of the iteration in line 13. A new seed_polygon is 
obtained to start the process again (lines 3-11). If no seed_polygon is available (i.e. both 
sets S1 and S2 are exhausted) the algorithm finishes. It should be noticed that the present 
algorithm uses heuristics in order to avoid the combinatorial problem, posed by the 
exhaustive trial of all sets of 1, 2, 3,...etc. polygons of one level against all equivalent sets 
of the opposite level. It is based on the hypothesis that two polygons, one in level i, and the 
other in level i+1, have a real relation as crosscuts of an object if the projection of one onto 
the other represents a significant portion (threshold) of its own area. Although this criterion 
is not a perfect one, the tests conducted showed a great deal of stability of matches and 
robust performance with respect to the threshold used, yielding very intuitive results. Figure 
2 shows an example of results for the contour mapping algorithm. 
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Mapping Groups 
 
SOLIDS 
 {(A C D E F G)} vs. 

{(1 2 3 4 5 6 7)} 
 {(B H I)} vs. {(9 14)} 
 {(K P)} vs. {12} 
 {M} vs. {10} 
 {L} vs. {11} 
 {(J N O)} vs. {(8 13)} 

 

 
 
HOLES 
 {C} vs. {7} 
 {(D J)} vs. {(2 8)} 
 {E} vs. {Φ} 
 {(F K L)} vs. {(5 12),(6  

11)} 
 {(G M)} vs. {(4 10)} 
 {N,O} vs. {(13)} 
 {P} vs. {Φ} 
 {H,I} vs. {(14)} 

 

Figure 2. An example of contour mapping algorithm results. 

3.2. Post-processing of mapping groups. 
Equation 1 implies that a contour may appear in several mapping groups. The basic reason 
is that a contour that is a hole region within a solid region participates in a group which 
maps solid regions to solid regions, and will also appear in the groups which map hole 
regions to hole regions. This repetition leads to the fact that mapping groups, as output by 
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the mapping group algorithm cannot be fed to a surfacing module, since polygon holes 
would be given skin twice.  

solid: {(A B C)}vs. {(1 2)}
holes: {B} vs. {2}

{C} vs. Φ

AB C

1
2

Π i+1

Π i

 
Figure 3. Contour death by 2- (or 0-) handle addition. 
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A

solid: {(1 2)} vs. {A}
holes: {2} vs. Φ

Π i+1

Π i

 
Figure 4. Contour death by 1-handle addition 

(donnut-croissant transition).  

 

A

1 2

solid: {A} vs. {1}, Φ vs. {2}

Π i+1

Π i

 
Figure 5. Contour death by 2- (or 0-) handle addition. 

A

123

solid: {(1 2 ) 3}vs. {A},           {3} vs. Φ
holes: {(2 3)} vs. Φ

Π i+1

Π i

 
Figure 6. Double contour death by 2- (or 0-) handle 

addition. 

In addition, the issues of simultaneous death or birth of nested contours must be solved. A 
set of definitions follows along with screening rules (presented here without formal proof). 

3.2.1. Definition. Level of a contour within a forest. 
The level of a contour A in forest F is the depth of the node A in its corresponding tree in 
the forest F. For example, if Fi = { (A (B (C (F)) (D (E G (H I) ) ) ),... }, then depth(A)=0, 
depth(C)=2, depth(H)=4 (see Figure 9 and Figure 10). 

3.2.2. Definition. Level of a Mapping Group.  
The level of a mapping group, level(mg), is the lowest number in the levels of the contours 
in mg, dictated by the forests Fi and Fi+1. For the example in Figure 9 and Figure 10, level( 
{ I }vs.{ (7 9) } ) is 4, while level( { ( A B ) } vs.{ ( 1 2 ) ) ) is 0. 

3.2.3. Definition. Ordering of Mapping Groups.  
A set of mapping groups admits an ordering p , dictated by the level of each mapping 
group. The ordering used here will be descending; first are the leaves, last are the roots of 
the forests. 
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1

A

2

B(a)
solid: {(1 2)} vs. Φ, Φ vs. {(A B)}
holes: {2} vs. B  

1

A

2

B(b)
solid:{(1 2)} vs. Φ,  Φ vs. {(A B)}
holes:{2} vs. Φ Φ vs. {B}  

Figure 7. Topologically invalid hole mapping. 

