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Abstract

This doctoral work contributes in several major aspects: (1) Extraction of geometrical and
topological information of 1- and 2-manifolds present in static and video imaging. This endeavor
includes several variants of Marching Cubes algorithms, including enhanced precision iso-surfaces
for non-negative scalar fields. (2) Hybrid visualization of scalar and vector fields, along with sim-
plex geometry and topology, underlying in medical, geo-sciences and entertainment data. (3)
Optimization of parallel visualization algorithms and usage of texture - optimized hardware as a
means of efficient scientific computation and visualization. (4) Definition of WEB ISO-standards
for interactive homogeneous visualization of simplex, scalar and vector field data in mobile devices
(smart cell phones, pads, tablets, etc.). (5) A novel technique for volume rendering in low-level
mobile devices, along with practical, feasible solutions for overcoming current architecture limita-
tions. This doctoral work has been thoroughly screened by the international academic community
in the scenario of a vigorous publication activity of the doctoral team, scrutinized by world top
experts in the relevant fields.
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Introduction

Visualization vs. Computation Geometry is a usual dichotomy in Computer Graphics. While
Visualization has as goal to satisfy perception expectations of a human, Computational Geome-
try aims to model real world objects in a mathematically faithful manner. Visualization has as a
prime requisite the speed of producing an acceptably realistic sequence of images. On the other
hand, Computational Geometry must produce a sound set of geometrical and topological objects,
which are subsequently used for Finite Element Analysis, Computer Aided Design and Manu-
facturing, Robotics, etc. Traditionally, Visualization is taken as a lesser discipline of the more
formal Computational Geometry one. However, such a view is inexact: there are many Compu-
tational Geometry techniques that have been inherited from entertainment and games. Examples
are the stereo lithography and layer based manufacturing processes, which are 3D extensions of
ray-casting techniques. In addition, the significant financial influx of the entertainment industry
has permitted research and development of side products for manufacturing, medical imaging,
meteorology, and many other serious applications. The present doctoral work aims to reduce the
gap between Visualization and Computational geometry, as follows.

Part I of this compendium presents a study of surface reconstruction algorithms which gener-
ate geometry from real data emerging from still images and video streams. This field is known
as Computer Vision and it provides a bridge between light models and scene geometry. The main
problem of Computer Vision is the complexity of both, the light and scene models, which makes
the problem computationally intractable. In this domain, this compendium treats the real-time
geometry recovery from still and time-dependent images in Face Reconstruction with Structured
Light, Real-Time depth map generation architecture for 3D videoconferencing, Evaluation of in-
terest point detectors for image information extraction and Tuning of Adaptive Weight Depth Map
Generation Algorithms.

Part II of this compendium addresses the obtainment of geometrical (0- , 1- and 2-simplexes)
information from (grid or random) samples of scalar fields, with the ulterior goal of rendering this
estimated geometry. This double step is called Indirect Volume Rendering in the present work. Ex-
tensions of the Marching Cubes algorithm are implemented to avoid overly detailed meshes and to
take into consideration non negative scalar fields. These two problems are ubiquitous in Computer
Vision. Publications of this domain are the Extending of Marching Cubes with Adaptive Methods
to obtain more accurate iso - surfaces and Marching Cubes in unsigned distance fields for Surface
Reconstruction from Unorganized Point Sets.

Part III of this compendium deals with Direct Volume Rendering from scalar fields. In this
area, the algorithms do not pass through geometry generation to achieve visualization. Our efforts
are directed to accelerate and popularize a usually otherwise expensive rendering in heterogeneous
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(including low-end) devices. The publications in this area relate to Interactive visualization of vol-
umetric data with WebGL in real-time, Volume Visual Attention Maps (VVAM) in Ray-Casting
Rendering and the contribution of ISO standards MEDX3DOM, MEDX3D and X3DOM.

Part IV of the compendium works in connecting Visualization and Computational Geometry. It
presents the implementation of Computational Geometry tasks on current optimized graphic Hard-
ware and Software. In particular, this effort efficiently renders vector and scalar fields (from geo
sciences) by using the texture optimized, parallel Graphics processors. Specifically, we present
work on Real-time volume rendering and Tractography visualization on the WEB, Visualization of
Flow Fields in the Web Platform, and Web Based Hybrid Volumetric Visualization of Urban GIS
data Integration of 4D Temperature and Wind Fields with second Level of Detail city (CityGML)
models.

Prof. Dr. Ing Oscar Ruiz
Dr. Ing Jorge Posada
Doctoral Student John Congote
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The Spanish project VISION develops new models for immersed and virtual communication. 3D video-

conference is one of the studied models, and a new kind of real-time depth-map algorithms were researched.

These are a methodology to reconstruct 3D surfaces from two or more cameras, several methodologies had

been proposed in the literature. However, researchers select the running parameters of the algorithms em-

pirically. This work presents a formal methodology to select the parameters for these algorithms optimizing

the results.
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Abstract

In depth map generation algorithms, parameters settings to yield an accurate disparity map estimation

are usually chosen empirically or based on unplanned experiments. Algorithms’ performance is measured

based on the distance of the algorithm results vs. the Ground Truth by Middlebury’s standards. This work

shows a systematic statistical approach including exploratory data analyses on over 14000 images and de-

signs of experiments using 31 depth maps to measure the relative influence of the parameters and to fine-tune

them based on the number of bad pixels. The implemented methodology improves the performance of adap-

tive weight based dense depth map algorithms. As a result, the algorithm improves from 16.78% to 14.48%

bad pixels using a classical exploratory data analysis of over 14000 existing images, while using designs of

computer experiments with 31 runs yielded an even better performance by lowering bad pixels from 16.78%

to 13%.

Keywords: Stereo Image Processing, Parameter Estimation, Depth Map, Statistical Design of Computer

Experiments

1. Introduction

Depth map calculation deals with estimation of multiple object depths on a scene. It is useful for appli-

cations like vehicle navigation, automatic surveillance, aerial cartography, passive 3D scanning, industrial

inspection, or 3D videoconferencing ([1]). These maps are constructed by generating, at each pixel, an

estimation of the distance from the camera to the object surface.

Disparity is commonly used to describe inverse depth in computer vision, and to measure the perceived

spatial shift of a feature observed from close camera viewpoints. Stereo correspondence techniques often

calculate a disparity function d (x, y) relating target and reference images, so that the (x, y) coordinates of

the disparity space match the pixel coordinates of the reference image. Stereo methods commonly use a

pair of images taken with a known camera geometry to generate a dense disparity map with estimates at

each pixel. This dense output is useful for applications requiring depth values even in difficult regions like

occlusions and textureless areas. The ambiguity of matching pixels in these zones requires complex and

expensive global image processing or statistical correlations using color and proximity measures in local

support windows. The steps generally taken to compute the depth maps may include: (i) matching cost

computation, (ii) cost or support aggregation, (iii) disparity computation or optimization, and (iv) disparity

refinement.

In this article, section 2 reviews the state-of-the-art. Section 3 describes our algorithm (filters, statistical

analyses and experimental set-up). Section 4 discusses the results. Section 5 concludes the article.

2. Literature Review

Depth-map generation algorithms and filters use several user-specified parameters to generate a depth

map from an image pair. The settings of these algorithms are heavily influenced by the evaluated data sets

([2]). Published works usually report the settings used for their specific case studies without describing the

procedure followed to fine-tune them ([1, 3, 4]), and some explicitly state the empirical nature of these values

([5]). The variation of the output as a function of several settings on selected parameters is briefly discussed

while not taking into account the effect of modifying them all simultaneously ([2, 3, 6]). Reference [7]

compares multiple stereo methods whose parameters are based on experiments. Only some parameters are

tuned, without explaining the choices made. In the present article, we improve upon this work. In [8, 9],

Depth Maps are generated from single images instead of image pairs.
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2.1. Literature Review Conclusions. Used approaches in determining the settings of depth map algo-

rithm parameters show all or some of the following shortcomings: (i) undocumented procedures for param-

eter setting, (ii) lack of planning when testing for the best settings, and (iii) failure to consider interactions

of changing all parameters simultaneously.

As a response to these disadvantages, this article presents a methodology to fine-tune user-specified

parameters on a depth map algorithm using a set of images from the adaptive weight implementation in [1].

Multiple settings are used and evaluated on all parameters to measure the contribution of each parameter to

the output variance. A quantitative evaluation uses main effects plots and variance on multi-variate linear

regression models to select the best combination of settings. Performance improves by setting new estimated

values of user-specified parameters, allowing the algorithm to give much more accurate results on a rectified

image pair.

Since it is not always feasible to have a large set of images available, a fractional factorial design

of computer experiment (DOCE) with only eight runs is used to find out which parameters have a major

influence on the images tested. To optimize the parameters and to have the lowest percentage of bad pixels

a central composite DOCE with 23 runs is used with the most influential parameters found in the fractional

factorial design. To the best of our knowledge the systematic and efficient application of DOCE in the field

of depth maps generation has not been done yet.

3. Methodology

3.1. Image Processing. In adaptive weight algorithms ([1, 3]), a window is moved over each pixel on

every image row, calculating a measurement based on the geometric proximity and color similarity of each

pixel in the moving window to the pixel on its center. Pixels are matched on each row based on their support

measurement with larger weights coming from similar pixel colors and closer pixels. The horizontal shift,

or disparity, is recorded as the depth value, with higher values reflecting greater shifts and closer proximity

to the camera.

The strength of grouping by color (fs (cp, cq)) for pixels p and q is defined as the Euclidean distance

between colors (Δcpq) by Equation (1). Similarly, grouping strength by distance (fp (gp, gq)) is defined

as the Euclidean distance between pixel image coordinates (Δgpq) as per Equation (2). γc and γp are

adjustable settings used to scale the measured color delta, represented as aw col in the study, and window

size represented as aw win respectively.

(1) fs (cp, cq) = exp

(
−Δcpq

γc

)

(2) fp (gp, gq) = exp

(
−Δgpq

γp

)

The matching cost between pixels shown in Equation (3) is measured by aggregating raw matching

costs, using the support weights defined by Equations (1) and (2), in support windows based on both the

reference and target images.

(3) E (p, p̄d) =

Σ
q∈Np,q̄d∈Np̄d

w (p, q)w (p̄d, q̄d) Σ
c∈{r,g,b}

|Ic (q)− Ic (q̄d)|
Σ

q∈Np,q̄d∈Np̄d

w (p, q)w (p̄d, q̄d)

where w (p, q) = fs (cp, cq) · fp (gp, gq), p̄d and q̄d are the target image pixels at disparity d corresponding

to pixels p and q in the reference image, Ic is the intensity on channels red (r), green (g), and blue (b), and

Np is the window centered at p and containing all q pixels. The size of this movable window N is a derived
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TABLE 1.1. Input and Output Variables of Depth Maps Generation Algorithms

INPUT VARIABLES

Adaptive Weight ([3]): Disparity estimation and pixel matching with γaws: similarity factor, and γawg :

proximity factor related to the WAW pixel size of the support window as user-adjustable parameters

Parameter Description Values
aw win Adaptive Weights Window Size [1 3 5 7]
aw col Adaptive Weights Color Factor [4 7 10 13 16 19]

Median: Smoothing and incorrect match removal with WM : pixel size of the median window as user-

adjustable parameter

Parameter Description Values
m win Median Window Size [N/A 3 5]

Cross-check ([8]): Validation of measurement per pixel with Δd: allowed disparity difference as adjustable

parameter

Parameter Description Values
cc disp Cross-Check Disparity Delta [N/A 0 1 2]

Bilateral ([9]): Intensity and proximity weighted smoothing with edge preservation with γbs: similarity

factor, and γbg : proximity factor related to the WB pixel size of the bilateral window as user-adjustable

parameters

Parameter Description Values
cb win Cross-Bilateral Window Size [N/A 1 3 5 7]
cb col Cross-Bilateral Color Factor [N/A 4 7 10 13 16 19]

OUTPUT VARIABLES

rms error all Root Mean Square (RMS) disparity error (all pixels)

rms error nonocc RMS disparity error (non-occluded pixels only)

rms error occ RMS disparity error (occluded pixels only)

rms error textured RMS disparity error (textured pixels only)

rms error textureless RMS disparity error (textureless pixels only)

rms error discont RMS disparity error (near depth discontinuities)

bad pixels all Fraction of bad points (all pixels)

bad pixels nonocc Fraction of bad points (non-occluded pixels only)

bad pixels occ Fraction of bad points (occluded pixels only)

bad pixels textured Fraction of bad points (textured pixels only)

bad pixels textureless Fraction of bad points (textureless pixels only)

bad pixels discont Fraction of bad points (near depth discontinuities)

parameter of (aw win). Increasing the window size reduces the chance of bad matches at the expense of

missing relevant scene features.

3.2. Post-Processing Filters. Algorithms based on correlations depend heavily on finding similar tex-

tures at corresponding points in both reference and target images. Bad matches happen more frequently in

textureless regions, occluded zones, and areas with high variation in disparity, such as discontinuities. The

winner-takes-it-all approach enforces uniqueness of matches only for the reference image so that points on

the target image are matched more than once, creating the need to check the disparity estimates and to fill

any gaps with information from neighboring pixels using post-processing filters like the ones discussed next

(Table 1.1).

