
.

c©2013 EAFIT University. All rights reserved.





Compendium of M.Sc. Publications on Assessment of
Effective Properties of Multi-phase Materials

David Uribe

EAFIT UNIVERSITY
COLLEGE OF ENGINEERING

MASTER PROGRAM IN ENGINEERING
MEDELLIN, COLOMBIA

MAY 2013





MASTER PUBLICATION

Compendium of M.Sc. Publications on Assessment of
Effective Properties of Multi-phase Materials

MASTER STUDENT

David Uribe

ADVISORS

Prof. Dr. Eng. Holger Steeb

Prof. Dr. Eng. Oscar Ruiz

Submitted in partial fulfillment of the requirements for the
degree of Master of Engineering in the College of

Engineering of the EAFIT University

EAFIT UNIVERSITY
COLLEGE OF ENGINEERING

MASTER PROGRAM IN ENGINEERING
MEDELLIN, COLOMBIA

MAY 2013





To my parents, my friends and mentors.





Acknowledgements

To my parents Gladys and Eugenio, for the sustained love, patience, support
and endurance with which they have accompanied me along my endeavors in life.
I hope that life will keep us together for many, many years.

I want to express my upmost gratitude to my advisor Prof. Dr. Eng. Oscar
Ruiz for all the academic and material support and always reliable recommenda-
tions that made this moment possible. His encouragement does not limit itself to
academics, but reaches other aspects of my life. I also owe deep gratitude to Prof.
Dr. Eng. Holger Steeb for academic, material and human support during my per-
manence in Ruhr Universitaet Bochum (RUB). I thank Prof. Dr. Eng. Erik H.
Saenger and his team in ETH Zuerich for providing us with a great code and very
interesting insights in geophysics.

I am very thankful to Dr. Eng. Ralf Jaenicke for his ever-present and solid
help and to all the members of the Chair Continuous Mechanics in RUB. I am
indebted to Juan J. Londono, Daniel Burgos and Sebastian Luna for compiling
this LaTEX document. I owe gratitude for the very effective team-work that we
materialize with Maria Camila Osorno in the area of Computational Mechanics.
I thank the members of the CAD/CAM/CAE Laboratory in Universidad EAFIT
since 2006 (Sebastian Durango, John Congote, Ricardo Serrano, David Restrepo,
Jorge Correa) for their comradeship, help and loyalty.

I also will like to acknowledge the financial support for this research from
the Colombian Administrative Department of Sciences, Technology and Innovation
(COLCIENCIAS), the CAD CAM CAE Laboratory at Universidad EAFIT, and
Ruhr-Universitaet Bochum.

i





Introduction

Multi-phase materials exhibit mechanical advantages such as high specific strength,
low specific density, chemical resistance. These materials are natural occurring as
well as designed in laboratories to function on very well defined tasks. One of the
challenges that faces the use of these materials is to characterize its effective prop-
erties, i.e. the response of the material to different stimuli at a given length scale.
This thesis focuses on the study of multi-phase materials at the microscopic level
to find effective material properties at the macroscopic level. The bridge between
the microscopic and macroscopic length scales has been of great interest for new
numerical methods that estimate the effective properties. In the literature three
main methods have been established to find these properties:

(1) The first approach to find such properties is to simulate the material at
a microscopic level. This approach can be sometimes unpractical, since
only a very small domain of the material can be simulated, and some
characteristics of the material can be neglected.

(2) A second approach is to find the effective properties of the material with
laboratory experiments, and then use this set of found properties to sim-
ulate the material with homogeneous properties. This approach has also
shortcomings, since it is known that important properties of the materials
can only be measured with microscopic experiments.

(3) The third option found in the literature is to use a combination of the
first and second approach, namely the FE2 method.

An example of the second approach to find effective material properties is the
measurement of wave attenuation and phase velocities in two-phase materials. The
study of wave propagation in two-phase materials has been established since the
50’s by Biot. The study of this phenomenon can be used in scientific branches
ranging from medicine to geophysics. These type of materials exhibit a wide range
of practical uses such as acoustic isolation (mechanical waves at certain frequencies
won’t propagate in the medium), gas and fluid sequestration (due to the pore and
skeleton geometry some fluids do not flow through the medium), lightweight-high
resistance materials among other examples. The study of wave propagation in
this materials has proven to be a useful tool to find effective parameters such as
tortuosity, permeability and porosity.

The outline of this thesis is: In chapter 1 a method to bridge the microscale and
macroscale using an homogenization technique based on minimal loading conditions
is explained. This technique can be applied to the FE2. On chapter 2 and 3 the
use of the finite difference method is explained in the context of wave propagation
simulations on the microscale. In chaper 4 the finite difference method is used to
solve Stokes’ equation in a fluid saturated porous material. Using a volume average
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iv INTRODUCTION

technique it is possible to calculate the permeability of the porous material and
the result from the volume average technique is compared to Darcy’s law. Finally
in chapter 5 experimental results are compared with numerical results of the wave
propagation phenomenon in fluid saturated media. It was possible to determine
with great accuracy the tortuosity of an aluminum foam.
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CHAPTER 1

Relaxed Loading Conditions for Higher Order
Homogenisation Approaches

This research proposes a numerical method to estimated effective
material parameters of heterogeneous nature. It introduces a new set
of boundary conditions on microscale simulations that simplify the use
of the FE2 method. This paper was published in the Special Issue:
82nd Annual Meeting of the International Association of Applied Math-
ematics and Mechanics (GAMM), Graz 2011; Editors: G. Brenn, G.A.
Holzapfel, M. Schanz and O. Steinbach. Publisher: WILEY-VCH Verlag
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Abstract. The present paper deals with the formulation of minimal loading
conditions for the application of numerical homogenisation techniques, namely
the FE2 methodology. Based on the set of volume averaging rules connecting
the heterogeneous micro and the homogeneous macro scale, the minimal con-
straints on the deformation of a micro volume are derived for a classical Cauchy
continuum as well as for a micromorphic continuum theory. For both cases,
numerical studies are included highlighting the main aspects of the proposed
procedure within the context of small deformations.
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2 1. RELAXED LOADING IN HIGH ORDER HOMOGENISATION

1. Introduction

Heterogeneous materials are well known for their peculiar effective material proper-
ties which are driven by the underlying micro topology. Under quasi-static conditions,
e. g. boundary layers leading to size effects are to be observed [1, 2]. By contrast, a highly
dispersive overall material behaviour of the compound can be found under high frequency
loadings (sonic/ultrasonic) accounting for higher order wave modes due to micro structural
degrees of freedom [3, 4].