3.2.4. Screening of Hole Mappings. 
Mapping Groups involving holes require one of these possible actions: (i) If mg={B} vs. 
{K} (where B is a hole and K ≠ Φ), disregard the mapping group if it is a degenerate 
byproduct of the mapping group algorithm. (ii) If mg = {B} vs. Φ, tile hole region B if a 0- 
or 2-handle transition is identified. This case is detected because [Area(B∩Q)/Area(B)]≥(1-
threshold) for some solid region Q in the level opposite to the level of B.  (iii) If mg = {B} 
vs. Φ, and [Area(B∩Q)/Area(B)] ≤  threshold  for every solid Q in the level opposite to the 
level of B (which is a hole), neither discard nor tile B, but process it within a 1-handle 
transition. B itself will not be triangulated, but it is essential to consider it along other 
contours. (iv) Otherwise apply BG( mg ) directly. 
(i) Topology Condition for Discarding Hole mappings. Holes whose containing solid 
contour does not map, should be discarded. Figure 7(a) shows that hole mapping group 
mg2={ 2 } vs. { B } is a product of the mapping group algorithm. This happens even if the 
solid mapping group mg1={( 1 2 )} vs. {( A B )} never appears due to the fact that 
polygons (1 2) and (A B) have no overlapping at all. The topology rule expressed here 
allows to reject mg2 in this case. The rule has a more obvious ground shown in Figure 7(b): 
holes B and 2 cannot be mapped if their surrounding solids 1 and A themselves are not 
mapped, because a self – intersecting surface would be produced.  
(ii) Null Hole Mappings in 0- and 2-handles. Figure 8 shows two situations in which 
mapping groups are exactly the same. However, in the first case (Figure 8(a)) the algorithm 
should “tile” contour 2, and can do so independently from the relation {1} vs. {A}. This 
case is one of addition of  a 2-handle (the 0-handle case is identical). Surfacing calls would 
be BG( {1} , {A} ) and BG( {2} , Φ ).  

 
(a)

A

+ 2-h
1 2Πi

Πi+1

 

 
(b)

+ 1-h

Πi

Πi+1

A

1

2

 
Mapping groups  Solid:  {(1 2)} vs. A 
   Hole:  {2} vs. Φ 

Mapping groups  Solid:  {(1 2)} vs. A 
   Hole:  {2} vs. Φ 

BG( ) calls:  BG( {1} , {A} ) BG( {2} , Φ) BG( ) calls:   BG( {(1 2)} , {A} ) 
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Figure 8. Different Treatment in Hole Mapping with Φ , according to handle addition nature. 

(iii) Null Hole mappings in 1-handle.  In contrast to (ii), in Figure 8(b) the mapping 
group {(1 2)} vs. {A} is indivisible, because a 1-handle is added (a donut - croissant 
transition). The algorithm presented allows to detect this case in the post-processing of 
mapping groups, by exploiting the geometric information obtained from the intersection 
area of the  hole and its parent’s match on the opposite level, and therefore to correctly 
process the case (ii) with a 2-handle and case (iii) with a 1-handle, by making the calls 
BG({(1 2)},{A}) (see bottom of Figure 8). 

3.2.5. Elimination of Redundant Surfacing Calls. 
Because of intersections among mapping groups, a process of elimination of those 
intersections is required. Table 2 shows the corresponding algorithm. At the end of this 
process, the new set MG contains non-intersecting mapping groups mg. For each one of 
them, its surface is built via a call BG( mg ). The order “ p ”  introduced in the mapping 
groups guarantees that the simplest ones are given a surface first. The algorithm in Table 2 
ensures that they are extracted from more complex ones. Therefore it is guaranteed that a 
contour is not considered twice, and that no contour is left without participating in a 
mapping group. 

Table 2. Algorithm for Depuration of Redundant Mapping Groups  
function depurate_map_groups(MG) 
1 { 
2  result = {} 
3  while ( MG ) 
4   mg = lowest( MG ,p ) 
5   MG = MG – {mg} 
6   for each mgi in MG 
7    mgi = mgi – ( mgi ∩ mg ) 
8   end_for 
9   append(result ,mg ) 
10  end_while 
11  return( result ) 
12 } 

4. RESULTS 

4.1. Example A 
Figure 9 shows two typical contour sets for levels Πi and Πi+1. Correspondingly, Figure 10 
displays the hierarchical tree and forest graph structures.  
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Figure 9. Polygon set in consecutive levels. 