7



Median Filter (m) is widely used in digital image processing to smooth signals and to remove incorrect

matches and holes by assigning neighboring disparities at the expense of edge preservation. The median

filter provides a mechanism for reducing image noise, while preserving edges more effectively than a linear

smoothing filter. It sorts the intensities of all q pixels on a window of size M and selects the median value as

the new intensity of the p central pixel. The size M of the window is another of the user-specified parameters.

Cross-check Filter (cc) performs twice the correlation by reversing the roles of the two images (reference

and target) and considering valid only those matches having similar depth measures at corresponding points

in both steps. The validity test is prone to fail in occluded areas where disparity estimates will be rejected.

The allowed difference in disparities between reference and target images is one more adjustable parameter.

Bilateral Filter (cb) is a non-iterative method of smoothing images while retaining edge detail. The intensity

value at each pixel in an image is replaced by a weighted average of intensity values from nearby pixels.

The weighting for each pixel q is determined by the spatial distance from the center pixel p, as well as its

relative difference in intensity, defined by Equation (4).

(4) Op =

∑
q∈W fs (q − p) gi (Iq − Ip)Iq∑
q∈W fs (q − p) gi (Iq − Ip)

Op is the output image, I the input image, W the weighting window, fs the spatial weighting function,

and gi the intensity weighting function. The size of the window W is yet another parameter specified by the

user.

3.3. Experimental Set-up. Our depth maps are calculated with an implementation developed for real

time videoconferencing ([1]). We use well-known rectified image sets: Cones from [7], Teddy and Venus

from [10], and Tsukuba head and lamp from the University of Tsukuba. Our dataset consists of 14688 depth

maps, 3672 for each data set, like the ones shown in Figure 1.1.

��� ��� ��� ���

FIGURE 1.1. Depth Map Comparison. Top: best initial, bottom: new settings. (a)
Cones, (b) Teddy, (c) Tsukuba, and (d) Venus data set.

Many recent stereo correspondence performance studies use the Middlebury Stereomatcher for their

quantitative comparisons ([2, 6, 11]). The evaluator code, sample scripts, and image data sets are available

from the Middlebury stereo vision site, providing a flexible and standard platform for easy evaluation.
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The online Middlebury Stereo Evaluation Table gives a visual indication of how well the methods

perform with the proportion of bad pixels metric (bad pixels) defined as the average of the propor-

tion of bad pixels in the whole image (bad pixels all), the proportion of bad pixels in non-occluded

regions (bad pixels nonocc), and the proportion of bad pixels in areas near depth discontinuities

(bad pixels discont) in all data sets. A bad pixel represents a pixel where the estimated disparity

is wrong with respect to a ground thruth disparity value.

3.4. Statistical Analyses. The user-specified input parameters and output accuracy data are statistically

analyzed to correlate them (see Table 1.1). Box plots give insights on the influence of settings on a given

response variable. Equation (5) relates ŷ (predicted response) with xi (input factors). β0 and βi are the

coefficients fit by multi-variable linear regression. Constant Variance and Null Mean of Residuals help to

validate the assumptions of the regression model. When those assumptions are not fulfilled, the model is

modified ([12]). The parameters are normalized to fit the range (−1, 1) at their values shown in Table 1.1.

(5) ŷ = β0 +

n∑
i=1

βixi + ε

Having a large data set (in this case 14688 images) to perform statistical analyses is not always feasible.

DOCE is applied here to obtain an equivalently good model for the depth map, by having a much smaller

number of runs. A 26−3 fractional factorial DOCE with just eight runs allows to establish which ones

of the parameters aw win, aw colo, m win, cc disp, cb win, and cb col are the most influential on the

bad pixels output by using a Daniel plot ([13]). The parameters whose distribution cannot be considered

as normal standard are statistically relevant in the fractional DOCE. Therefore, they are used to optimize the

depth map generation algorithm.

A surface response central composite DOCE with 23 runs was performed afterward with aw win,

aw colo, m win, and cb win as studied factors while keeping constant the remaining parameters (i.e.,

cc disp = 2 y cb col = 13) to yield a mathematical model of the form:

(6) ŷ = β0 +

k∑
i

βixi +

k∑
ii

βiix
2
i +

∑
i<j

βijxixj

where, as in equation 5, ŷ is the predicted variable, xi are the parameters, and β0, βi, βii and βij are

constants adjusted by minimum least squares regression. Data from DOCE was analysed with the software

for statistical computing R with Bayes Screening and Model Discrimination -BsMD- and Response Surface

Method -rsm- add-on packages ([14]).

4. Results and Discussion

4.1. Selection of Input Variables for Mathematical Model. Response variables for depth map gen-

eration algorithms are shown with their meaning in Table 1.1. Pearson multiple correlation coefficients

for the response variables shown in Table 1.2 evidences that bad pixels_all is strongly correlated

to the remaining response variables. This means that all response variables follow a similar trend as

bad pixels all and that modeling bad pixels all is sufficient to reach statistically sound results

for depth map generation algorithms optimization.

On the other hand, low Pearson coefficients for the input variables indicate that those variables are

independent, that there is no co-linearity among them and that each independent variable must be included

in the exploratory analysis.
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TABLE 1.2. Pearson correlation coefficient for the evaluator outputs over all data sets

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

(1)bad pixels 1.00 0.81 0.82 0.59 0.83 0.77 0.84 1.00 1.00 0.86 1.00 0.95 0.99

(2)rms error all 0.81 1.00 1.00 0.69 1.00 0.98 0.99 0.82 0.82 0.64 0.85 0.70 0.79

(3)rms error nonocc 0.82 1.00 1.00 0.71 1.00 0.98 0.99 0.83 0.82 0.67 0.85 0.71 0.80

(4)rms error occ 0.59 0.69 0.71 1.00 0.70 0.77 0.74 0.62 0.61 0.68 0.61 0.63 0.53

(5)rms error textured 0.83 1.00 1.00 0.70 1.00 0.98 0.99 0.83 0.83 0.67 0.86 0.72 0.81

(6)rms error textureless 0.77 0.98 0.98 0.77 0.98 1.00 0.98 0.78 0.78 0.64 0.80 0.68 0.73

(7)rms error discont 0.84 0.99 0.99 0.74 0.99 0.98 1.00 0.85 0.84 0.67 0.87 0.73 0.82

(8)bad pixels all 1.00 0.82 0.83 0.62 0.83 0.78 0.85 1.00 1.00 0.85 1.00 0.96 0.98

(9)bad pixels nonocc 1.00 0.82 0.82 0.61 0.83 0.78 0.84 1.00 1.00 0.85 1.00 0.96 0.98

(10)bad pixels occ 0.86 0.64 0.67 0.68 0.67 0.64 0.67 0.85 0.85 1.00 0.83 0.87 0.86

(11)bad pixels textured 1.00 0.85 0.85 0.61 0.86 0.80 0.87 1.00 1.00 0.83 1.00 0.93 0.99

(12)bad pixels textureless 0.95 0.70 0.71 0.63 0.72 0.68 0.73 0.96 0.96 0.87 0.93 1.00 0.93

(13)bad pixels discont 0.99 0.79 0.80 0.53 0.81 0.73 0.82 0.98 0.98 0.86 0.99 0.93 1.00

4.2. Exploratory Data Analysis. Box plots analyses of bad pixels presented in Figure 1.2 shows

lower output values from using filters, relaxed cross-check disparity delta values, large adaptive weight

window sizes, and large adaptive weight color factor values. The median window size, bilateral window

size, and bilateral window color values do not show a significant influence on the output at the studied

levels.

The influence of the parameters is also shown by the value of the slopes of the main effects plots in

Figure 1.3 and confirms the behavior found with the analysis of variance (ANOVA) of the multi-variate linear

regression model. The optimal settings from this analysis (i.e., aw win = 9, aw col = 22, m win = 5,

cc disp = 1, cb win = 3 and cb col = 4) to minimize bad pixels yields a result of 14.48%.

4.3. Multi-variate Linear Regression Model. The analysis of variance on a multi-variate linear re-

gression (MVLR) over all data sets using the most parsimonious model quantifies the parameters with the

most influence as shown in Table 1.3. The most significant input variable is cc disp, since it accounts for a

[33%-50%] of the variance in every case.

TABLE 1.3. Linear model ANOVA with the contribution to the sum of squared
errors (SSE) of bad pixels.

Data set cc disp aw win aw col cb win
Cones 34.35% 14.46% 17.47% –
Teddy 41.25% 13.75% 8.10% –
Tsukuba 50.25% – – 7.16%
Venus 47.35% 9.42% – 5.62%
All 47.01% 8.11% – –

Interactions and higher order terms are included on the multi-variate linear regression models to improve

the goodness of fit. Reducing the number of input images per dataset from 3456 to 1526 by excluding the

worst performing cases (cc disp = 0, aw col = 4 and aw col = 7), using a cubic model with interactions

yields a very good multiple correlation coefficient of R2 = 99.05%. However, for the model selected

the residuals distribution is not normal even after transforming the response variable and removing large

residuals values. Another constraint for the statistical analyses is that any outliers from the data set can not

be excluded. Nonetheless, improved algorithm performance settings are found using the model to obtain

lower bad pixels values comparable to the ones obtained through the exploratory data analysis (14.66%

vs. 14.48%).
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FIGURE 1.2. Box Plots for Input Variable Analysis

In summary, the most noticeable influence on the output variable comes from having a relaxed cross-

check filter, accounting for nearly half the response variance in all the study data sets. Window size is

the next most influential factor, followed by color factor, and finally window size on the bilateral filter.

Increasing the window size on the main algorithm yields better overall results at the expense of longer

running times and some foreground loss of sharpness, while the support weights on each pixel have the

chance of becoming more distinct and potentially reduce disparity mismatches. Increasing the color factor

on the main algorithm allows better results by reducing the color differences, and slightly compensating

minor variations in intensity from different viewpoints.

A small median smoothing filter window size is faster than a larger one, while still having a similar

accuracy. Low settings on both the window size and the color factor on the bilateral filter seem to work best

for a good trade-off between performance and accuracy.

FIGURE 1.3. Main Effects Plots of each factor level for all data sets. Steeper slopes
relate to bigger influence on the variance of the bad pixels output measurement.

The optimal settings in the original data set are presented in Table 1.4 along with the proposed settings.

Low settings comprise the depth maps with all their parameter settings at each of their minimum tested

values yielding 67.62% bad pixels. High settings relates to depth maps with all their parameter settings

at each of their maximum tested values yielding 19.84% bad pixels. Best initial are the most accurate

depth maps from the study data set yielding 16.78% bad pixels. Exploratory analysis corresponds to

the settings determined using the exploratory data analysis based on box plots and main effects plots yielding

14.48% bad pixels. MVLR optimization is the optimization of the classical data analysis based on

multi-variate linear regression model, nested models, and ANOVA yielding 14.66% bad pixels.

The exploratory analysis estimation and the MVLR optimization tend to converge at similar lower

bad pixels values using the same image data set. The best initial and improved depth map outputs

are shown in Figure 1.1. The best runs for fractional factorial and central composite DOCEs lower the value

of the bad pixels variable to 14.72% and 13.05%, respectively. Notice that to achieve these results only

31 depth maps are needed (DOCE) as opposed to analyzing over 14000 depth maps (Exploratory Analysis).
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TABLE 1.4. Model comparison. Average bad pixels values over all data sets
and their parameter settings.

Run Type bad pixels aw win aw col m win cc disp cb win cb col
Low Settings 67.62% 1 4 3 0 1 4

High Settings 19.84% 7 19 5 2 7 19

Best Initial 16.78% 7 19 5 1 3 4

Exploratory analysis 14.48% 9 22 5 1 3 4

MVLR optimization 14.66% 11 22 5 3 3 18

Best Treatment for

Fractional Factorial DOCE 14.72% 10 25 3 3 1 3

Best Treatment for CCD DOCE 13.05% 7 14 3 4 1 13

4.4. Depth-map optimization by design of computer experiments (DOCE). 26−3 Fractional Facto-
rial Design of Experiment.

The goal of this type of design of experiment is to screen the statistically most significant parameters.

Details on how to set up the runs are discussed in [12]. The design matrix describing all experimental runs

can be set so that the high and low levels for each parameter are chosen by assigning them the maximum

and minimum values allowed by the algorithm respectively. This was done for all of the parameters but

for m win (i.e., it was set at the levels 3 and 5), to avoid bias from the results and conclusions obtained

from the exploratory and multivariate regression analysis. The results for this DOCE range from 14.72%

and 72.17% bad pixels for all images which is quite promising because already with only eight runs a set of

parameters values that is very close to the optimum obtained by exploratory analysis of 14.48% bad pixels

and the multivariate linear regression analysis of 14.66% on the 14688 data points is delivered. The alias for

the parameters and Daniel plot showing the most relevant ones are shown in Figure 1.4.