In the following sections we will apply a mean-field-based homogenisation approach
in order to describe the material properties of such materials on an effective scale. For
this purpose, the heterogeneous medium on the micro scale has to be replaced by a ho-
mogeneous medium on the macro scale. The physical quantities of the macro scale will
be interpreted in terms of volume averages of their microscopic counterparts. To this end,
appropriate averaging rules have to be formulated defining a Dirichlet boundary value
problem (BVP) on a micro volume which is considered to be representative for the en-
tire micro structure. Transferring the microscopic stress response back to the macroscopic
level, the overall constitutive relations can be replaced by a two-level simulation also stated
as the FE2 technique [5, 6] in the sequel.

Whilst the micro structure itself can be captured by a standard Cauchy continuum
theory, different choices for the substitute medium are possible. Depending on the micro
geometrical effects which are to be represented on the macro level different substitute
media have to be considered. If the characteristic length scale of the micro structure is
much smaller than the overall length scale (scale separation), a Cauchy substitute medium
is sufficient to predict first order effects such as material or structural anisotropy [7].
However, higher order approaches are required if the characteristic length scales become
comparable. Typical representatives of this class are e. g. Mindlin’s second gradient theory
[8] or the micromorphic continuum theory proposed by Eringen [9].

In the sequel, the present contribution focuses on two cases. On the one hand, the
Cauchy substitute medium will be considered. On the other hand the micromorphic con-
tinuum theory will be applied on the macro scale. For both, the formulation of microscopic
BVP will be discussed, where usually polynomial Dirichlet boundary conditions are taken
into account. By contrast, we propose the concept of the so-called minimal boundary or
loading conditions [10], where the loading conditions are not prescribed explicitly as a
Dirichlet BVP but in an integral sense constrained by the averaging rules.

All numerical examples are limited to 2D and to the range of small deformations in
the context of quasi-static deformations. Linear elasticity is assumed. The discussion
which micro volume size is necessary to end up with a representative volume element is
omitted.

2. First order homogenisation

Let us start with the substitution of a heterogeneous Cauchy medium by an effective
homogeneous Cauchy medium. Moreover, let us assume an arbitrary shaped 2D micro
volume of the size Vm = l2. The micro volume is nested to a corresponding macroscopic
material point via its volume centroid. Any position ∆x inside the micro volume is
expressed relative to the volume centroid. Taking into account the definition of the volume
averaging procedure 〈•〉 = 1/Vm

∫
(•) dv, the averaging rules for the kinematic quantities

read

(1) 〈∆u〉 = 0, grad sym
M uM = 〈grad sym

m ∆u〉 =
1

Vm

∫
∂Vm

(∆u⊗ n)sym da,

cf. [5, 6], where the subscript indices m and M refer to the micro and the macro scale,
respectively and n refers to the outer normal vector on the boundary ∂Vm of the micro
volume. From the physical point of view, eq. (1)1 constrains the micro volume in a
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way that rigid body translation are omitted, whereas eq. (1)2 states that the overall
symmetric strain has to be equal to the volume average of the local strain or its boundary
contribution, respectively. Usually, the kinematic averaging rules are evaluated applying
a local Dirichlet BVP of the form

(2) ∆u = grad sym
M uM ·∆x + ∆ũ.

For the additional fluctuation field ∆ũ, several cases can be considered:

a) ∆ũ = 0∀∆x ∈ ∂Vm. This special case represents the upper limit for the stress
response of the micro volume and is commonly called Voigt limit. In general,
the purely linear polynomial results in overestimated effective moduli due to
clamping mechanisms at the boundary of the micro volume.

b) The fluctuation is considered to be periodic at homologous points of the micro
volume surface whereas the surface traction vectors are anti-periodic. The pe-
riodic fluctuations allow the micro volume to overcome the clamping boundary
conditions and to reduce the overestimated stress response of the micro volume.
However, this special case requires geometrically periodic micro volumina which
can not be guaranteed in general.

However there is no need to introduce polynomial loading conditions on the boundary
of the micro volume. In order to circumvent the above limitations of the polynomial
conditions we apply in the sequel the concept of minimal loading conditions, initially
proposed in [10]. For this purpose, we consider eqs. (1) as integral constraints which control
the deformation state of the micro volume without any further periodicity requirements.
From the numerical point of view, these integral constraints can be easily implemented in
a Finite Element code e. g. using a penalty formulation.

In order to circumvent too soft material response, we introduce an additional com-
patibility constraint. The need to do so can be easily motivated regarding Fig. 1.1 a),
where a shear deformation mode is applied on an unit cell of a stiff grid structure (blue)
embedded in a matrix (green, factor 0.0001 softer). The deformation only takes place
in the soft phase, which obviously contradicts the real deformation behaviour of a peri-
odic grid structure. However this effect can be corrected if one introduces the additional
constraint that each phase has to contribute to the overall deformation according to its
fraction of the boundary ∂Vm. The resulting deformation state is depicted in Fig. 1.1 b),
c) and d) where the factor f decreases from 1 to 0.0001. For this special case, the result
of the minimal loading conditions equals this one achieved applying periodic boundary
conditions.

In the following, we want to study the proposed minimal loading condition concept
with additional compatibility constraints for an exemplary microstructure consisting of
a soft matrix filled with stiff particles. The resulting deformation states under tensile
and shear conditions are depicted in Figs. 1.2 and 1.3 in comparison to these ones of the
Voigt (linear displacements, upper bound) and the Reuss limits (constant tractions, lower
bound). In Fig. 1.4, the normalised strain energy of the three independent deformation
modes for micro volumina with different sizes is given in relation to the upper and the
lower bound.

As expected the application of the minimal constraints allow the microstructure to
relax significantly compared to the Voigt limit. The observed strain energies are even
closer to the Reuss than to the Voigt limit. However, this effect could be a consequence of
the very special choice of the microstructure with stochastically distributed stiff particles.
For more precise conclusions, a series of comparable structures should be explored which
remains a task for future work.
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a) b) c) d)

Figure 1.1. Shear mode 1/2 (uM1,2 + uM2,1) applied on an unit
cell of a stiff grid structure (blue) in a matrix (green) which is factor
f softer, a) f = 0.0001, no additional compatibility constraint, b)
f = 1, c) f = 0.01, d) f = 0.0001

a) b) c)

Figure 1.2. Stretch mode uM1,1 of a micro volume (l = 4 mm)
consisting of stiff particles (blue) in a matrix (green) which is factor
f = 0.1 softer, a) Voigt limit (linear displacements), b) minimal
boundary conditions and c) Reuss limit (constant tractions).