4.1.1. Contour Mappings  
The following solid and hole regions were mapped according to the mapping group stage of 
the contour-map-BG( ) algorithm: 
Solid Region map:  
{(A B)}vs.{(1 2)) {(C F), (D E G), H}vs.{(3 4 5 6 8)} {I}vs.{(7 9)} 

Hole map: 
{(B C D)} vs.{(2 3)} {F}vs.{4} {E}vs.{Φ} 
{Φ}vs.{8} {(G H I)}vs.{ 5 ,(6 7)} {Φ}vs.{9} 

 

A

B

C D

Fi Fi+1

F E G

H I

1

2

3

4 5 6 8

7

9

 

 
Contours:  A, B, C, D, E, F, G, H, I, 1, 2, 3, 4, 5, 6, 

7, 8, 9 
Polygons:  (A B), (C F), (D E G), H, I, (1 2),  
 (3 4 5 6 8), (7 9) 
Tree Graphs:  T1,i = (A (B (C (F)) (D (E G (H I) ) ) ) ), 
 T1,i+1 = (1 (2 (3 (4 5 (6 (7 (9)) 8) ) ) ) 
Forests:  Fi = { T1,i }, Fi+1 = { T1,i+1 } 

 
Figure 10. Contour, polygon, tree and forest relations. 

From the algorithm discussed above, the mapping groups including the empty (Φ) set are 
removed, since they represent an addition of 1-handles, which is handled through the BG( ) 
algorithm without an explicit call to tiling algorithms. A sorting based on the p  order is 
applied on the list of remaining map groups, with the following results: 
1.  {I}vs.{(7 9)} 2. {F}vs.{4} 3. {(G H I)}vs.  

 {(5 (6 7))} 
4.  {(C F), (D E G)}vs. 
 {(3 4 5 6 8)} 

5. {(B C D)}vs. 
 {(2 3)} 

6. {(A B)}vs. 
 {(1 2)) 

4.1.2. Mapping group intersection elimination. Call to the BG( ) algorithm 
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The algorithm in Table 2 is applied to eliminate the intersections between mapping groups. 
The depuration results are as follows: 
1.  {I}vs.{(7 9)} 2.  {F}vs.{4} 3.  {(G H}vs.{5 6} 
4.  {C (D E)}vs.{(3 8)} 5.  {B}vs.{2} 6.  {A}vs.{1} 
By using these mapping groups, the calls to the BG( ) algorithm are: BG({I},{7, 9}), 
BG({F}, {4}), BG({G,H},{5,6}), BG({C,D,E},{3,8}), BG({B},{2}), BG({A},{1}). Notice 
that the calls to BG( ) do not admit hierarchies, but plain sets. 
Figure 11 and Figure 12 show the result of direct application of the BG( ) algorithm. Over – 
stretched branches may be observed in three places between contours B ( level Πi ) and 3 
(level Πi+1), as a result of the sole application of geometric (Voronoi-Delone) closeness to 
join contours of opposite levels. In contrast, the approach proposed here, contour-map-BG( 
), (see Figure 13 and Figure 14), of forming separate working spaces (mapping groups) for 
the BG( ) algorithm, avoids unnatural branches as the ones described, because (A B) 
polygon is mapped to ( 1 2 ), and not to ( 3 4 5 6 8 ), therefore making a branch from B to 3 
impossible. In the proposed strategy, the 2D similarity criteria acts in a global manner, thus 
avoiding that unrelated contours share the same working space at a given time. Next, the 
BG( ) algorithm is applied to the sub-problems, which only contain similar 2D composed 
shapes. 

Figure 11. Front view. Result of direct use BG( ) 
algorithm. 

Figure 12. Back view. Result of direct use BG( ) 
algorithm. 

 

Figure 13. Front view. Result of contour-map-BG( ) 
algorithm. 

Figure 14. Back view. Result of contour-map-BG( ) 
algorithm. 

4.2. Example B 
In Figure 15 it can be seen that tree (6 5) in level Πi+1 has no relation with tree ( B D ) in 
level Πi. When the whole set of contours in Πi and Πi+1 is fed to the BG( ) algorithm 
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(Figure 16) (i) an over-stretched loft is produced between contours 6 and D, (ii) the 
algorithm ignores contours B and 5, (iii) contour C receives an unnatural branch from 
contour 2, and (iv) part of the polygonal region (1 2) is not completed. In contrast, the 
proposed contour-map-BG( ) algorithm (Figure 17 and Figure 18) (i) recognizes the 
isolation between ( 6 5 ) and ( B D ), attempting no lofting between them, (ii) correctly tiles 
the ( 6 5 ) and ( B D ) polygonal regions, (iii) polygon ( C E F ) maps to (3 4) and not to (1 
2), therefore avoiding the over-stretched branching and (iv) the relation between (3 4) and 
(1 2) is solved correctly via a 1-handle, as corresponds to “donut-croissant” transitions. 
Both algorithms, BG ( ) and the proposed contour-map-BG( ) correctly deal with contours 
E, F, and 4 by using 2-handles (for E and F) and 0-handle (for 4), respectively. 

4.3. Example C 
Figure 19 shows the contour data of another example. This is a frequent case in medical 
imaging, in which several topological changes take place between two consecutive slices of 
frames. Contour A closes the gap with C at one point, forming contour 1, while at the same 
time contour 1 is separated from contour 3 at the neck region. 
 