FIGURE 1.4. Daniel Plot for determining the significance of input variables.

Daniel’s plot indicate that the most influential parameters are cc disp, aw win and cb win which devi-

ate the most from the normal distribution curve. These parameters and m win at levels 0, 3 and 5 are used

for the surface response methodology central composite design of experiment that follows.

Central Composite Design of Experiment.
To further optimize the depth maps generation algorithm a central composite design of experiment is

used. As with the fractional factorial design of experiment, the best run with 13.05% bad pixels is obtained
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FIGURE 1.5. Contour Plots for Central Composite DOCE.

amongst the 23 treatments which surpasses the results obtained thus far. The outputs from R using the rsm

package at the levels tested for each parameter are shown in Table 1.5.

As it can be seen the second order model depicted before in equation 6 fits very well the data as indicated

by the multiple correlation coefficient 0.9695. The most significant variables include aw win, aw col,
m win, cb win, aw win2, aw col2, and m win2. Nonetheless, the complete model with all coefficients

is used to draw the contour plots shown later. The rsm package also allows to detect stationary points. In

this case the stationary point detected is a saddle point because one of the eigen-values is negative while the

remaining ones are positive

Graphically the iso-lines for bad pixels all are seen in slices by looking at two parameters simul-

taneously for the analysis while keeping the remaining ones constant as shown in Figure 1.5. The graphs

allow to see that the stationary point does indicate a local minimum when analyzing for aw win and aw col.
With m win though, the graph indicates that a saddle is detected and that it is better to use values not in

the 1, 5 < m win < 3, 5 interval (which is physically imposible). For cb win the stationary point appar-

ently corresponds to a minimum. The settings for the stationary point closer to what rsm’s package detects

are aw size = 7, aw col = 14, m size = 3, cc disp = 2, cb size = 21 and cb col = 13 and this

yields 26% bad pixels all leading to conclude that the best treatment for the rsm yielding 13.05% of

bad pixels all is the local minimum optimum at the settings shown on Table 1.4.

5. Conclusions and Future Work

Previously published material in [15] showed how Exploratory Analysis, applied on over 14000 im-

ages, allowed the sub-optimal tuning of the parameters for Disparity Estimation algorithms, lowering the

percentage of bad pixels from from 16.78% (manual tuning) to 14.48 %. The present work shows how to

use DOCE to optimize the tuning, by running a dramatically smaller sample (31 experiments). The result

of applying DOCE allowed to reach 13.05% of bad pixels, without the need of Exploratory Analysis. Using

DOCE reduces the number of depth maps needed to carry out the study when a large image database is not

available. The DOCE methodology itself is independent of the particular algorithms used to generate the

disparity maps and it can be used whenever a systematic tunning of process parameters is required.

An improvement from 16.78% (manual tuning) to 13.05% in the bad pixels all variable might

seem negligible at first glance. However, such figures imply a jump of the optimized algorithm of almost 10
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TABLE 1.5. Summary of RSM Central Composite DOCE

Parameters Levels

aw win 1 4 7 10 13

aw colo 3 8.5 14 19.5 25

m win 0 3 5

cb win 1 4 7 10 13

cb colo 13

cc disp 2

Call: rsm(formula=bad pixels all ∼ SO(aw win,aw colo,m win,cb win))

Coefficients Estimate Std. Error t-value p > |t| Signif.

(Intercept) 1.634 2.49×10−1 6.561 0.00018 ***

aw win -5.25×10−1 8.03×10−2 -6.538 0.00018 ***

aw colo -1.9×10−1 4.78×10−2 -3.971 0.00411 **

m win 1.606 4.22×10−1 3.802 0.00522 **

cb win -3.96×10−2 8.03×10−2 -0.493 0.63495

aw win:aw colo 4.15×10−5 1.59×10−4 0.26 0.80128

aw win:m win -6.13×10−5 7.01×10−4 -0.087 0.93243

aw win:cb win 1.73×10−4 2.92×10−4 0.592 0.56990

aw colo:m win 3.01×10−4 3.82×10−4 0.788 0.45339

aw colo:cb win 5.33×10−4 1.59×10−4 3.347 0.01013 *

m win:cb win 5.56×10−4 7.01×10−4 0.793 0.45083

aw winˆ2 3.73×10−2 5.73×10−3 6.508 0.00019 ***

aw coloˆ2 6.44×10−3 1.70×10−3 3.78 0.00539 **

m winˆ2 -3.25×10−1 8.45×10−2 -3.846 0.00490 **

cb winˆ2 7.19×10−4 5.73×10−3 0.126 0.90314

Signifificance codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.04208 on 8 degrees of freedom

Multiple R-squared: 0.9695, Adjusted R-squared: 0.916

F-statistic: 18.13 on 14 and 8 DF, p-value: 0.0001577

Stationary point at response surface Eigen-values

aw win 6.987 λ1 0.0373

aw colo 13.788 λ2 0.0064

m win 2.495 λ3 0.0007

cb win 20.615 λ4 -0.3249

positions in the Middlebury Stereo Evaluation ranking. It must be noticed that many algorithms competing

in such a rank could benefit from the systematic tunning presented here.

A Surface Reconstruction application with DOCE uses the optimal tuning of disparity maps between two

stereoscopic images scanning a scene. The disparity between the images, in turn, allows the triangulation of

the 3D points on the surface of objects in the scene. This point cloud is an input to surface reconstruction

algorithms. This process is discussed in detail in [1]. DOCE applications in other domains are indeed

possible.
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Abstract

This article presents a methodology for reconstruction of 3D faces which is based on stereoscopic im-

ages of the scene using active and passive surface reconstruction. A sequence of Gray patterns is generated,

which are projected onto the scene and their projection recorded by a pair of stereo cameras. The images

are rectified to make coincident their epipolar planes and so to generate a stereo map of the scene. An

algorithm for stereo matching is applied, whose result is a bijective mapping between subsets of the pixels

of the images. A particular connected subset of the images (e.g. the face) is selected by a segmentation

algorithm. The stereo mapping is applied to such a subset and enables the triangulation of the two image

readings therefore rendering the (x, y, z) points of the face, which in turn allow the reconstruction of the

triangular mesh of the face. Since the surface might have holes, bilateral filters are applied to have the holes

filled. The algorithms are tested in real conditions and we evaluate their performance with virtual datasets.

Our results show a good reconstruction of the faces and an improvement of the results of passive systems.

Keywords: 3D reconstruction, structured light, Gray codes, depth-map.

1. Introduction

1.1. Mathematical Context. In general, surface reconstruction from optical samples requires a func-

tion G relating pixels in an image of the scene A × B (A,B ⊂ N) with points p ∈ R
3. This function,

G : A × B → R
3, is an injection since the image only records the visible part of the scene. G is not an

onto function, as there are many points p ∈ R3 for which there is no pixel (i, j) ∈ A× B in the image that

records them.

Once this geometry function G is known, it is relatively simple to build a triangular mesh of the portion

of the object visible in the image. Under a threshold of geometrical proximity, G(i, j), G(i + i, j), G(i +
1, j+1) may be considered the vertices of a triangular facet of the sought surface M . Moreover, the triangles

being natural neighbours to triangle t = [G(i, j), G(i+ i, j), G(i+ 1, j + 1)] are the ones involving pixels

(i, j + 1), (i+ 2, j + 1), (i, j − 1), again, under thresholds of geometrical proximity. Stitching the different

M triangular meshes originated in different views of the scene is known as zippering, and is not in the scope

of our article. Literature on the topic might be found in [16], [17] and [18].

The discussion in this article involves two images, which may be labelled, without losing generality, as

right and left, IR and IL. Simplifying the discussion, a color image is a mapping I : A × B → [0, 255]3.

For example, I(i, j) = (143, 23, 112) means that the color registered in the pixel (i, j) of I corresponds to

Red=143, Green=23 and Blue=112. A grey scale image has the form I(i, j) = (k, k, k) due to the fact that

in it the Red, Green and Blue graduations are identical (k ∈ [0, 255]).
Let SL and SR be the coordinate systems associated to images Left and Right, respectively. In the

general configuration of the set-up, SL and SR such that (1) the Z axis of the coordinate system is normal to

the capture plane of the image, and (2) the two cameras point to a common point p ∈ R
3. In this article we

assume that the images are rectified. This means, both of them have been rotated inside their own X − Y
plane (i.e. rotation around the Z axis of the image) in such a manner that the epipolar plane of the set-up

is seen as the plane y = Ee in both images. That means, the epipolar plane is seen as the same horizontal

line in both images. We call the rectified images IR and IL and their rectified and their rectified coordinate

systems SL and SR, respectively.

Let us consider a point p ∈ R
3 recorded in both images IR and IL. Because the previous assumptions

we have that GL(i, j) = p and GR(i, k) = p. This means, the point p appears in the same row i of pixels

in both images. The value |k − j| is an offset that only occurs in the same pixel row of both images. Since

we know that pixels (i, j) in image IL and (i, k) = p in image IR record the same point p ∈ R
3, the point p

can be recovered by a usual triangulation procedure.

1.2. Informal Context. Human face reconstruction is a common problem in computer vision and com-

puter graphics [19], where one possible objective is the generation and animation of a virtual model of it.
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FIGURE 2.1. Results of the algorithm with the virtual dataset. Smooth surfaces are
obtained with wider baselines.

The face is one of the most important identification regions of the human body, presenting commensurate

technical challenges [20]. A correct reconstruction of human faces is a precondition to both augmented

reality and face recognition.

3D surface reconstruction may be achieved by both passive and active methods. passive ones do not

change the environment in the process of reconstruction. Even thought passive methods obtain very good

results, their setups are very expensive because they required a very high resolution required for obtaining

reasonable results[21].

Active systems modify or adapt the environment during the capture process. Our active system uses the

projection of a light pattern (i.e structured light), which is widely used for face surface reconstruction. In

structured light systems any change on the setup requires new algorithms for face (surface) reconstruction.

The 3D surface reconstruction system implemented and informed in this article is part of a system

used for full body reconstruction with visual hull algorithm [22]. Our setup applied to a face-body model

produces a triangular mesh with high detail in the face region and low detail in the rest of the body. The

reason for this differential resolution is that, while for the face region one requires high frequency details

(e.g. texture of the skin), for the rest of the body such details are not required in our applications.

This article presents a system for face reconstruction which articulates non-proprietary hardware and

our own software to obtain geometrical information from two images (possibly originated in 3D video -

conference set ups). Our system also recovers the 3D geometry form the body region, although intentionally

using lower resolution for neighbourhoods other than the face.

This paper, Section 2 reviews previous works in face reconstruction. Section 3 presents the methodology

implemented, including generation of the light patterns, capture, segmentation and reconstruction. Section

4 discusses the hardware set-up for the experiment and its configuration. Section 5 presents the results of

the 3D surface reconstruction set-up and algorithms, and evaluates the reconstructed models against with

real data. Section 6 concludes the work and proposes the future actions in this domain.

2. Related work

Face reconstruction is a widely studied topic. [23] presents a tutorial on face reconstruction, describing

different problems and approaches from an artistic point of view, looking for a correct representation of

the face and its expressions in multi-media. [19] presents a survey of 3D face reconstruction methods,

classifying them in three different categories: single image, stereo images and videos.

passive systems are commonly used for face reconstruction. One of the advantages of these systems is

their non interaction with the environment, allowing to capture the geometry without interfering with other

systems. [24] uses a system with four calibrated cameras applying a multi - view algorithm.

A stochastic model is generated for the identification of the geometry, by minimizing a cost function.

[25] compares different stereo algorithms for face reconstruction, and proposes an correct geometrical con-

figuration of cameras to obtain accurate results. [26] presents a complex setup to a high resolution face

reconstruction system. The methodology is based on an iterative reconstruction of the face by incrementing
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the size of the image and the number of stereo pairs used in each step. [21] extends the approach proposed

in [26] by adding a post-processing step that modifies the geometry of the face by using a texture, assuming

that small dark regions of the face represent small hollows. This approach obtaining a more rich geometry.

Structured light for 3D reconstruction have been study for several years. The information obtained with

this kind of systems is already being used as ground truth data for the evaluation of passive reconstruc-

tion systems, such as stereo algorithms [27]. An extensive survey of structured light 3D reconstruction

approaches can be found in [28], where a classification of different coding techniques are presented and

evaluated. They identify the best coding approach for each one of the possible scenario configurations such

as static o moving scenarios or if the light conditions are controlled.

Real time capture of facial expressions is also an important feature in some systems. Several problems

have to be addressed to accomplish this objective. One of these problems is the difficulty of projecting

several patterns for a reconstruction in non static scenes where small moves generate artefacts in the re-

constructions, so other patterns have been employed which uses color models as [29] which allows a denser

codification of the pattern, also single frame reconstruction with 2D coding is possible[30]. Another problem

is hardware calibration to obtain several frames per second with a correct synchronization process between

the projector and the cameras. An accepted synchronization approach can be found in [31]. Finally, for a

correct pattern codification of time variant patterns, a motion compensation should be implemented. This

issue is especially critical for face reconstruction systems, where the person being reconstructed could move

in a involuntary way,during acquisition [32]

3. Methodology

Our algorithm of face reconstruction uses a set of stereo images captured at the same moment when

a pattern is projected into the face. The images are captured in a setup previously calibrated. We assume

that the object does not move between the different captures and the face is assumed to be a smooth surface

without hair or beard and without highlight reflections. The result is a mesh of triangles correctly located in

the space which represent the face region.