3. Second order homogenisation

In the upcoming section we extend the concept of minimal loading conditions to a
second order homogenisation scheme. For this reason, the kinematics of the substitute
medium is enriched by additional degrees of freedom accounting for microscopic deforma-
tion mechanisms. Moreover, the second order extensions involve an internal length scale
in an inherent way. In literature one can find basically two different approaches. The first
one goes back to the seminal work of Mindlin [8] and introduces higher gradients of the
overall displacement field as additional and independent degrees of freedom. The appli-
cation of the second gradient continuum as a substitute medium for heterogeneous micro
structures has been discussed in literature, e. g. [11, 12]. The second extension bases on
the micromorphic continuum theory initially proposed by Eringen [9]. In contrast to the
second gradient continuum, the so-called affine micro deformation tensor and its gradient,
respectively, are introduced as independent degrees of freedom in addition to the usual
displacement field. However, the micromorphic approach reduces to the second gradient
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a) b) c)

Figure 1.3. Symmetric shear mode 1/2 (uM1,2+uM2,1) of a micro
volume (l = 4 mm) consisting of stiff particles (blue) in a matrix
(green) which is factor f = 0.1 softer, a) Voigt limit (linear dis-
placements), b) minimal boundary conditions and c) Reuss limit
(constant tractions).

a)

ph
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Figure 1.4. Strain energy observed for different micro volu-
mina sizes l2 activated by the deformation modes a) uM1,1, b)
1/2 (uM1,2 +uM2,1) and c) uM2,2. The strain energy is normalised
with respect to the Voigt (φ = 1) and the Reuss limit (φ = 0) rep-
resenting homogeneous strain (linear displacements) or constant
traction boundary conditions, respectively.

concept, if the micro deformation is considered to equal the first displacement gradient.
In the sequel, only homogenisation rules for the micromorphic substitute medium will be
discussed, which have been initially proposed by Forest et al. [13, 14, 15, 16, 17]. The
kinematic averaging rules for a quadratic unit cell of the size Vm = l2 read

(3) 〈∆u〉 = 0, grad MuM = 〈grad m∆u〉 =
1

Vm

∫
∂Vm

∆u⊗ n da,

(4) χ̄M − I =
12

l2
〈∆u⊗∆x〉 ,

(5) K
3
M = grad M χ̄M =

12

l2
〈grad m(∆u⊗∆x)〉 =

1

Vm

∫
∂Vm

∆u⊗∆x⊗ n da.

The crucial point of these relation can be observed regarding eq. (4), which can not
be transformed into a surface integral. By consequence it is not possible to prescribe
Dirichlet type conditions on the boundary ∂Vm [14]. In literature, several approaches are
to be found [13, 15] dealing with a cubic polynomial for the microscopic displacement
field. However, the displacement field has to be prescribed on the entire micro volume
Vm. No reduction to its boundary ∂Vm is known, besides some special cases of regular grid
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structures [16, 17]. Thus, we propose to apply the concept of minimal loading condition for
the second order homogenisation scheme. Besides the lacking periodic requirements this
concept bears the advantage of circumventing a priori the formulation of any polynomial
conditions. Eqs. (3–5) represent the minimal set of integral constraints enforcing the micro
volume to undergo deformation modes driven by the overall kinematic quantities. Again,
this concept can be easily implemented from a numerical point of view making use of a
penalty formulation for instance.

In Fig. 1.5, several exemplary micromorphic deformation modes are given. The found
results (Cosserat micro rotations of regular grid structures and bending mode of or-
thotropic unit cell) have been observed in literature [14, 16] applying polynomial loading
conditions.

a) b) c)

Figure 1.5. The Cosserat type micro rotation ϕ̄M3 = χ̄M21 =
−χ̄M12 = 1, applied on the unit cells of a) the squared grid
and b) the honeycomb structure. The Cosserat bending mode
ϕ̄M3,2 = −KM122 = 2KM122 = 2KM121 = 1/mm, applied on the
orthotropic unit cell c).

4. Conclusions

Finally, let us recall the basic findings of the present contribution addressing numer-
ical homogenisation schemes. A general concept for the formulation of minimal loading
conditions in terms of integral constraints on the micro volume has been introduced. In
the case of first order homogenisation this procedure bears the advantage that no peri-
odicity requirements exist on the geometry of the micro volume. In principle, even the
shape of the micro volume can be chosen arbitrary and does not have to be necessarily
quadratic. Comparing the strain energy stored during unit deformations of heterogeneous
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micro volumina, it has been found the minimal loading conditions, enriched with an ad-
ditional compatibility constraint, to result in significantly softer material responses than
the Voigt limit representing the upper bound on the homogenised strain energy.

In the very last section, the concept of minimal loading conditions has been extended
to the second order homogenisation technique for micromorphic media substituting a
micro-heterogeneous Cauchy medium. Due to the extensions of the volume averaging
concept it is no longer possible to formulate Dirichlet conditions on the boundary of the
micro volume besides some special cases. For this reason, the averaging rules themselves
have been used again as the minimal loading conditions for the micro volume. In compar-
ison to the deformation behaviour of different structures, the resulting deformation modes
can be validated qualitatively against examples given in literature.

In the future, further efforts have to be made in order to gain a deeper understanding
of the proposed concept. Quantitative validations are planned. Finally, we intend to
generalise the concept to 3D problems dealing with micro volumina resulting from CT
scans of real micro structures.
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CHAPTER 2

Microscale Investigations of Highfrequency Wave
Propagation Through Highly Porous Media
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12 2. MICRO-SCALE HIGH FREQ. WAVE PROPOAGATION IN HIGHLY POROUS MEDIA

Abstract. Wave propagation in highly porous materials has a well estab-

lished theoretical background. Still there are parameters which require com-

plex laboratory experimentation in order to find numerical values. This paper
presents an effective method to calculate the tortuosity of aluminum foam us-

ing numerical simulations. The work flow begins with the acquisition of the

foam geometry by means of a micro-CT scanner and further image segmen-
tation and analysis. The elastodynamic wave propagation equation is solved

using a velocity-stress rotated staggered finite-difference technique. The effec-
tive wave velocities are calculated and using the fluid and, aluminum effective

properties, the tortuosity is determined.

1. Introduction

The use of high resolution tomographic imaging has proven to be an adequate method
to find effective material properties of complex structures [1]. Modern image analysis
algorithms together with large-scale computations has brought the possibility to bring
together different length scales to accurately describe material behavior. The sample is an
open-cell foam with a porosity of 0.93. At the micro scale, the foam consists of struts that
are joint rigidly at their ends. The struts’ bulk material parameters (Young’s modulus,
Poisson’s ratio and density) are known from quasi-static experiments. First, a description
of the workflow from the image adquisition to the virtual experimental setup is explained.
Afterwards some numeric results are presented and compared with physical experiment
data.

2. Methodology

2.1. Image analysis. The Aluminium foam is digitized using a Computer Tomo-
graphic scanner. The resolution of the voxels is 60 µm. Using image segmentation and
surface reconstruction algorithms it was possible to gather valuable geometric informa-
tion, similar to Jang [2]. From the segmented data, a regular 3-D grid is constructed that
closely resembles the physical geometry. The size of the grid is 400 x 400 x 400 points.

An important use of the gathered geometric information is determining the limit in
which the highfrequency range from Biot’s theory begins. From Steeb [3], the viscous skin
depth can be calculated using equation 6. In this equation ηfR is the pore fluid viscocity,
ρfR is the effective pore fluid density and f the frequency. If the pore radius is larger than
the viscous skin depthd, then the effective coupling mechanism between the fluid and the
solid phases is only inertia driven. This fact will become important in section 2.2.