Πi+1

Πi A
B

C

D
E

F

1
2

3
4

5

6

 
Figure 15. Example B. Contours in levels i and i+1. Figure 16. Example B. Result with direct BG( ) 

algorithm. 

 

 
Figure 17. Example B. Upper view. Result of 

contour-map-BG( ) algorithm. 

 
 

 
Figure 18. Example B. Lower view. Result of 

contour-map-BG( ) algorithm. 

The effect of directly applying the BG( ) algorithm creates a branching from contour 2 
(level Πi+1) to B and A (level Πi). See detail in Figure 20. In contrast, the contour-map-
BG( ) algorithm forms mapping groups {2} vs. {B} and {(1 2), 3} vs. {(A B), (C D)} 
among others. As a result, contours 2 and B are lofted. Any skin joining 2 to A is not even 
considered.  
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Figure 19. Example C. Contours in levels i and i+1. Figure 20. Example C. Direct application of BG( ) 

algorithm for C data. 

As a collateral effect of the incorrect union of 2 with A is that a medial axis appears in level 
Πi joining contour A and B, which did not belong to the original contour set. Figure 21 and 
Figure 22 show that by forming the mapping groups before calling the BG( ) algorithm 
precludes the over-stretched surface joining A, B and 2, and the edge path from A to B, 
incorrectly formed on plane Πi when only the BG( ) algorithm is applied. 

 
Figure 21. Example C. Front view result of contour-

map-BG( ). 
Figure 22. Example C. Back view result of contour-

map-BG( ). 

4.4. Example D 
Figure 23 displays a skull data set, with a typical transition shown in Figure 24. The final 
surface has been included to facilitate the understanding of the point set, including void 
regions in the mouth and forehead neighborhoods. The surface has been synthesized using 
the mapping of similar 2D regions proposed here, along with the BG( ) algorithm. The 
results appear in Figure 25 to Figure 28. Notice that as long as the voids in the sampling set 
do not (significantly) affect the topology or the geometry of the crosscuts, the final result is 
correct, with the only characteristic of having larger triangles. This is not a problem if the 
surface is topologically and geometrically correct, since there are many algorithms for 
relaxation and qualification of meshes. Since the data set has an interruption in the upper 
part of the skull, the algorithm produces a plateau, with the corresponding hole to the skull 
cavity, as in Figure 26. Figure 28 shows the surface between two levels of the Skull data 
set, which presents plenty of 0- , 1- and 2-handles. The surface is built by using mapping 
groups. As seen, the proposed algorithm correctly recognizes and handles these topological 
events. 
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Figure 23. Skull data set. Point 

sample 

level
Π i+1

level
Π i

 
Figure 24. Consecutive levels of 

the skull data set. 

 
Figure 25. Result of the contour-

map-BG( ) algorithm. 

5. CONCLUSIONS 
An algorithm has been presented, which attacks the problem of surface reconstruction from 
slice samples using the point of view of the evolution of the crosscuts of the 2-manifold to 
be recovered. By using 2D shape similarity, inference on the topological events that take 
place between consecutive slices can be made. The match of 2D similar composed shapes 
also helps to steer the application of well known Voronoi-Delone (V-D)-based algorithms, 
which are very effective, but have the disadvantage of building over-stretched branches or 
unnatural bridges between far apart 2D regions of consecutive crosscuts. 
 

 
Figure 26. Result of the contour-

map-BG( ) algorithm. Upper 
view. 

 
Figure 27. Result of the contour-

map-BG( ) algorithm. Lower 
view. 

Figure 28. Result. 
Contour_map_BG( ) algorithm 

for consecutive levels. 

The algorithm presented here succeeds in avoiding such over-stretched or over-slanted 
surfaces, and therefore represents a step forward in ensuring geometrical and topological 
faithfulness between object and reconstructed model, while the V-D-based methods only 
ensure geometrical similarity. This advance comes at a price of algorithm speed, since only 
likely geometry and topology evolutions are permitted, and therefore additional data 
screening is required. For this reason, the algorithm presented is to be used when 
faithfulness to the actual topological evolution is a prime requirement. For approximate 
shape reconstruction, the V-D-based methods suffice.  
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Future work in the part of pre-processing corresponds to further screening of the mapping 
groups. At the present time, topological inconsistencies are filtered out after the mapping 
groups are calculated by reasoning on the parent – children relations in the inclusion trees. 
This screening may be partially avoided by introducing more strict conditions on the 
geometrical 2D similarity of the mapping groups. In both cases the result is correct, but the 
latter one depends less on post-processing rules and therefore it is a more desirable 
scenario. 
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