3.1. Stereo Calibration. Stereo calibration refers to the task of finding the relative pose between the

cameras of a stereo pair. The objective is to feed subsequent stereo rectification processes that align the

images such that the epipolar lines are horizontal and thus matching algorithms for 3D reconstruction can

be implemented as one-dimensional searches.

Typically, stereo calibration is carried out by means of finding a number of point-correspondences be-

tween the images of the pair and retrieving the fundamental matrix. Let x be the image of a 3D point in

the left image, and x′ the image of the same point in the right image. The fundamental matrix restricts the

position of x′ to the epipolar line associated to x, such that x′�Fx = 0. It has been shown [33], that the

knowledge of the fundamental matrix can be used to retrieve the projection matrices of the two cameras of

the pair, up to a projective ambiguity that can be solved with known restrictions of the camera.

Besides, images captured by real cameras show some tangential and radial distortion, which can be

corrected applying the following functions:

u = px + (u− px)(1 + k1r + k2r
2 + k3r

3 + . . .)

v = py + (v − py)(1 + k1r + k2r
2 + k3r

3 + . . .)

where r2 = (u − px)
2 + (v − py)

2 and k1, k2, k3, . . . are the coefficients of the Taylor expansion of an

arbitrary radial displacement function L(r).
Parameter identification of the camera stereo pair is extracted from the calibration information of the

full body reconstruction setup; which is further explained in [34]. For our purposes we select the camera

pair which are focused to the face region of the body, and we follow a 3D stereo reconstruction process with

them.
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Input: bin
Output: gray
return bin(bin/2)

Algorithm 1: Gray function to convert from binary to gray code

Input: gray
Output: bin, nPat
ish, ans, idiv ∈ N

ish← 1
ans← gray

while 1 do
idiv ← ans

ish

ans← ans⊕ idiv

if idiv ≤ 1 ∨ ish = 32 then
return ans

end
ish← ish× 2

end
Algorithm 2: Gray function to convert from Gray code to binary

3.2. Pattern Generation. Pattern generation refers to the task of creating of a set of synthetic binary

images to be projected as structured light in the scene. The objective is to identify the coordinates of the

projected pattern in the image scene and thus allowing a point matching algorithm to become independent

of the color in the captured scene.

The used patterns are represented as a matrix of boolean values. Let P be a matrix of M columns

and N rows thus P = {Pm,n ∈ {0, 1}} with 0 < m < M and 0 < n < N . Let C be a matrix of

the same dimensions of P thus C = {Cm,n ∈ (0,M) ⊆ N}. The restriction of the number of values in

the matrix C is the same that the number of columns allows the correct identification of the column in the

images. Let g be a function such as g : N → N which is bijective and transforms the numbers from binary

representation to Gray representation as described in algorithm 1, the inverse Gray function g−1 is described

in algorithm 2. The number of images to be projected depends of the number of columns of the matrix C,

so nPat = �log2M�
The nPat patterns represented by the matrix P are generated as follows:

P i
j,k = g(j) • 2i

where 0 < i < nPat represent the number of the pattern, j, k the coordinates in the matrix P . The pattern

structure can be depicted as a sequence of columns as can be visualized in the figure 2.2. The nature of

this kind of patterns is 1D because the calibration setup already give us an epipolar constrain of the images.

Therefore it is not necessary to use of 2D patterns in this case.

3.3. Pattern Recognition. Pattern recognition refers to the task of creating a pair of images which

maps the position of the projected patterns P in the set of stereo pair of images. The objective is the

identification of the projected pattern in the set of images, and calculate the value of the matrix C for each
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FIGURE 2.2. Gray code

pixel. This matrix allow the point matching algorithm to become unambiguous since each point in the maps

is labelled uniquely in each epipolar line.

Let s = L,R be matrices of W columns and H rows, thus L = {Lw,h ∈ (0, 255)} with 0 < w < W
and 0 < h < H . The matrices L and R represent the information of the stereo pair cameras in grayscale.

Let O = {Ow,h ∈ (0,M)} be the decode maps OL, OR. Let t : (0, 255)→ {0, 1} be a threshold function

which binarizes the images L and R. The threshold value could be calculated with the Otsu algorithm as

explained in [35] or by means of calculating the albedo of the images with the process described in [27]

where each pattern is projected two times, each one with the original version and their negative.

Os
m,n = g−1

(∨
i

t
(
sim,n

) · 2i
)

As shown in figure 2.3 the set of L and R images are binarized. Stereo reconstruction images are

combined, and a unique map OL and OR is processed. The maps should be rectified as shown in figure

2.4: this rectification process is possible because the camera information is already known as explained in

section 3.1.

3.4. Stereo Reconstruction. Stereo reconstruction task calculates the point correspondence between

two images. The objective is to calculate the 3D point coordinates of each pixel in the stereo images.

The previous steps of the algorithm such as the stereo calibration assures the epipolar constrain. Pattern

generation process gives the color independence of the images. Pattern recognition maps the set of images

into a map without ambiguities. For dense depth-map calculation we used a simple box filter algorithm,

based on sum of square differences SSD and a Winner Takes All WTA for pixel selection [36].

Let D be a matrix of W columns and H rows, thus D = {Dw,h ∈ N}. where D describes the pixel

difference between the same point in the image L and R. The identification of the correct disparity the

following function is applied.

Dm,n = minargl (SSD(OL,OR,m, n, l))

SSD(L,R,m, n, l) =
m+b∑

e=m−b

n+b∑
f=n−b

(Le,f −Re,f+l)
2
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(a) Left camera cap-

ture

(b) Right camera cap-

ture

(c) Left binarization (d) Right binarization

FIGURE 2.3. Stereo images captured from the cameras and their result of the
threshold function

(a) Left Gray decoded (b) Right Gray decode

FIGURE 2.4. O maps of the images, the Gray value in each pixel represents the
value of the C matrix in the stereo images

The figure 2.5 shows the result of the disparity maps DL and DR. The identification of wrong matched

points is carried out by applying process such as cross checking and joint bilateral filter. It is assumed

that the biggest connected region represents the face, then a max blob algorithm is applied to filter regions

outside the face. The mesh is generated by joining adjacent pixels in the image with their 3D coordinates.

The topology of the mesh is correct since the difference between the coordinates of adjacent pixels are small.
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(a) Left disparity (b) Right disparity

FIGURE 2.5. Stereo reconstruction of the face, the disparity images for the L and R

(a) Visual Hull (b) Structured Light

FIGURE 2.6. 3D face reconstruction

4. Setup configuration

As our algorithm is part of a bigger chain of process where a full body reconstruction process is done.

We tried to maintain the same setup for our algorithm, even we tried to use a passive system for face

reconstruction, the resolution obtained were insufficient to fulfil our needs. Then, we put a stereo camera

setup with a projector in the middle of the cameras. We identified that a small distance between the cameras

does not give enough information for recovering 3D positions accurately. In opposite, a wide baseline

between cameras generates occlusion regions, although projection information is used for hole filling in

post processing step.

The cameras used where tested with different resolutions, 1024x768, 1240x960 and 1600x1200. Finally,

the resolution was set to 1240x960. Also, the projector were defined at a resolution of 800x600 because an

increase of resolution generates very high frequency patterns, that are very difficult to identify accurately at

that resolution. We found that a minimum width of 4 pixels for each column of the pattern is necessary for

a correct identification.

Different kind of binary patterns were used. Gray pattern generates the best results. Using binary or

golay patterns shows in some aspects impossible to generate a workable results. In this way, we didn’t

consider these methods for the final version, and used only Gray codes. The binarization of the images

present one of the biggest problems of the structured light setup. We used the Otsu method but it exhibits

some problems, such as high sensitivity to areas of specular reflection. We finally choose the projection of

the negative images with good results and a threshold t with a value of the half of the range of the gray

image.
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FIGURE 2.7. Ground truth depth-map image of a face

FIGURE 2.8. Result from the different cameras in the virtual setup

5. Results

The evaluation of the algorithm presents several problems since the ground-truth information it is not

available. However, we implemented a virtual environment which resembles a real setup. This approach

allowed us to test our method and validate our results. We use Blender software for the generation of the

setup and the identification of the ground-truth data, as shown in figure 2.8. The ground-truth was defined

as a normalized depth-map with values between 0 and 255 using all the possible values in the image format

as shown in the figure 2.7.

Different camera positions were tested in our virtual setup, for the identification of the best baseline

distance. The results obtained with the algorithm are shown in the figure 2.8. and the position of the

cameras are shown in the figure 2.9.

The ground-truth information and the results of the algorithm show a difference in scale, but not in

position. We measured the difference of the results and the ground-truth with a image correlation algorithm.

The correlation gives us a value between the range of 0 and 1 where 0 is a bad results and 1 is the ground-

truth. The table 2.1 presents the correlation values obtained for different camera position, and the figure 2.1

shows the 3D mesh generated.

6. Conclusions and future work

We present a methodology for face reconstruction in a mixed environment of active-passive setup. Struc-

tured light shows a quality improvement against the results obtained with passive setups. Time multiplexing

codification has the problem of motion between the captured images generating a waving effect in the re-

constructions. Even robust algorithms of point matching for dense depth-maps were tested there were no
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FIGURE 2.9. Camera positions for virtual framework

Baseline distance Value

1 0.904372

2 0.938449

3 0.958089

4 0.974051
TABLE 2.1. Correlation Results

real improvement in the results. We will try with color or 2D patterns which only requires one exposition

that present a better approach for the reconstruction of faces since the motion problem is not present.
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• Iñigo Barandiaran2

• Javier Barandiaran2

• Tomas Montserrat3

• Julien Quelen3

• Christian Ferran3

• Pere J. Mindan4

• Olga Mur4

• Francesc Tarres4

• Oscar Ruiz1

1 CAD CAM CAE laboratory, Universidad EAFIT

Carrera 49 No 7 Sur - 50, Medellı́n, Colombia
2 Vicomtech Research Center

Donostia - San Sebastián, Spain
3 Telefonica Research

Barcelona, Spain
4 UPC GTAV Group

Barcelona, Spain

Context

Real-time depth map generation architecture for 3D videoconferencing. John Congote, Iñigo
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Abstract

In this paper we present a reliable depth estimation system which works in real-time with commodity

hardware. The system is specially intended for 3D visualization using autostereoscopic displays. The core of

this work is an implementation of a modified version of the adaptive support-weight algorithm that includes

highly optimized algorithms for GPU, allowing accurate and stable depth map generation. Our approach

overcomes typical problems of live depth estimation systems such as depth noise and flickering. Proposed

approach is integrated within the versatile GStreamer multimedia software platform. Accurate depth map

estimation together with real-time performance make proposed approach suitable for 3D videoconferencing.

Keywords: depth map, stereo vision, 3D videoconferencing, autostereoscopic displays, stereo matching

1. Introduction

FIGURE 3.1. Image-plus-depth input format

During the last years, videoconferencing has become a widely extended application. Companies and

individuals use this technology to reduce transportation costs and to improve communication between distant

parties. However, traditional 2D videoconferencing still fails to produce natural impressions to the remote

conferees. 3D videoconferencing is a logical evolution: a better feeling of presence is provided to conferees

by leading them to believe that they are closer to each others. Currently, the emerging 3D displays and the

increase of mainstream hardware computation capabilities make telepresence feasible.

Our contribution is a 3D videoconferencing approach which implements a visually accurate stereo al-

gorithm running over GPU. The outline of the paper is as follows: In section 2, a short review of different

approaches and techniques related with 3D videoconferencing is presented. Methods and algorithms im-

plemented in our approach are shown in 3. Then, an architecture where proposed approach is validated is

described in section 4. Finally, we detail some conclusions and suggestions for future work in section 5.

2. Related Work

Many important topics related to videoconferencing must be addressed to enhance user experience. One

of such issue is eye-contact or gaze. Research [37, 38] has shown that gaze is one of the most important non-

verbal cues, responsible for giving feedback or expressing feelings and attitudes. Another problem related

with videoconference is the lack of perception of depth wrt the analyzed scenario. In a 2D videoconference,

traditional displays are used. The absence of depth information in this type of displays, in addition to the

problem of gaze results in an unnatural experience.

An accurate and efficient depth map estimation mechanism is needed for both problems to be addressed.

For example, depth information is used by autostereoscopic displays to render multiple novel views. These

generated views can be used to tackle the problem of eye-contact, by generating views that agreed with the
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user eye-sight, as in [39]. Moreover, autoestereoscopic displays typically use depth maps information to

generate 3D perception, [40] (See Figure 3.2).