(6) d =

√
2ηfR

2πfρfR

(7) fcrit =
ηfR

πr2ρfR

2.2. Simulation of a pressure wave propagating in a water saturated alu-
minium foam sample. The numerical experiments are solved with a parallelized al-
gorithm. The elastodynamic wave equation is discretized using a rotated-staggered-grid
finite-difference scheme developed by Saenger[4]. The foam sample is virtually immersed
in the center of a water tank of size 400 x 400 x 804 gridpoints. A plane pressure wave
is created at one end of the tank parallel to the z-direction. All the walls of the tank
orthogonal to the z-direction have periodic boundary conditions. In our simulation we
use is a Ricker wavelet, with a central frequency of 1KHz. It can be proven that this
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z

x
y

Figure 2.1. Aluminium foam with
part of the water removed in order
to see the structure. Coloring de-
pending on pointwise velocity val-
ues.

Figure 2.2. Analytical solution of
the high-frequency limit in Biot’s
equation using a varying stiffening
factor.

frequency is larger than the critical frequency predicted by Biot (eq. 7) and therefore lies
in the high-frequency range.

In order to measure the pressure wave velocities, virtual receivers are placed right
before the aluminium foam and right afterwards. These measurements are compared with
a reference simulation (the water tank with no foam), and then the correct wave velocities
can be back calculated.

2.3. Artificial aluminium properties. There is the need to create two experiment
setups. On one hand, the aluminium Young’s modulus and density is multiplied by a factor
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β = 10 (point A in figure 2.2). This increases the impedance contrast between the two
phases high enough that the effective wave velocity measured is only influenced by the
parameters of the water phase (no coupling between aluminium and water phase). Indeed,
it was observed from the simulation that no wave was traveling through the aluminium
phase.

From the assumption above, using the high-frequency limit of Biot’s equations, the
turtuosity can be calculated for the geometry of this foam (since turtuosity is the only
unknown). The measured effective wave velocity is vp,fast=1409 m/s. This velocity is
much lower as the reference velocity of homogeneous water vp,water=1480 m/s. The result
from Biot’s equation for the tortuosity parameter is α∞=1.14.

2.4. Real aluminium properties. Using the real physical aluminium properties
in the simulation, there is an effective wave velocity vp,fast=1487 m/s. On figure 2.1 a
snapshot in one of the timesteps shows the wave traveling though both phases and through
the aluminium phase alone. It can be observed that there is a coherent wave propagating
through the water and aluminium phase. On the other hand, there is no coherent (or
measureable) wave passing through the aluminium phase by itself.

3. Conclusion

In figure 2.2, vp is calculated analytically from Biot’s equations for different stiffening
values β. If the isoline α∞=1.14 is plotted over the parametric surface, the value B will
be equivalent to calculating the fast P-wave velocity of the water saturated foam with real
aluminium properties. Therefore if we compare the values of the numerical simulation
and the analytical solution the measure how fit is the method. It was found that the
analytical and the numerical solution match exactly. This methodology has proven to
be highly effective for the computation of geometric properties such as tortuosity. Our
numerical laboratory is not only limited to aluminium foams or homogeneous structures,
which makes it a very robust and powerful tool.
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CHAPTER 3

Numerical Analysis of Wave Propagation in
Fluid-filled Deformable Tubes
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discussed in this paper. As a result, the modern theory of Bernabe on wave
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18 3. WAVE PROPAGATION IN DEFORMABLE TUBES

Abstract. The study of wave propagation in fluid saturated deformable tubes
is of great interest in biological and geological applications. It is also a sim-

plified model of a porous material, and therefore the physical findings of such

model can be extended into more complex models. The solution proposed
by Biot neglected the mechanical interaction between the fluid and the solid

phases at the microscopic level, and based his . In contrast, a more mod-

ern approach by Bernabe does take into account the deformation of the solid
at a microscopic level. Using a Finite Difference code, the wave propagation

phenomena was simulated. The wave source was modified with different char-

acteristic frequencies in order to gain the information of the dispersion rela-
tion. It was found that the p-wave velocities of the simulations at sub-critical

frequencies closely matches those of Bernabe’s solution, but at over-critical
frequencies they come closer to Biot’s solution.

1. Introduction

In Biot’s theory [1, 2], a wave propagating through a porous medium has different
behaviors at two frequency domains. The first one is known as the low frequency domain,
in which the wave propagating through the fluid phase is viscous dominated and has
the form of poseuille flow. On the other hand, the high frequency domain allows the
displacement field in the contact surface between the solid phase and the fluid phase to be
decoupled. As a consequence, it is possible to find two p-wave modes from his equations.
Furthermore, the wave traveling through the fluid phase has the form of plug flow.

Bernabe’s solution [3] of the differential equations also have two characteristic fre-
quency domains. The range of these domains match those found in Biot’s theory. There
are two great differences between Bernabe’s and Biot’s solutions. First, Bernabe uses only
material properties based in the microscale, and Biot uses material properties related to
the macroscale. The second difference is in the assumptions of the fluid deformation in the
surface between the fluid and the solid phases. Biot restricts the deformation of the fluid
phase only in volumetric change, but Bernabe assumes that the shearing deformation in
this point may be different from zero.

The dispersion relation is the relationship between the wave speeds of a propagating
wave against its frequency . It is possible to compare numerical, analytical and experi-
mental results by comparing the dispersion relation of each approach.

2. Methodology

2.1. Analytical solutions. From the simplification given by Steeb (cf. [4]), eq. (8)
shows the characteristic polynomial, with solutions ξ1,2. From the relation k21,2 = ξ1,2, it is
possible to find the wave number k. Then the p-wave velocities can be determined by the
relation c =

√
k2/w2. The values of the parameters N,A,Q,R, P are effective material

parameters that are calculated using Gedankenexperiment.
In Bernabe’s solution, the characteristic polynomial is given by eq. (9). The terms:

Ji() is the Bessel function of the first kind, c0 is the wave speed in the fluid phase, Vs is
the wave speed in the solid phase, ρ is the fluid phase density and ρs is the solid phase
density. The characteristic polynomial has four possible roots, but only two of them have
a physical meaning.

0 = [PR−Q2]ξ2 − [P ρ̂22 +Rρ̂11 − 2Qρ̂12]ξ + [ρ̂11ρ̂22 − ρ̂12ρ̂12],(8)

0 = c4 − c2
(

2J1(kr)

krJ0(kr)

ρ

ρs
c20 + c20 + 2V 2

s

)
+ 2V 2

s c
2
0

(
1− 2J1(kr)

krJ0(kr)

)
(9)
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2.2. Numerical approximation. The geometry of the elastic tube is discretized
using a regular three dimentional grid. The axial coordinate of the tube is oriented in the
z-axis. The length of the elastic tube is not constant, since the wavelength of the induced
wave in the elastic tube variates with its characteristic frequency. Therefore to avoid time
consuming calculations, the length of the tube is changed to aproximately 2 wavelengths
. The inner radius is r = 0.25mm and the tube thickness is h = 0.45. The material
properties of the solid phase is Vp = 5330m/s, Vs = 3145m/s, ρs = 7900kg/m3 (similar
to those of steel). The properties of the fluid phase is c0 = 1920m/s, ρ = 1258kg/m3 and
η = 1412cP (glycerol under standard conditions).

The elastodynamic wave equation can be extended by the anelastic functions as in eq.
(10). These equations are solved using the finite difference method. In order to implement
the viscoelastic properties of the fluid phase, the approach described in [5] is used to give

the values to the anelastic coefficient tesor Ỹ ijkl
m . Other approximations of the anelastic

coefficient tensor can be seen in [6, 7]. The time domain is discretized using a sencond
order finite difference operator. The spatial derivatives are approximated by fourth order
finite difference operators using a rottated staggered grid (RSG). The time and spatial
discretization are solved explicitely in the the code.

The elastic tube is loaded at one end of the tube with a planar wave perpendicular
to the z-axis. The induced wave is a first derivative of a normal distrubution with a
characteristic frequency fc.

(10) σij = Cijklεkl −
ij∑
m

ξijm, ξ̇ijm + ωmξ
ij
m = ωmỸ

ijkl
m εkl.

3. Results

The numerical simulation can be seen on fig. 3.1. The phase velocities can be calcu-
lated from the first arrivals of the waves between the first and last snapshot. From the
disperion relation in fig. 3.2, it can be seen that at sub-critical frecuencies, the numerical
results are closer to Bernabe’s solution. At over-critical frequencies the numerical results
resemble Biot’s solution. It was observed that in the high frequency domain, the flow is
indeed that of a plug flow.

4. Conclusions and Future work

The theories of wave propagation in porous media of Biot and Bernabe were compared
with a numerical simulation using the finite difference method. The numerical results were
compared with analytical solutions. Future work aims to compare the velocity profile of
the fluid phase between the numerical simulations and the analytical solutins, simulation
of 2 and 3 dimentional lattices and the simulation of viscous solid materials.
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Figure 3.1. Cross sectional view
of the propagating wave in the mid-
dle plane along the axial direction.
fc =150KHz. Colormap range op-
timal to visualize the slow p-wave.
Wave progagation direction is left to
right.
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CHAPTER 4

Estimation of Large Domain Al Foam
Permeability by Finite Difference Method.

It is of great interest to develop numerical methods to calculate the per-
meability value of fluid saturated porous media. The results of this research
is the creation of a numerical method to estimate the permeability of porous
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Abstract. The classical methods to calculate permeability of porous media
have been proposed mainly for high density (e.g. granular) materials. These

methods present shortcomings in high porosity media (e.g. metallic foams).

While for dense materials permeability seems to be a function of the bulk prop-
erties and occupancy averaged over the volume, for highly porous materials

these parameters fail to predict it. Several authors have attacked the problem

by solving the Navier-Stokes equations for the pressure and velocity of a liquid
flowing through a small domain (Ωs) of aluminium foam and by comparing

them with experimental values (prediction error approx. 9%). In this article
we present calculations for much larger domains (ΩL) using the Finite Differ-

ence (FD) method, solving also for the pressure and velocity of a viscous liquid

flowing through the Packed Spheres scenario. The ratio V ol(ΩL)/V ol(Ωs) is
around 103. The comparison of our results with the Packed Spheres example

yields a prediction error of 5% for the permeability. We also solved for pressure

and velocity in an accurately modelled porous medium. Our geometric mod-
elling of the porous domain stems from 3D X-ray tomography, yielding voxel

information, which is particularly appropriate for FD. Ongoing work concerns

the reduction in computing times of the FD method, consideration of other
materials and fluids, and the enlarging of experimental work.

1. Introduction

Permeability is an important property in the design of filters of metallic foam, porous
implants and other applications that require a flow through a porous medium ([1]). In
this article we estimate the permeability of high porosity Aluminium foam (ε > 0.8)
employing the Finite Difference method . For the numerical estimation of the permeability
for metallic foams the following methods have been used: (1) Finite Volumes, (2) Lattice
Boltzmann, (3) Finite Difference Method. Gerbaux et al. ([2]) calculate the permeability
of 3 real metallic foams by solving the Stokes equation in the porous medium with the
Lattice Boltzmann method and the finite volume method. Xu et al. ([3]) perform a finite
volume analysis to estimate the permeability of some foams cells with different porosities
and porous diameter.
Petrasch et al. ([4]) determine porous media properties such as porosity and permeability
from a digital representation of reticulate porous ceramics generated by X-ray tomographic
scans. Nabovati et al. ([5]) calculate the permeability for fibrous porous media in a wide
range of porosity by applying Darcy’s law.
At present, only small domains of high porosity metallic foams are addressed for numerical
estimation of permeability, given the computing expenses involved. In response to such
limitations we implement FD, that is highly compatible with 3D Computer Tomography

2. Methodology

We propose a straightforward method to estimate the permeability of porous media:
(1) Discretization of equations 11 and 13 on a staggered grid by using a 2nd order FD
method with periodic boundary conditions for velocity in the inlet and outlet of the
channel (Fig. 4.1). (2) Solution of the resulting equation system (Eq. 16, 17, 18, 19)
with the method Gauss-Seidel iterative. This method does not require the storage of a
coefficient matrix, therefore allowing to simulate larger domains. (3) Calculation of the
volume average velocity um from the velocity field computed in step 2. (4) Estimation
of the medium permeability with Darcy’s law (Eqs. 15). The notation used is: KD =
Porous medium permeability according to Darcy’s law, µ = Fluid dynamic viscosity, um =
Volume average velocity of the fluid in the free volume, ∆P = Pressure drop in the flow
direction.
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(11) ∇p = µ∇2u (12) ∇ · u = 0 (13) ∇ · ∇p = 0

(14) um =

∫
Vf
|u|dV
Vf

(15) KD =
µLum

∆p

(16) pxx + pyy + pzz = 0 (17) px = µ(uxx + uyy + uzz)

(18) py = µ(vxx + vyy + vzz) (19) pz = µ(wxx + wyy + wzz)

2.1. Method Validation. The method was validated with a regular packed sphere
case in 3D (Fig. 4.2) whose permeability can be calculated with the Carman-Kozeny
model proposed in [6] (Eq. 20) and with the Rumpf and Gupte model proposed in [7]
(Eq. 21). The notation used is: KC = Permeability by Carman-Kozeny model, KR =
Permeability by Rumpf and Gupte model, d = Sphere diameter and ε = Medium porosity
(Volume free / Volume total). The relative error between the estimated permeability for
a regular pack of spheres in a channel with 10 spheres in direction Z (Sphz = 10) and the
Rumpf and Gupte model was 5.5% .