In [36] Scharstein presents a set of stereo matching methodologies used to calculate dense disparity

maps from stereo images, which can be classified in local, global and semi-global algorithms. The depth

calculation process is done by identifying correspondences between pixels in two images. Given the location

of corresponding pixels in the images, their 3D coordinates can be retrieved by means of triangulation.

Applications like 3D Videoconferencing imposes strong time restrictions, thus only real-time methods are

suitable.

FIGURE 3.2. 2D+Depth image result of our system.

3. Methodology

In this section we describe in detail the methods implemented in our architecture, which allow us to

achieve accurate depth information in real-time.

We identify in the process of 3D videoconference 3 different process which are important to obtain an

effective 3d conference experience. Image rectification step is used to correct and setup the image inputs

for further processing, the correct and fast implementation of this step allows an smooth test base for the

testing of algorithms of depth map calculation. Next depth map calculation as previously mentioned is a

widely studied topic, but a carefully selection of a good algorithm which could be implemented in real time

which good quality results is necessary. We use the adaptive weight algorithm as starting point for our

implementation. Finally the post processing steps are very important to obtain real time and good quality

images, because this process could be implemented in a fast way and could save time of processing of the

previous step.

3.1. Image Rectification. Depth map calculations rely on the estimation of relative pixel positions

between two images. The position of the cameras and lens distortions make necessary some previous cor-

rections. These corrections are carried out before depth map calculation takes place in order to improve the

process efficiency. Moreover, it is also necessary to align the horizontal lines of both images in order to

reduce the search process of the pixels to a 1D problem. The tools needed to carry out this transformation

are the camera calibration parameters, which should have been calculated previously. Results of this process

can be observed in Figure 3.3.

Although camera calibration can be carried out just once and off-line, rectification should be done

online and for each pair of acquired images. As we work with large images, we need a fast and effective

algorithm. The solution adopted in our approach is the use of GPU algorithms implemented in CUDA. Our
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FIGURE 3.3. Top: Left and right captured images. Bottom: Undistorted and recti-
fied images, yellow frame denotes cropping area.

implementation processes the pixels in parallel, taking advantage of the multi-core architecture of the GPU.

Execution of our algorithms on the GPU outperforms General Purpose Processors (GPP) based solutions

and obtains real-time performance at a reasonable cost. Rectified images have a resolution of 960 × 540
pixels as required by our 3D display. After undistortion and rectification processes, some points of the image

may lay outside the working frame, producing some empty parts (see Figure 3.3). In order to eliminate these

unwanted regions, input images are captured at higher resolution (1200×600) and cropped after rectification

process takes place as seen in Figure 3.3.

3.2. Adaptive support-weight. Adaptive support-weight AW is a local algorithm to calculate dense

stereo disparity maps, presented by Yoon[41]. The algorithm is a window based method for correspondence

search using varying support weights. The support weights of the pixels in a given support window are

based on a combination of color similarity and geometric proximity to reduce ambiguity. AW gives a cost

to a pair of pixels depending on their support windows, representing how related the pixels are. Afterwards,

each pixel is correlated to the pixel that has the associated minimal cost in the matching set.

A dense disparity map can be represented as an image D of the same size of the input rectified images

L, R. Where Di,j represents the displacement of the coordinates of a given pixel from L to R, consequently

L[i+D[i,j],j] ≈ R[i,j]. Image pixels p, q are commonly represented as an RGB 3-tuple then pr is the Red
component of the pixel p as pg and pb the Green and Blue components, hence the color distance between

two pixel is defined as (eq: 7, 8) following the L1 and L2 distance norms.

(7) fc(p, q) = |pr − qr|+|pg − qg|+|pb − qb|

(8) gc(p, q) =

√
(pr − qr)

2 + (pg − qg)
2 + (pb − qb)

2

Equation 9 shows the m image (left or right) weight contribution of the pixel in the position (k, l) in a

window centered at coordinates (i, j). The γc and γs values are empirical factors that modify the color and

space similarity respectively. In our implementation, we set these factors to γc = 20 and γs = 1. The γc
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factor depends on how close the values in the RGB color space are, while γs modifies the space similarity,

which is closely related to the support window size.

(9) fw(m, i, j, k, l) = e

(
−
(

gc(mi,j ,mk,l)
γc

+

√
(i−k)2+(j−l)2

γs

))

Calculation of the disparity map D for each pixel Di,j in the reference image L is made by the Winner
Takes All method as show in (eq: 12), where d represents the range of values where the correlation of pixels

will be tested. This value depends on the camera parameters and the depth search range defined, furthermore

the parameter w presented in (eq: 11) indicates the size of the square support window for pixel correlation.

Finally SW (eq: 10) is a component used in (eq: 11) representing Support Weights used to influence the

difference of the color and position in the window (eq:7). Notice that the cost support weight for a given

pixel in L depends on the matching candidate, so normalization is required in (eq: 11).

(10) SW := fw(L, i, j, s, t)fw(R, i+ d, j, s+ d, t)

(11) faw(L,R, i, j, d) =

i+w∑
s=i−w

j+w∑
t=j−w

SWfc(Ls,t, Rs+d,t)

i+w∑
s=i−w

j+w∑
t=j−w

SW

(12) fd(L,R, i, j) = argmin
d∈Z

faw(L,R, i, j, d)

Although AW is a local stereo matching algorithm, real-time performance is difficult to achieve with

CPU implementations. However, the local nature of the algorithm allows an easy implementation in parallel

architectures such as GPUs, achieving real time performance. We use a support window of 1 × 15 in size

and only for the reference image, a maximum disparity of 30 pixels and an image size of 480× 270 pixels.

With this specifications we can calculate the depth map for both images in 8ms. Note that the depthmap is

processed at a quarter of the resolution of rectified images. Post-processed depth map is upscaled afterwards

to match the reference image resolution. Mentioned modifications to the original AW algorithm caused

a loss of quality in the resulting depth map. However, our proposed post-processing technique is able to

correct most of the wrong matches introduced by the algorithm simplification while still keeping real-time

performance. Cross-checking is a common process for identifying unreliable pixels in the calculated depth

maps. Matched pixels in left and right disparity maps are tested for consistency, where inconsistent matches

are discarded. These pixels are later approximated by an anisotropic diffusion post-processing step. Even

though regions with no texture cannot be correctly calculated, it is assumed that these regions are part of

the background which is removed from our depth map. This background segmentation process is obtained

using the statistical method described in [42], also implemented on GPU. The integration of a segmentation

process allows us to obtain a more accurate depth map even on untextured regions, avoiding uncomfortable

flickering effects during the conference.

3.3. Post-Processing. As mentioned before, cross-checking is used in our system to detect wrong cor-

respondences by building a mask with them. This mask also includes information regarding foreground

segmentation. The main objective of post-processing is to assign correct disparity values to all unreliable

pixels detected in the previous step. Moreover, the disparity map is improved by removing the quantization

effect introduced by the lack of sub-pixel accuracy during disparity estimation.

Mismatches basically occur in occluded regions as well as in homogeneous texture areas. A common

hole-filling criterion is that occlusions must not be interpolated from the occluder, but only from the occluded
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to avoid incorrect smoothing of discontinuities. Thus, an extrapolation of the background into occluded

regions is necessary. In contrast, holes generated due to mismatches can be smoothly interpolated from all

neighbouring pixels. If we assume that discontinuities in both disparity and color images are co-aligned, the

previous interpolation criterion can be achieved by relying only on reference image color cues.

We use a variation of the classic Perona-Malik anisotropic filter [43] in order to propagate correct dis-

parity values through the image. Anisotropic diffusion is a non-linear smoothing filter. It produces a Gauss-

ian smoothed image, which is the solution to the heat equation, with a variable conductance term to limit

smoothing at edges. For this particular implementation, the conductance term is a function of the reference

image gradient magnitude at each pixel and for each color channel. As we can partially rely on foreground

segmentation information, unreliable pixels are initialized to their known background disparity value. An-

other difference between standard Perona Malik discrete filter implementation and our approach is that in

initial iterations we only modify values of unreliable pixels, avoiding them to influence on correctly assigned

disparities. These initial iterations are intended to fill the disparity map holes. Subsequently, after conver-

gence of discarded pixel values, we apply a reduced number of additional diffusion iterations modifying

all pixels (see figure 3.4). This second diffusion step is intended to remove the quantization effect of the

disparity map. This post-processing algorithm also allows an efficient and easy implementation in GPU

architectures.

FIGURE 3.4. Post-Processing (from left to right and up to down): Reference Image. Initial Disparity

Map (Black pixels are wrong pixels). Final Disparity Map. Ground truth
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4. Results

Current 3D displays are capable of providing multiple stereoscopic views in order to support head

motion parallax. Hence, the user is able to perceive depth when uses these types of displays. This 3D

perception can reinforce the feeling of volume and therefore the feeling of “tele-presence”. In our prototype,

we are using a 42” Wow display designed by Philips. This display can generate several views of the same

scene, by using a 3D data interface in the form of image-plus-depth with a resolution of 960 × 540. This

input format was standardized by MPEG and is currently implemented in many commercial 3D displays.

This format proposes the use of images that are double the size of the native resolution, where the reference

frame is disposed in one side of this image, and the corresponding disparity or depth map on the other, as

depicted in figure 3.2. In order to be able to estimate a disparity map, two or more images of the same

scene are needed. In our prototype we use two Pixelink digital cameras for stereo image acquisition. These

cameras capture images at a resolution of 1200× 600 pixels and with 25 fps framerate. We use RAW Bayer

native image format, and compute Bayer demosaicing and white balance, inside the GStreamer pipeline.

By using RAW images the required bandwidth is reduced, optimizing memory usage and allowing better

off-camera Bayer demosaicing.

4.1. Integration Pipeline. Our streaming architecture is based on GStreamer software[44]. This li-

brary is an open source framework for creating streaming media applications. The design of the framework

is based on modularity, where any process in the streaming pipeline can be encapsulated in an independent

module or plug-in. This modularity provides flexibility and allows the user to easily test different config-

urations and approaches. Moreover, threading and buffering architectures are controlled. Our architecture

is divided in two separated parts. One of these parts works as the content generator or server, where the

videoconference content, i.e, 3D images for visualization, is generated. The second part of the architecture

represents the client side, where these images are received and displayed to the conferees. In the following

section, we describe in more detail both parts of the proposed architecture.

4.1.1. Server Side. This part of the architecture runs as a content generator. It manages the digital cam-

eras that capture the scene, the depth estimation and encoding modules. Cameras are externally triggered

by using specific hardware, in order to have a perfectly synchronized image acquisition. This synchroniza-

tion significantly increases the accuracy of disparity estimation. Figure 3.5 shows the complete processing

pipeline integrated into the server side of the architecture.

The core of the pipeline is the plugin called Depthestplugin. This plugin receives two video streams

from two synchronized threads, and executes image rectification and depth map estimation procedures. The

output of the plugin is composed of a reference image and the corresponding disparity map. These streams

are queued in two buffers before encoding them by using the h.263 video compression format. Finally,

encoded video streams are rtp-packetized and sent through udp socket.

4.1.2. Client Side. This part of the architecture runs as a content receiver. It represents the end point of

the entire pipeline, where the output device, i.e. the autostereoscopic display, is active. As shown in Figure

3.6, the first part of the processing pipeline consists of the network and video decoding of both streams.

Before the video content can be visualized on the display, it must be processed by the SideBySide image

plug-in. This plug-in adapts the content by merging the reference image and disparity map with a resolution

of 960 × 540 into one single 1080p video stream compliant with the format supported by the Philips Wow

display, (See Figure 3.2).

The system is specially designed to show stereo images in two different displays. On the one hand, a

stereoscopic monitor which only needs a pair of undistorted and rectified images. On the other hand, an
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autostereoscopic monitor which needs a depth map and a texture image corresponding to this depth map.

The approach specified in this paper provide advantages for both solutions.

For the first case, the stereoscopic display, the system takes benefit from the undistort and rectifying

CUDA implementation, increasing the capability of the system and also providing higher frame-rates. By

increasing the frame-rate, the ’tele-presence’ experience of the viewer is enhanced as a constant video flow

is displayed in the monitors.

In the second case, the autostereoscopic display, apart from the advantages of the high performance of

the rectification and undistort GPU based algorithms, it also increases the viewer experience as the depth

maps obtained have higher quality. This gain of quality is possible thanks to the powerful algorithms ran

over GPU as the use of this kind of algorithms with a standard CPU is not an option for real-time depth

estimation. As in the previous case, the increase of presence sense and image quality really increases with

the use of the described method.

5. Conclusions and Future Work

We have proposed an approach that achieves real-time performance in a 3D videoconferencing appli-

cation using autosterescopic displays. We have implemented and optimized several algorithms on GPU

trying to find the best compromise between quality of visualization and computational cost. Our approach

runs at 25 fps at SD image resolution on an usual PC, with commercial hardware (dual core Intel processor

with a NVIDIA GTX 295 GPU), using a multimedia architecture based on GStreamer. We achieve this

performance by implementing an optimization of the Adaptive support-weight algorithm. This optimization

is able to calculate disparity maps accurately in a short time, with low computational consumption. This

efficiency allows us to add some other optimizations such as a background subtraction, cross-check con-

sistency testing or error correction mechanisms such as gap-filling with Anisotropic diffusion. All of these
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developments have been successfully implemented in GPU using CUDA in order to obtain the highest levels

of parallelization and performance possible.