(20) KC =
ε3

180(1− ε)2 d
2

(21) KR =
ε5.5

5.6
d2

3. Results

The permeability of an aluminium foam was estimated for a domain of 24mm ×
24mm× 24mm (400× 400× 400 voxels). Figure 4.3 shows the velocity in Z direction on
plane YZ at x= 12mm. The calculated results for this case are um = 6.5093 ∗ 10−9m/s
and KD = 7.7967 ∗ 10−7m2. Our implementation allowed the computation of 256 ∗ 106

degrees of freedom in a single processor.

4. Conclusions and Future work

The permeability of a lattice of aluminium foam was calculated with the Darcy’s law,
using Finite Difference method to simulate a viscous flow through the porous medium. The
proposed method optimizes memory usage, therefore allowing to simulate large domains
in single processors. Future work includes the reduction in the computing time, the mod-
ification of flow parameters such as the input flux and the estimation of the permeability
of materials with different porosities.
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Figure 4.1. Domain
400 × 400 × 400 voxels
(24mm×24mm×24mm).

Figure 4.2. Regular
packed sphere case

Figure
4.3. Velocity
in Z direc-
tion on plane
YZ at x=
12mm.
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Digital Material Laboratory: Wave Propagation
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Abstract. This paper is concerned with numerical wave propagation effects
in highly porous media using digitized images of aluminum foam. Starting

point is a virtual material laboratory approach. The Aluminum foam mi-
crostructure is imaged by 3D X-ray tomography. Effective velocities for the

fluid-saturated media are derived by dynamic wave propagation simulations.

We apply a displacement-stress rotated staggered finite-difference grid tech-
nique to solve the elastodynamic wave equation. The used setup is similar to

laboratory ultrasound measurements and the computed results are in agree-

ment with our experimental data. Theoretical investigations allow to quantify
the influence of the interaction of foam and fluid during wave propagation. To-

gether with simulations using an artificial dense foam we are able to determine

the tortuosity of aluminum foam.

1. Introduction

Digital material methodology combines modern microscopic imaging with advanced
numerical simulations of the physical properties of materials. One goal is to comple-
ment physical laboratory investigations for a deeper understanding of relevant physical
processes. Large-scale numerical modeling of elastic wave propagation directly from the
microstructure of the porous material is integral to this technology.

In this paper, we numerically consider a highly porous, open-cell aluminium foam.
This special material is suitable for various applications in mechanics and engineering,
e. g. as light-weight construction elements, mechanical filters or chemical catalysers. Be-
sides its own applicability, open-cell aluminium foam has certain mechanical properties
(porosity, intrinsic permeability, tortuosity etc.) which are similar to various cellular ma-
terials such as trabecular bone or polyurethane foam. Thus, various results of the present
investigation can be transformed directly e. g. to the non-invasive diagnostics of cancellous
bone.

Open-cell aluminium foam can be fabricated using open-cell polymer foam as tem-
plate structure which is replaced by aluminium during a casting process. The resulting
aluminium skeleton is built up as an irregular polyhedral network accounting for high
porosity and effective hydraulic permeability, cf. Figure 5.1.

In order to investigate the complex wave propagation phenomena in this material,
we split the considerations in three parts. First, we explain our applied digital material
workflow. The specific workflow is put into context with other known approaches. Second,
we discuss and present a specific numerical setup to investigate highly porous media using
finite-difference wave simulations on a microscale. This section will be complemented by
a description on aspects of numerical accuracy. Third, we present and evaluate the results
for aluminium foam. These numerical results, which contain the physical processes on the
pore scale, allow us to understand observations on a much larger scale (i.e., the sample
scale).

2. Characterization of the material

For the present study, we analyze a 10 ppi AlSi7Mg foam (m.pore GmbH, Dresden,
Germany). For quasi-static loading conditions, this material exhibits a linear-elastic range
followed by a pronounced plateau stress in the stress-strain relation [1, 2]. Already for
moderate compressive stresses, single layers of the skeleton start to fail which leads to
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a subsequent collapse of the entire structure. However, this paper will focus on sound
and ultrasound propagation effects with small amplitudes and we restrict ourselves on
purely elastic material properties. The bulk properties of aluminium forming the porous
skeleton can be characterized with standard testing methods. The mechanical properties
of the ligaments (Young’s modulus, Poisson’s ratio, density) are known from quasi-static
experiments [3], cf. Table 5.1.

In Figure 5.2, a typical pore of the investigated foam is depicted. The morphological
properties discussed in this section are derived from the depicted single cell, which we
consider to be representative for all cells. Stochastical considerations are not included
in this part of the paper. Due to gravity effects during the processing of the polymer
template, an intrinsic anisotropy of the structure can be observed. The cells are elongated
in z direction by the anisotropy factor τ = 1.25. Note that, within this contribution, all
mechanical and numerical experiments are carried out with respect to this elongated z
direction. We measure the cell size to account 7.3 mm in z direction and 5.8 mm in x and
y direction, respectively. Furthermore, we find a typical ligament length of 2.0 mm. In
Figure 5.3, the cross sections of one ligament are depicted. Again, the depicted ligament
is considered to be representative for all ligaments within the specimen without further
stochastical considerations. One observes the ligament to take a bone shape with a cross
section which varies from a nearly triangular shape close to the ligament nodes to a more
and more circular shape with increasing distance from the nodes. At the central position
we observe a cross section area of A = 0.1912 mm2.

Altogether, we find the micromorphological properties to be close to the properties
of the foam evaluated in [3]. However, the cross sectional areas of the ligaments given by
Jang et al. (A = 0.296 mm2) seem to be considerably larger than for the microstructure
investigated in the present contribution. Thus, the effective material properties, in partic-
ular the effective Young’s modulus of the skeleton, can also be expected to be considerably
lower than that one found by [3].

Besides the material properties of the ligaments the effective properties of the skeleton
are to be investigated in mechanical experiments. As data basis, a set of 3 aluminium
foam samples (40 mm×40 mm×40 mm) has been investigated. The average porosity has
been measured by weighing as φ = 0.933. By uniaxial compression tests (Schenck-Trebel
universe testing device, 1 kN load cell) in direction of elongated cells (z direction) within
the linear-elastic (pre-buckling) regime have resulted in the Young’s modulus of the frame
E = 55.21 MPa (standard deviation 5.30 MPa) and a bulk modulus of K = 18.40 MPa
(standard deviation 1.77 MPa). In the experiments, a Poisson effect could not be observed,
i.e. we assume that Poisson’s ratio equals zero (ν = 0).

Let us compare our data first to the analytical estimations by [1], where Young’s
modulus of the frame is proposed to equal

(22) E = C1E
s (1− φ)2.

If the fitting parameter is, as usual in the related literature, assumed to C1 = 1, Gibson
and Ashby predict E = 277.83 MPa. By contrast, the experimental data by [3] determine
E = 595.47 MPa, i. e. one order of magnitude larger than our measurement. However, we
want to state that the results can not be expected to be identical. Whereas the analytic
estimation by Gibson and Ashby assumes a simplified cell geometry, the measurements of
Jang et al. are related to a skeleton with slightly different properties of the single cells.
In particular the diameter of the ligament cross sections, which has been observed to be
considerably larger in the frame investigated by Jang and al., influences considerably the
effective properties for local bending dominated deformations during overall compression
of the sample.

At that time, no further geometrical and hydro-mechanical properties such as the
effective hydraulic permeability have been determined yet in physical experiments.
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3. Digital material laboratory workflow

3D X-ray microtomographic imaging and subsequent numerical determination of ef-
fective material properties is nowadays applied by various groups [4, 5, 6, 7, 8], to name
only a few. Tomographic imaging can be routinely performed over three orders of magni-
tude in length scale with correspondingly high data fidelity. This capability, coupled with
the development of advanced computational algorithms for image interpretation, three-
dimensional visualization, and structural characterization and computation of physical
properties based on image data, allows for a numerical laboratory approach to study real
heterogeneous materials [5].

Several processing steps are important for such a virtual material laboratory. It
starts with a Computer Tomographic (CT) scan of a selected material sample. The phase
segmentation, which can be complicated for strongly heterogeneous materials, is required
to build an appropriate digital model [9]. This model can be used for flow simulations
[10, 11, 12]. They can provide realistic distributions of multiple fluids (e.g., patterns
of wetting and non-wetting fluids) and effective transport properties (e.g., permeability).
With exactly the same digital rock structure effective mechanical properties can be defined
[13, 14, 15]. This allows to consider relationships between transport and mechanical
properties, both depending on the microscopical properties.

At this point, it is also possible to calibrate the numerical results with laboratory
measurements determining macroscopical effective properties (or vice versa). While the
numerically determined permeability values fit the experimental data relatively well, there
is a mismatch for the mechanical properties in the case this technique is applied to low
porous rocks [16, 17, 18]. A systematic numerical overestimation of elastic moduli is re-
ported. A possible reason is the limited resolution of X-ray techniques; features below that
limit seem to play an important role (e.g., physics of grain contacts and tiny unresolved
voids or cracks). However, for the considered aluminium foam we do not expect such res-
olution issues. A next step is to go from static to dynamic wave propagation simulations
[19]. Although the macroscopic theory of wave propagation in porous fluid-saturated me-
dia has been established 50 years ago [20] there are still many unresolved questions about
the physical origin of attenuation, dispersion and high frequency wave propagation in such
media.

We concentrate on the Rotated Staggered Grid (RSG) Finite-Difference (FD) method
[21] for pore-scale simulation of wave propagation in digitized materials.

3.1. Digital aluminium Foam Sample. X-ray-based tomographic microscopy [22]
is suitable to provide data on the real pore microstructure of materials. To demonstrate
the proposed workflow we have selected the open-cell aluminium foam introduced earlier.
However, other samples can be used as well. In Figure 5.5 we illustrate our final digitized
model after several processing steps. These include discontinuity detection, thresholding
and region processing [23]. The digital aluminium foam contains 2 different phases: solid
aluminium phase (colored) and the porous space (transparent). For the numerical analysis,
we use a 3D-image of the aluminium foam discretized on a regular cartesian grid with 400
× 400 × 400 grid points. The pores as well as the aluminium are 100 % connected besides
some ligaments at the boundary.

3.2. Numerical Simulation of Wave Propagation in aluminium Foam. To
study wave propagation effects in the digitized aluminium foam sample (Figure 5.4) nu-
merically, we use a technique similar to the approach described in [24, 25]. The basic idea
is to study speeds of elastic waves through heterogeneous materials in the long wavelength
limit (pore size � wavelength) using the RSG FD algorithm [21]. In the case of fluid-
saturated highly porous media (porosity ≥ 80 %) it is necessary to modify the numerical
setup compared to the case for low porosity materials (porosity ≤ 35 %). This is described
below. A review of related methods is given in [14, 25].
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For the purpose of studying wave propagation effects of aluminium foam the digitized
material is embedded into a homogeneous region, Figure 5.5. In this study we assign to
this region the elastic properties of non-viscous water. Related to a classical experimental
setup, this is similar to through-transmission-experiments in an immersion technique. This
is in contrast to a homogeneous elastic stiff rock embedding applied in [24]. With this
modified embedding we reach a better coupling to the saturated aluminium foam and a
longer wavelength can be numerically inserted.

The full synthetic models are made up of 804 × 400 × 400 grid points. We perform
our experiments with periodic boundary conditions in the directions parallel to the wave
propagation process. A body force plane source at the top of the model is applied. A
plane P-wave generated in this way propagates through the numerical model as shown in
Figure 5.6. The broadband source in our experiments is always the first derivative of a
Gaussian wavelet. The dominant frequency is given among other modeling parameters in
Table 5.1. All computations are performed with second order spatial FD operators and
with a second order time update. With two planes of receivers at the top and at the bottom
of the model, it is possible to measure the time-delay of the peak amplitude of the mean
plane wave caused by the inhomogeneous structure of the digitized material sample. With
the time-delay (compared to a reference model) one can estimate the effective velocity of
compressional waves [24]. In general, two different kinds of P-waves can be expected for
porous media. Fist a fast compressional wave and second a so-called slow (Biot) wave,
cf. [20, 26].

Next, we analyze 2 distinct cases of fluid-saturated aluminium foam numerically.
At first, we compute aluminium foam which is saturated with a (non-viscous) fluid. In
the second case, we modify the properties of aluminium (Young’s/compression modulus,
density: factor 10 higher, each). Assuming Poiseuille flow we can calculate the viscous
skin depth as a function of frequency ω [27, 28]

(23) d =

√
2 ηfR

ω ρfR
,

where ρfR denotes the effective (true) density of the fluid and ηfR the effective dynamic
fluid viscosity.

If the pore radius r is larger than the viscous skin depth d we investigate the high-
frequency domain which is characterized by an additional inertia coupling mechanism
between the solid and the fluid phase. As in our microstructure-based analysis the pore
radius r is known, we are able to calculate this critical frequency (transission frequency)

(24) fcrit =
ηfR

ρfR π r2
< 1 Hz.

Even if we assume Johnson and Plona’s formula to estimate a travelling second wave,
known as the viscous frequency,

(25) fvisous =
ηfR

ρfR π r2 ξ
, ξ ≈ 0.01,

we expect to end up in the high-frequency range above 100 Hz.