We are currently integrating a Time of Flight (ToF) camera into our architecture. In the future we plan to

use this type of camera in combination with digital camera pairs. This combination will result in an hybrid

approach that could overcome the problems of each technology when working independently. With this

approach we hope to obtain better disparity maps at higher resolutions.
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The generation of robust point detector algorithms is the base for several methodologies in computer

vision like camera calibration, object tracking, image comparison. Vicomtech Research Center, the depart-

ment of Computer Science and Artificial Intelligence of the Basque Country University and the laboratory

of CAD/CAM/CAE of EAFIT University participate in the generation of a survey study of Point Detector

Algorithms for implementation of the best result in projects related to computer graphics.
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Abstract

Interest points extraction and matching is a common task in many computer vision based application,

which are used in different domains, such as 3D reconstruction, object recognition, or tracking. We present

an evaluation of current state of the art about interest point extraction algorithms to measure several parame-

ters, such as detection quality, invariance to rotation and scale transformation, and computational efficiency.

Keywords :Computer vision, Interest points, point matching

1. Introduction

Image analysis or computer vision based applications deal with information extraction from the images

acquired by a camera sensor. This information is usually discretized in form of relevant pixels or set of pixels

(regions) having distinctiveness or discriminative characteristics, i.e, retain information about the structures

in the scene being captured, compared with surrounding or neighbouring pixels or regions. Different terms

in the literature referring to the same structures can be found, such as feature points, interest points, key

points, or corner points. There has been progress in the last decade within the area of feature point extrac-

tion algorithms with image and video descriptors that led to substantial improvements in many computer

vision areas including registration, 3D reconstruction, motion estimation, image registering, matching,and

retrieval, or object and actions recognition. These types of techniques are usually found in the first stages

of many computer vision algorithms, and can therefore be considered as low level image information ex-

tractors or descriptors. This information is then delivered to other processes in a bottom-up manner, until a

semantic knowledge or meaning is recovered. In this article we show the results of an evaluation to measure

the behaviour of several points detection algorithms, representative of the current state of the art.

The paper is structured as follows: In section 2 an overview of point detectors followed by a brief

description of every detection algorithms evaluated in this study are given. In section 2.2, a description of

the methods, measures and data sets used during the evaluation are shown. In section 3 details about the

results obtained during the evaluation are given. Finally, in section 4 some general conclusions are made

and future work perspectives are proposed.

2. Methods

2.1. Evaluation Parameters. A review about feature or interest point detectors can be found in [45].

The authors suggest that there are several parameters of a point detector that can be measured, and point out

which are the most relevants that a point extractor should address:

Repeatability: : Ideally, the same points should be extracted by a detector even if a transformation to the

image is applied.

Distinctiveness: : Detected features should be different enough in order to be identified or matched, and

the same feature should not vary in images of the same scene.

Quantity: : This factor measures the number of interest points a detector is able to extract from an image.

Accuracy: : Measures the difference in spatial (image) localization of the same point. This value should be

as minimal as possible, and ideally having zero or close to zero variance.

Efficiency: : Measures how fast an interest point detector is able to process an image.

It’s worth noticing that all these factors are somehow application dependent, i.e, every computer vision

application or image analysis has different needs. While for applications such as real-time simultaneous lo-

cation and mapping (SLAM) mainly the quantity, and efficiency factors are critical, for an application such as

off-line object recognition, repeatability and distinctiveness are more relevant. In any case, aforementioned

factors can be reduced to two: quality and efficiency. Quality represents the feasibility of a detector to

delegate accurate, precise, dense and robust set of points to the next process in the image analysis pipeline,

while efficiency represents how fast and with which computation resources is able to carry out that task.

Depending on these factors, the following processes in the pipeline should or should not apply different
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mechanisms, filters, estimators, or heuristics in order for the application to succeed, running efficiently and

obtaining accurate results. Interest points have to be ideally invariant or robust to any image transformations

in order to be identified or matched from one image to another. Image transformations can be categorized

in two different classes: geometric and radiometric transformations. Geometric transformations are those

that modify the shape or the location of a feature in the image space, while radiometric transformations

influence the feature appearance, i.e, the intensity or color value of the pixels. Changes in lighting condi-

tions or camera acquisition parameters, i.e, sensor sensibility, exposure time or lens aperture, directly affect

radiometric appearance of image by changing their luminance and/or chrominance information. Several

geometric transformations are involved in the process of image formation, starting from the most general

ones such as projectivities or homographies, to the most specific ones such as euclidean transformations,

rotations, translations and scaling. In our study we focus only in geometric transformations excepting those

related to optics such as lens distortions are out of the scope of this study.

2.2. Point Detectors. We have included in our evaluation many of the point detectors that currently

represent the state of the art and also some older approaches that today are still broadly used by the computer

vision community. In the following section, a brief description of every point detector included in the

evaluation is given.

2.2.1. HARRIS. We have included Harris corner detector in the evaluation because it’s one of the most

used feature extractors by computer vision community since its publication [46]. Harris’ approach can be

seen as an evolution of one of the earliest corner detectors published, such as the Moravec’s detector [47].

Harris’ approach improves Moravec’s detector by taking into consideration different orientations around

the candidate pixel, instead of shifting patches by computing the second moment matrix, also called the

auto-correlation matrix. Harris cornerness measure is still used by many point extractor approaches as a

mechanism of non-maxima suppression. In this evaluation we have used a pyramidal version of Harris

proposed in [48].

2.2.2. GFTT. (GoodFeatureToTrack) detector [49] is, like Harris detector, one of the most common

feature detectors used by computer vision community. This approach was proposed as interest point detector

for to be used in camera tracking algorithms, based on previous work of [50]. This approach proposes to

different measures named texturedness and dissimilarity for solving the feature matching in order to obtain

accurate tracking results, by estimating both a pure translations and affine motion respectively. Texturedness

measure is used to extract good candidate points to be tracked, by examining the minimum eigenvalues of

auto-correlation matrix.

2.2.3. SIFT. (Scale Invariant Feature Transformation) descriptor [51] is one of the most successful

approaches for feature or interest point extractor and description. Detection is based on the convolution of

images with difference of Gaussians (DoG) operator η = (gσ − gσ′). Images are arranged in a pyramidal

representation, where every level(octave) of the pyramid represents a down sampled and smoothed version

of the image in previous level. Smoothed images are obtained by convolving with a Gaussian operator with

different values of scale σ. This arrange of images allows SIFT to work in a scale-space representation [52]

or framework. SIFT detector and respective descriptor is intended to be invariant to either rotation and scale

transformation, but not to perspective transformation, such as affine transformation.

2.2.4. SURF. (Speed Up Robust Feature) extractor follows an similar approach to SIFT, but addressing

the problem of reducing computation cost. SURF searches for local maxima of the Hessian determinant

in the scale-space. SURF calculates Hessian determinant efficiently by using a discrete approximation

of the Gaussian second order partial derivatives, in conjunction with integral images representation [53].

Differently from SIFT approach, the scale is not obtained by decreasing the image size after smoothing, but

by increasing the discrete kernels size.

2.2.5. FAST. detector [54] uses a different approach than SIFT or SURF detectors. This approach

uses supervised classification to label pixels as their values or pertinence to two classes, interest point or

background, by examining the values of surrounding pixels around a candidate one in a circular manner.
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A feature is detected at pixel p if the intensities of at least n contiguous pixel of a surrounding circle of j
pixels are all below or above the intensity of p by some threshold t. FAST approach does not use scale-space

representation, and therefore is not invariant to scale nor rotation transformation.

2.2.6. MSER. (Maximally stable extremal regions)[55] is an approach based on the detection of blob

like structures. MSER detects blobs by using local extrema in intensity or luminance space, obtained by

iteratively applying watershed based segmentation. A region Ri is considered a feature if for all its n joined

connected components R1, ..., Rn obtained after n watershed segmentations, it attains to a local minimum in

the function qi = |Ri+α−Ri−α|/|Ri|, where α is a used defined parameter and |.| represents the cardinality

of the blob measured in pixels.

2.2.7. STAR. This point extractor is also known as Censure (Center Sorround Extrema) [56]. This ap-

proach approximates the Laplacian not using DoG operator as SIFT does, but using bi-level center-surround

filters of different shapes such as boxes, octagons, or hexagons. The computation of these filters in combi-

nation with integral images allows the detection of interest points in scale-space much faster than SIFT. In

our evaluations we used bi-level star shaped filter as proposed and implemented in [57].

2.2.8. ORB. is the acronym of Oriented BRIEF. This algorithm proposes a modified version of FAST

detector for computing orientation during detection step, and an efficient computation of BRIEF based

approach for generating descriptors. This approach tries to merge the rotation and scale invariance of SIFT

and the computational efficiency of FAST detector.

3. Evaluation

In our evaluation we have used the popular data set, publicly available in [58]. Original data set is

composed of 6 different set of images, covering many problems addressed by computer vision or image

analysis such as geometric transformations between images, image blurring, changing light conditions or

image artifacts due to compression. We used only those set of images covering aspects related with geomet-

ric transformations, named Graffiti, Bark and Brick, as shown in figure 4.1. All tests were carried out using

the point detector implementations integrated in Open Source computer vision Library OpenCV[57]. We

have focused our evaluation by measuring two key factors in any interest point extractor: repeatability, also

known as stability, and accuracy. Stability is referred as the ability of a detector of detect the same feature

point across even in a change in radiometric or geometric conditions occurs between two different image

acquisitions. Accuracy is related with the consistency and precision, in image space coordinates, in the lo-

cation of every point extracted by a detector after a change occurs between two images. We have evaluated

how accurate every point extractor is by measuring the matching ratio, i.e, the number of matched points or

correspondences between two images divided by the total number of points detected, knowing a priori the

geometric transformation applied between both images. A candidate pair of points in imagesi and imagej
respectively is considered a correspondence, if the true match is within a search window of radius r of its

estimated correspondence given known rotation, scale or homography transformation. All tests were carried

out by using a computer running Windows 7 OS, with 4Gb of RAM and an Intel QuadCore 2.7Ghz CPU. In

2.3.1 version of OpenCV not every CPU point detector algorithm has its own GPU version, so we decided

not to distort the results by mixing CPU and GPU implementations.

3.1. Number of points detected. In this test we evaluated how many interest point every extractor is

able to detect. Depending of the specificities of every algorithm, the number of extracted features may vary

significantly, even if they are apply on the same image. Furthermore, depending on the spatial frequencies

present in the images the number of detect points must be different. For example, images taken from Brick

data set exhibit high frequency details represented by the bricks on the wall and therefore is the data set that

clearly generates the higher number of detections in every extractor.
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FIGURE 4.1. (Left) Graffiti Data set. (Center) Bark Data set. (Right) Brick Data set

TABLE 4.1. Number of Points detected in Image 1 of every Data Set

N of features Graffiti Brick Bark

FAST 7244 41266 11735
STAR 870 1461 168

SIFT 2749 8371 4161

SURF 3203 7142 2253

ORB 702 702 702

MSER 516 2287 837

GFTT 1000 1000 100

HARRIS 855 1000 1000

As shown in table 4.1 FAST is clearly the one that gets more dense clouds of points, follow by SIFT

and SURF, while STAR detector exhibits irregular results. ORB detector seems to have a maximum number

of detections allowed, because the same number of 702 features is detected in every image, independently

on the content. Similar results are obtained with GFTT and HARRIS having a maximum threshold of 1000

detections. It is important to notice that not only the number of points detected means a successful detector,

but also how accurate and repeatable they are against geometric transformations.

3.2. Rotation Transformation. In this test we have evaluated how different approaches are robust

against image rotation. We have used image 1 of every data set, and generate artificial images by apply

different angle of in-plane rotation starting from 0 (same image), to 57.3 degrees in steps of 11.4 degrees, not

varying scale nor perspective transformation. We included the same image without rotation, i.e 0 degrees,

as a matter of measure the consistent of the detectors. In this test all detectors but MSER perform similarly,

being SIFT, GFTT and ORB the ones that obtain better results.

3.3. Scale Transformation. In the following test we evaluated how the extractors are robust against

scaling transformation. We used the image labeled as 1 of every data set, and generated artificial images

by applying different isotropic image scaling factors starting from 1.0 (no scaling) to a factor of 3, not

applying rotation nor perspective transformations. As expected, as scale factor increases results of all detec-

tors decrease. STAR detector shows the worst performance while GFTT and ORB exhibits the most stable

results.