3.3. Case 1: Water-saturated Aluminuim Foam. From a theoretical point of
view we consider here the high frequency range of Biot’s velocity relations because we
saturate our digitized image of aluminium foam with a non-viscous fluid (effective dynamic
fluid viscosity ηfR = 0). In the case of highly porous media, the most dominant wave
is that one which is travelling mainly through the fluid phase. The effective velocity is
vp,fast = 1487 m/s. This is slightly faster compared to the case of homogeneous water
(vp,water = 1480 m/s). A coherent P -wave travelling through the aluminim skeleton can
not be detected clearly. Only some incoherent low-amplitude wave arrivals are visible.
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Similar results are obtained in ultrasound through-transmission laboratory experi-
ments. At room temperature (Θ ≈ 20◦ C), we obtain a wave velocity in the water phase
of vp,water = 1498 m/s. If we perform an ultrasound experiment with the water-saturated
aluminium foam sample, we observe a slightly faster P -wave of vp,fast = 1512 m/s.

The numerical and experimental investigations can be compared to the high-frequency
limits of Biot’s equations [20, 26]. In Figure 5.7 we show the solution of the wave velocity
for the fast wave of Case 1. If the tortuosity is small, i.e. if α∞ ≈ 1, the wave velocity is
slightly larger vp,fast = 1507 m/s than the P -wave travelling through water (vp,water =
1483 m/s). For larger values of tortuosity, the wave velocity becomes smaller. Note that
we obtain a wave speed vp,fast = 1487 m/s in case of α∞ = 1.14.

3.4. Case 2: Water-saturated Artifical Stiff aluminium Foam. For this case,
we assign to the aluminium foam stiffness and density parameters which are ten times
higher then in Case 1. With this trick, from a numerical point of view very straightforward,
we have an artifical stiff aluminium foam. With this simulation we want to understand if
a signature of the elastic properties of the foam will influence the speed of the fast P-wave.
Furthermore, we are able to examine the amount of tortuosity from this setup. From our
numerical experiment we obtain in that case a fast P -wave velocity of vp,fast = 1409 m/s.
We therefore conclude that the measured wave speed for Case 1 is not a result of the fluid
properties only. Comparing the numerical investigations with the high-frequency limits
of Biot’s equations, we are able to determine the turtuosity parameter of our aluminium
foam. As turtuosity is the only physical effect which is responsible for a deviation of the
fast P-wave from the wave travelling through homogeneous water, we obtain for the foam
(vp,fast = 1409 m/s) the turtuosity α∞ = 1.14.

Evaluating Biot’s equation for Case 1 with α∞ = 1.14 predicts the theoretical P-wave
velocity of water-saturated aluminium foam of vp,fast = 1487 m/s which is exactly the
velocity we have observed in our numerical simulation.

4. Conclusions

In this paper we describe numerical, laboratory and theoretical estimations of effec-
tive acoustic properties of a highly porous media. The considered aluminum foam with a
porosity of 0.923 is imaged by 3D X-ray tomography. With the known material properties
of Aluminum and water we perform large-scale finite-difference wave propagation compu-
tations to estimate wave velocities of the fully saturated foam. Due to the high porosity
we have to apply a specific numerical setup where the saturated sample is inserted in
a homogeneous fluid environment. The laboratory and numerical measurements show
excellent agreement. A detailed theoretical analysis, supported with simulations using
artificial dense aluminum, gives three main results: First, our experiments took always
place in the high-frequency limit of the Biot-theory. Second, the interaction between foam
and fluid can not be neglected for estimating wave propagation effects. Third, we are able
to determine the tortuosity of the aluminum foam to equal α∞=1.14.
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Used modeling parameters

Young’s modulus of aluminium Es = 70.0 GPa

Poisson number of aluminium νs = 0.33

Effective (true) density of aluminium ρsR = 2700 kg/m3

Bulk modulus of pore fluid Kf = 1.48 GPa

Effective (true) density of pore fluid ρfR = 1000 kg/m3

Sample size (grid points) 400 × 400 × 400

Grid spacing ∆h = 60.331 µm

Sample thickness d = 400 × 60.331 µm = 0.0241 m

Porosity φ = 0.923 (from CT data)

Pore geometry see Figure 5.2

Dominant frequency of used wavelet fdom = 24 kHz

Dominant wavelength@1480m/s λdom = 0.061 m ≈ 2.6 d

Table 5.1. Modeling parameters and numerically estimated prop-
erties of the digitized aluminium sample shown in Figures 5.4, 5.5

Experimentally obtained data

Porosity φ = 0.933

Effective Young’s modulus (skeleton) E = 55.21 ± 5.30 MPa

Effective Poisson’s ratio (skeleton) ν = 0

P-wave velocity (homogeneous water, Θ ≈ 20◦) vp,water = 1498 m/s

P-wave velocity (water-saturated foam, Θ ≈ 20◦) vp,fast = 1512 m/s

Table 5.2. Experimental data of the aluminium foam samples.
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Figure 5.1. Irregular polyhedral network of the investigated
open-cell aluminium foam. Detail from a CT reconstruction.
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Figure 5.2. Exemplary cell of the aluminium foam with charac-
teristic dimensions a = 1.984 mm, b = 5.836 mm, c = 7.314 mm
and anisotropy factor τ = c/b = 1.25.
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Figure 5.3. Single ligament of the aluminium foam with cross sec-
tion areas A1 = 0.4616 mm2, A2 = 0.2081 mm2, A3 = 0.1913 mm2,
A4 = 0.2289 mm2 and A5 = 0.4674 mm2. The cross section varies
from a nearly triangular shape at the ligament nodes to a more
circular shape in the ligament center.
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Figure 5.4. Boxel-based detail of the digitized aluminium foam
model. The grid spacing accounts for ∆h = 60.331µm.
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Figure 5.5. Investigated unit cell, aluminium (colored) and water (transparent).
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Figure 5.6. P-wave passing through the fluid-filled open-cell foam.
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Conclusions

From the present compilation it was possible to describe 3 techniques to characterize
multi-phase materials at the microscale and therefore gain their effective properties at the
macroscale.

The homogenization of micromechanical properties allows the use of advanced numer-
ical methods like the FE2. From the proposed homogenization approach, it is possible to
upscale the micromechanical properties to the macroscale with the use of modified bound-
ary conditions at the microscale level. This modification leads to the minimal loading
conditions, which allows the use of micro volumina that are not necessarily periodic, and
therefore it is possible to evaluate true heterogenous materials.

The use of finite diffence methods to simulate the wave propagation in multi-phase
materials (e.g porous media) was used in two cases: (i) The numerical estimation of
effective material parameters such as tortuosity, p-wave modulus and s-wave modulus and
(ii) the benchmark of new theories of wave propagation in porous media.

It was shown that the finite difference approach closely matches the analytical results
found in the literature. A new theory of wave propagation was evaluated and found to be
accurate when compared to the numerical results given by the aforementioned method.

The finite difference method was also used for the solution of the stokes flow equation.
From this approach, effective material parameters like the permeability were able to be
caculated. The proposed method was tested against benchmark problems, and it was
found to be consistent with analytical results. Furthermore, the permeability value of an
aluminium foam was estimated.
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