3.4. Homography Transformation. In the following test we have evaluated how well the extractors

are robust against homography transformation. An homography is a plane projective transformation. The
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TABLE 4.2. Results of Rotation transformation

Graffiti 0,0 11,4 22,9 34,3 45,8 57,3 Mean
2 FAST 100 40,0 41,0 39,3 38,6 40,2 39,8
STAR 100 57,3 49,8 50,5 52,9 49,0 51,8
SIFT 100 62,4 56,8 56,1 54,3 56,6 57,2
SURF 100 44,9 29,2 24,5 24,2 26,2 29,0
ORB 100 82,6 82,4 78,9 76,9 74,5 79,0
MSER 100 33,3 26,7 24,2 20,7 24,2 25,5
GFTT 100 79,7 75,5 74,1 71,2 74,2 74,9
HARRIS 100 73,4 76,3 75,7 71,7 75,4 74,5

Bark 0,0 11,4 22,9 34,3 45,8 57,3 Mean
FAST 100 52,7 51,4 47,6 46,8 44,6 56,6
STAR 100 57,7 44,6 45,8 48,8 39,8 60,8
SIFT 100 68,5 61,5 59,1 57,3 55,7 65,4
SURF 100 62,0 45,4 40,6 37,4 35,7 31,7
ORB 100 72,6 59,4 53,1 49,0 45,2 66,6
MSER 100 30,7 22,4 14,0 11,5 11,4 35,7
GFTT 100 70,1 66,3 59,1 55,8 53 63,8
HARRIS 100 36,1 38 17 11,1 50,6 69,0

Brick 0,0 11,4 22,9 34,3 45,8 57,3 Mean
FAST 100 59,6 58,2 56,6 55,0 53,9 48,5
STAR 100 70,4 63,3 60,0 56,5 55,0 47,0
SIFT 100 69,5 67,3 65,1 63,3 62,0 60,3
SURF 100 46,4 31,7 28,6 27,8 27,2 43,3
ORB 100 70,2 68,3 66,3 66,2 62,3 55,1
MSER 100 45,4 37,3 34,0 32,3 31,0 16,6
GFTT 100 68,1 63,8 63,7 61,6 61,9 60,5
HARRIS 100 72,5 69,6 69,6 66,2 67,5 26,5

All Images 100 50,1 49,7 47,3 46,3 45,9 47,8

STAR 100 61, 5 52,0 51,8 52,6 47,5 52,9

SIFT 100 66,7 61,7 60,0 58,2 58,0 60,8

SURF 100 50,5 34,8 30,5 30,1 29,4 34,3

ORB 100 74,9 69,4 65,2 62,9 59,4 66,2
MSER 100 35,9 28,2 22,6 19,7 20,5 24,7

GFTT 100 72,5 68,4 65,3 62,6 62,4 66,1

HARRIS 100 57,7 58,7 44,7 37,5 63,6 51,5

TABLE 4.3. Results of Scale transformation

Graffiti 1,0 1,4 1,8 2,2 2,6 3,0 Mean
FAST 100 37,7 29,8 28,8 29,5 24,3 29,7
STAR 100 43,2 31,6 22,0 21,7 13,9 24,6
SIFT 100 45,3 27,3 18,6 16,5 12,7 21,7
SURF 100 41,5 31,3 28,0 20,1 18,7 26,7
ORB 100 69,2 51,7 37,7 31,7 31,0 42,1
MSER 100 31,5 23,8 15,8 8,3 5,4 13,9
GFTT 100 67,9 56,4 48,1 45,2 30,5 47,9
HARRIS 100 64,6 50,7 44,0 41,0 26,6 43,5

Bark 1,0 1,4 1,8 2,2 2,6 3,0 Mean
FAST 100 43,2 33,6 30,9 29,8 26,2 32,3
STAR 100 50,5 40,4 32,1 24,4 13,6 29,3
SIFT 100 46,9 27,5 19,3 13,3 9,6 19,9
SURF 100 49,3 34,6 25,2 18,3 12,8 25,1
ORB 100 70,2 53,7 46,1 41,5 42,1 49,7
MSER 100 25,0 17,5 10,9 6,3 4,4 10,5
GFTT 100 55,5 43,4 36,2 35,3 25,9 38,0
HARRIS 100 35,7 23,9 25,3 26,7 15,2 24,4

Brick 1,0 1,4 1,8 2,2 2,6 3,0 Mean
FAST 100 41,1 33,0 32,6 33,4 27,0 33,1
STAR 100 24,9 8,3 2,9 1,5 0,6 3,5
SIFT 100 34,0 15,6 8,9 4,8 3,2 9,3
SURF 100 37,6 24,7 17,5 11,2 8,6 17,3
ORB 100 53,1 33,9 26,6 24,0 20,3 29,7
MSER 100 42,1 29,2 14,2 3,1 0,4 7,3
GFTT 100 40,2 27,6 22,7 19,7 18,3 24,6
HARRIS 100 43,8 28,6 21,2 21,5 18,8 26,1

All Images 1,0 1,4 1,8 2,2 2,6 3,0 Mean
FAST 100 40,6 32,1 30,7 31,5 25,9 31,7

STAR 100 37,95 22,0 12,7 9,3 4,8 13,6

SIFT 100 41,6 22,7 14,7 10,2 7,0 16,0

SURF 100 42,5 29,9 23,1 16,0 12,7 22,6

ORB 100 63,7 45,5 35,9 31,6 29,8 39,6
MSER 100 32,1 23,0 13,5 5,5 2,1 10,3

GFTT 100 53,3 40,7 34,1 31,6 24,4 35,5

HARRIS 100 46,6 32,6 28,7 29,9 19,7 30,3

TABLE 4.4. Results of Homography transformation

Graffiti Image1 Image2 Image3 Image4 Image5 Image6

FAST 100 25.9 23.4 20.4 16.8 13.9
STAR 100 22.2 14.5 6.4 4.8 1.6

SIFT 100 30.8 14.3 9.4 5.8 3.7

SURF 100 20.0 11.8 7.3 5.3 3.9

ORB 100 54.1 36.7 27.6 17.3 3.2

MSER 100 16.2 12.7 6.9 5.2 1.7

GFTT 100 33.4 21.5 13.3 10.7 1.9

HARRIS 100 39.4 25.1 14.5 13.6 1.7

transformation between any two images of the same planar structure in space can be described by an homog-

raphy transformation. Homography transformation estimation are widely used by computer vision commu-

nity in many applications such as image rectification, image registration, camera calibration or camera pose

estimation. We have used the six images of Graffiti data set with homography ground truth transformation,
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TABLE 4.5. Mean pixel error for Homography transformation

Graffiti image1 image2 image3 image4 image5 image6

FAST 0,00 0,73 0,73 0,74 0,75 0,76

STAR 0,00 0,70 0,72 0,72 0,73 0,77

SIFT 0,01 0,66 0,68 0,75 0,75 0,81

SURF 0,05 0,73 0,74 0,74 0,77 0,79

ORB 0,25 0,70 0,73 0,73 0,75 0,75

MSER 0,10 0,72 0,70 0,74 0,70 0,74
GFTT 0,00 0,69 0,70 0,77 0,77 0,84

HARRIS 0,00 0,69 0,71 0,71 0,73 0,81

mapping points from image 1 to the rest of images of the data set. In this test we obtained overall worst

results compared to rotation or scale tests. The worst results are obtained comparing image1 with image6

(column 6) because of the severe distortion generated by the homography to patches around each feature

point. These results shows that no one of the tested extractors are truly invariant to perspective transfor-

mation. Most of the current approaches propose to generate feature point detectors and descriptors to be

invariant to affine geometric transformation. Affinities preserves parallelism between lines, while projectiv-

ities only preserves straightness of lines not giving enough discriminative or distinctiveness power allowing

to have a detector fully invariant to such type of transformations. However, perspective transformations can

be effectively approximated by piecewise local affinities so affine invariants detectors should perform best

in this test. ORB detector clearly outperforms the rest of detectors, being the one that gets best matching

ratios in all images of all data sets.

3.5. Accuracy. We wanted also to measure how precise and consistent every point extractor is related

with the locations, in image space coordinates, of every point detected, after a viewpoint change occurs

between two images. We measure the accuracy by calculating the difference in pixels between location of

detected point, being a correct match, and the true location. We depict here the averaged results obtained

with Graffiti, brick and bark data sets. Results depicted in table 4.5 shows that there is no clear winner with

respect to feature point location accuracy, given a mean pixel error value of 0,62 between all detectors.

3.6. Efficiency. In addition to accuracy of feature point detectors and their invariance to geometric

transformation, how fast and efficient they perform such task is also critical in some computer vision ap-

plications. we have measured the time they expend to perform detection task operation in every of the

six images of Graffiti data set. As mentioned previously, depending on the content of the images, i.e low

or high frequencies, the number of detected points vary and therefore computation time. The lower com-

putation time the better. Results in image 3.6 shows clearly that FAST is the best performer related with

efficiency. Even if being the one that extracts the highest number of points, it only takes 22ms per image on

average. It worth notice also how ORB is very close to FAST taking only 42.7 ms per frame, and taking into

account that this approach estimates feature orientation while FAST does not. As expected, SIFT extractor

is the slower due to the computation of several DoG operators, taking 1000ms on average.

4. Conclusions

We present an evaluation of different feature or interest point extractors. We have measured their in-

variance and robustness to several geometric image transformations such as rotations, translations, scaling

or perspective transformations such as homographies. We have also evaluated their capability of generating

information by measuring the number of points they generate. Finally, we also measured their efficiency

related with computational resources. As mentioned before, the choice of the feature detector very much
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FIGURE 4.2. Computation Time measured in miliseconds (lower time is better)

depends on the application specifications. Overall, we can conclude that the recent ORB detector obtains the

best ratio between accuracy and efficiency. ORB shows the best performance on rotation and homography

tests and also being the second related with computational cost only exceeded by FAST, however this one

does not have on orientation component and does not produce multi-scale features and therefore is not as ac-

curate as ORB in rotation and scaling transformations. One very important aspect nowadays is efficiency, as

more and more applications are being migrated to mobile devices, such as iPad or iPhone. In this way, those

approaches similar to FAST or ORB detector requiring low computation and memory resources are very

useful and promising. The next step is to evaluate all these algorithms running on a mobile device, taking

into account that some implementation may be optimized for running on a specific processor architecture

using specific instructions, not supported by mobile processors. We are now interested in evaluating how

current feature descriptors, in addition with random sampling robust estimation strategies, can overcome

problems of robustness and invariance to scale, rotation, and perspective transformations. Recent feature

descriptor approaches such as BRIEF, GLOH, DAISY, or ORB opens new possibilities for computer vision

applications, such as simultaneous location and mapping, or image registering and reconstruction to run

robustly in real-time.
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M.Sc. Iñigo Barandiaran Eng. Javier Barandiaran

ibarandiaran@vicomtech.org jbarandiaran@vicomtech.org

eHealth & Biomedical Applications

Vicomtech, San Sebastian, SPAIN Vicomtech, San Sebastian, SPAIN

52



Abstract

This work proposes an extension of the Marching Cubes algorithm, where the goal is to represent

implicit functions with higher accuracy using the same grid size. The proposed algorithm displaces the

vertices of the cubes iteratively until the stop condition is achieved. After each iteration, the difference

between the implicit and the explicit representations is reduced, and when the algorithm finishes, the implicit

surface representation using the modified cubical grid is more accurate, as the results shall confirm. The

proposed algorithm corrects some topological problems that may appear in the discretization process using

the original grid.

Keywords: adaptive isosurface extraction, adaptive tessellation, isosurfaces, volume warping, marching

cubes.

1. Introduction

Surface representation from scalar functions is an active research topic in different fields of Computer

Graphics such as medical visualization of Magnetic Resonance Imaging (MRI) and Computer Tomography

(CT) [59]. This representation is also widely used as an intermediate step for several graphical processes

[60], such as mesh reconstruction from point clouds or track planning. The representation of a scalar func-

tion in 3D is known as implicit representation and is generated using continuous algebraic iso-surfaces,

radial basis functions [61] [62], signed distance transform [63], discrete voxelisations or constructive solid

geometry.

FIGURE 5.1. Optimised Grid with 203 cubes representing the bunny.

The implicit functions are frequently represented as a discrete cubical grid where each vertex has the

value of the function. The Marching Cubes algorithm (MC) [64] takes the cubical grid to create an explicit
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representation of the implicit surface. The MC algorithm has been widely studied as has been demonstrated

by Newman [65]. The output of the MC algorithm is an explicit surface represented as a set of connected

triangles known as polygonal representation. The original results of the MC algorithm presented several

topological problems as demonstrated by Chernyaev [66] and have already been solved by Lewiner [67].

The MC algorithm divides the space in a regular cubical grid. For each cube, a triangular representation

is calculated, which are then joined to obtain the explicit representation of the surface. This procedure is

highly parallel because each cube can be processed separately without significant interdependencies. The

resolution of the generated polygonal surface depends directly on the input grid size. In order to increase

the resolution of the polygonal surface it is necessary to increase the number of cubes in the grid, increasing

the amount of memory required to store the values of the grid.

Alternative methods to the MC algorithm introduce the concept of generating multi-resolution grids,

creating nested sub-grids inside the original grid. The spatial subdivision using octrees or recursive tetrahe-

dral subdivision techniques are also used in the optimization of iso-surface representations. The common

characteristic of these types of methods is that they are based on adding more cells efficiently to ensure a

higher resolution in the final representation.

This work is structured as follows: In Section 2, a review of some of the best known MC algorithm

variations is given. Section 3 describes the methodological aspects behind the proposed algorithm. In

Section 4 details the results of testing the algorithm with a set of implicit functions. Finally, conclusions and

future work are discussed in Section 5.

2. Related Work

(a) Original Grid. The two

spheres are displayed as a sin-

gular object due to the poor

resolution in the region.

(b) Intermediate Grid. Both

spheres are displayed well, but

are still joined.

(c) Final Grid. The new

resolution displays two well

shaped and separated spheres

with the same number of cubes

in the grid.

FIGURE 5.2. 2D slides representing three different states in the evolution of the
algorithm of two nearby spheres.

Marching Cubes (MC) [64] has been the de facto standard algorithm for the process generating of

explicit representations of iso-surfaces from scalar functions or its implicit definition The MC algorithm

takes as an input a regular scalar volumetric data set, having a scalar value residing at each lattice point of

a rectilinear lattice in 3D space. The enclosed volume in the region of interest is subdivided into a regular

grid of cubes. Each vertex of all cubes in the grid is set by the value of the implicit function evaluated at the

vertex coordinates. Depending on the sign of each vertex, a cube has 256 (28) possible combinations, but

using geometrical properties, such as rotations and reflections, the final number of combinations is reduced
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to 15 possibilities. These 15 surface triangulations are stored in Look-Up Tables (LUT) for performance

reasons. The final vertices of the triangular mesh are calculated using linear interpolation between the

values assigned to the vertices of the cube. This polygonal mesh representation is the best suitable one for

the current generation of graphic hardware because it has been optimized to this type of input.

MC variations were developed to enhance the resolution of the generated explicit surfaces, allowing the

representation of geometrical lost details during MC discretization process. Weber [68] proposes a multi-

grid method. Inside an initial grid, a nested grid is created to add more resolution in that region. This

methodology is suitable to be used recursively, adding more detail to conflictive regions. In the final stage,

the explicit surface is created by joining all the reconstructed polygonal surfaces. It is necessary to generate

a special polygonization in the joints between the grid and the sub-grids to avoid the apparition of cracks or

artefacts. This method has a higher memory demand to store the new values of the nested-grid.

An alternative method to refine selected regions of interest(ROI) is the octree subdivision [69]. This

method generates an octree in the region of existence of the function, creating a polygonization of each octree

cell. One of the flaws of this method is the generation of cracks in the regions with different resolutions.

This problem is solve with the Dual Marching Cubes method [70] and implemented for algebraic functions

by Pavia [71].

The octree subdivision method produces edges with more than two vertices, which can be overcome by

changing the methodology of the subdivision. Instead of using cubes, tetrahedrons were used to subdivide

the grid, without creating nodes in the middle of the edges [72]. This method recursively subdivides the

space into tetrahedrons.

The previous methodologies increment the number of cells of the grid in order to achieve more resolution

in the regions of interest. Balmelli [73] presented an algorithm based on the warping of the grid to a defined

region of interest. The warping of the vertices is performed in a hierarchical procedure, the volume is

considered as a single cell of the grid, and then, the central point of the grid is warped in the direction of

the ROI. Then, this cell is divide then in eight cells and the process is repeated until the number of selected

cells is achieved. The result is a new grid with the same number of cells, but with higher resolution near to

the ROI. The algorithm was tested with discrete datasets, and the ROI is created by the user or defined by a

crossing edges criteria.

The presented method generates a similar warping grid as Balmelli does, but we avoid the use of hierar-

chical procedures and our region of interest is automatically generated based in the input implicit function,

obtaining dense distribution of vertices near the iso-surface. (see Figure 5.2)

3. Methodology

The presented algorithm in this work is an extension of the MC algorithm. The main goal is to generate

a more accurate representations of the given implicit surfaces with the same grid resolution.

Applying a calculated displacement to the vertices of the grid, the algorithm reconfigure the position

of the vertices of the grid to obtain more accurate representations of the iso-surface. In order to avoid self-

intersections and to preserve the topological structure of the grid, the vertices are translated inside the cells

of the neighbour of the vertex. The displacement to be applied to all the vertices are calculated iteratively

until a stop condition is satisfied.

Let be Θ a rectangular prism tessellated as a cubical honeycomb, W the vertices of Θ [Eq. 13], B the

boundary vertices of Θ [Eq. 14], and V the inner vertices of Θ [Eq. 15]. For each vertex vi ∈ V , a Ni set

is defined as the 26 adjacent vertices to vi, denoting each adjacent vertex as ni,j [Eq. 16]. (see Figure 3(a)).

f(w) is the value of the function in the position w and A is the scale value for the attraction force for the

displacement of the vertices.
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(a) Grid nomenclature, Θ cubical grid, f(x, y, z) = 0
implicit function, N vertex neighbourhood, V vertices

inside the grid, B vertices at the boundary of the grid.

(b) two consecutive iterations are show where the ver-

tex v is moved between the iterations t = 0 and t = 1.

The new configuration of the grid is shown as dotted

lines.

W = {wi/wi ∈ Θ}(13)

B = {bi/bi ∈ δΘ}(14)

V = W −B(15)

Ni = {ni,j/ni,j is jth neighborhood of vi}(16)

The proposed algorithm is an iterative process. In each iteration, each vertex vi of the grid Θ is trans-

lated by a di displacement vector [Eq. 18], obtaining a new configuration of Θ, where i) the topological

connections of the grid are preserved, ii) cells containing patches of f are a more accurate representation of

the surface, and iii) the total displacement [Eq. 19] of the grid is lower and is used as the stop condition of

the algorithm when it reach a value Δ(see Figure 3(b)).

The distance vector di is calculated as shown in [Eq. 18] and it can be seen as the resultant force of

each neighbouring vertex scaled by the value of f at the position of each vertex and the attraction value A.

In order to limit the maximum displacement of the vertices and to guarantee the topological order of Θ, the

distance vector di is clamped in the interval expressed in [Eq. 17]

The attraction value A is empirical value which scale the value of the function in all the grid. This

value control the attraction factor of the vertices of the grid to the iso-surface, values between 0 and 1
produces a grid avoids the iso-surface, values lesser than 0 generate incorrect behaviour of the function. The

recommended and useful values are equal or greater than 1, very high values of A could generate problems

for the grid, produces big stepping factors for the displacement vectors di and then some characteristics of

the iso-surface could be lost. The A value is highly related to the value of the distance of the bounding box

of the grid, and the size of the objects inside the grid.

(17) 0 ≤ |di|≤ MIN

( |ni,j − vi|
2

)
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repeat
s := 0;

foreach Vertex vi do
di :=

1
26

∑
ni,j

ni,j−vi
1+A|f(ni,j)+f(vi)| ; mindist := MIN

(
|ni,j−vi|

2

)
;

di := d̄iCLAMP (|di|, 0.0,mindist); vi := vi + di;
s := s + |di|;

end
until s ≥ Δ;

Algorithm 3: Vertex Displacement Pseudo-algorithm. |x| represents the magnitude of x, v̄
represents the normalized vector of v

(18) di =
1

26

∑
ni,j

ni,j − vi
1 +A|f(ni,j) + f(vi)|

(19)
∑
vi

|di|≥ Δ

The algorithm stops when the sum of the distances added to all the vertices in the previous iteration is

less that a given threshold Δ [Eq. 19] (see Algorithm 3).

4. Results

The proposed algorithm was tested with a set of implicit functions as distance transforms (see Figure

5.3) of a set of spheres, the spheres are define as a point in the space with their radius. The result of the sphere

data set (3(d),4(a),5(a)) and the two-sphere data set (3(c),4(b),5(b)) are presented, but the algorithm also has

been tested with datasets composed of more than 1000 spheres (see Figure 5.1). The algorithm has been

tested also with other non-distance transform implicit functions, but the generation of false ROI in the grid

degenerates the structure of the grid resulting in bad representations of the iso-surface. For demonstration

purposes, the number of cells has been chosen to enhance visual perception of the improvements produced

by the algorithm. For the visualization process we use Marching Tetrahedra [74] because it produces correct

topological representation of the iso-surface, and allows the identification of the topological correctness of

the algorithm.

The obtained results of the algorithm are visually noticeable, as shown in Figure 5.2. Without using the

algorithm, the two spheres model is perceived as a single object (see Figure 5.2). In an intermediate state the

spheres are still joined, but their shapes are more rounded. In the final state, when the algorithm converges,

both spheres are separated correctly, each one being rendered as a near-perfect sphere. Thus, using the

same grid resolution and the proposed algorithm, the resolution of the results has been increased and also

topological errors of the original explicit representation were considerably reduce with the algorithm.

Accuracy of the explicit representations of the algorithm were measured using the methodology of De

Bruin [75] which is based on the Hausdorff distance explain by Dubuisson [76]. The figures 5.4 and 5.5

shows the behaviour of the algorithm where, in almost all the iterations, the Hausdorff distance between the

implicit iso-surface and the explicit surface are decreasing. The iterations where there is an increment of the
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(c) Two spheres in different positions with a scalar

function as the distance transform, representing the be-

havior of the algorithm with different objects in the

space.

(d) Sphere in the center of the space with a scalar func-

tion as the distance transform. The slides shows the

different warping of the grid in the different positions

FIGURE 5.3. Implicit function of spheres as distance transforms

distance, could represent a point where the configuration of the grid is not suitable for optimization and then

the algorithm needs to modify the grid looking for suitable configurations.

Figure 5.4 presents the results of the algorithm with the same implicit surfaces but with different attrac-

tion factor values (A). As the results show the accuracy of the iso-surface is highly related with the (A)

value, because the allowed warping of the grid is bigger obtaining a dense grid near to the iso-surface, but

this over-fit of the grid can be dangerous if the grid is going to be used for other implicit functions, like time

varying functions, because the grid need more iterations to adapt to the new iso-surface.

Figure 5.5 shows the behaviour of the algorithm with different grid sizes. The accuracy of the final

explicit representation of the iso-surfaces shows an improvement of the accuracy of the representation. Then

it is possible with the algorithm to represent iso-surfaces with good accuracy and quality without increasing

grid sizes. This characteristic allow us to use smaller grids for the representation without loss of accuracy

or quality in the representation and saving computational resources.

5. Conclusions and Future Work

Our proposed iterative algorithm has shown significant advantages in the representation of distance

transform functions. With the same grid size, it allows a better resolution by displacing the vertices of the

cube grids towards the surface, increasing the number of cells containing the surface. The algorithm was

tested with algebraic functions, representing distance transforms of the models. The generated scalar field

has been selected to avoid the creation of regions of false interest [77], which are for static images in which

these regions are not used.

The number of iterations is directly related to the chosen value Δ as it is the stop condition. The algo-

rithm will continuously displace the cube vertices until the accumulated displacement in a single iteration is

less than Δ. The accumulated distance converges quickly to the desired value. This behaviour is very con-

venient to represent time varying scalar functions like 3D videos, where the function itself is continuously
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(a) Sphere implicit function.

(b) Two sphere implicit function.

FIGURE 5.4. Hausdorff distance of the explicit representations of the figures in
each iteration of the algorithm with different attraction values

changing. In this context, the algorithm will iterate until a good representation of the surface is obtained.

If the surface varies smoothly, the cube grid will be continuously and quickly re-adapted by running a few

iterations of the presented algorithm. Whenever the surface changes can be considered no be small, the

number of iterations until a new final condition is reached will be low. Then the obtained results will be a

better real-time surface representation using a coarser cube grid.

The value Δ is sensitive to the grid size, so a better stop condition should be evaluated which represent

the state of the quality of the representation and reduce the number of iteration which are unnecessary.
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(a) Sphere implicit function.

(b) Two sphere implicit function.

FIGURE 5.5. Hausdorff distance of the explicit representations of the figures in
each iteration of the algorithm with different grid sizes

The model used in this algorithm is close to a physics spring model, a close comparison of the proposed

algorithm with the spring model could be done.
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Abstract

Surface reconstruction from unorganized point set is a common problem in computer graphics. Genera-

tion of the signed distance field from the point set is a common methodology for the surface reconstruction.

The reconstruction of implicit surfaces is made with the algorithm of marching cubes, but the distance field

of a point set can not be processed with marching cubes because the unsigned nature of the distance. We

propose an extension to the marching cubes algorithm allowing the reconstruction of 0-level iso-surfaces in

an unsigned distance field. We calculate more information inside each cell of the marching cubes lattice and

then we extract the intersection points of the surface within the cell then we identify the marching cubes

case for the triangulation. Our algorithm generates good surfaces but the presence of ambiguities in the case

selection generates some topological mistakes.

Keywords: marching cubes, surface reconstruction, point set, unsigned distance field

1. Introduction

Surface reconstruction from an unorganized point set has been a widely studied problem in the computer

graphics field. The problem can be defined as given a set of unorganized points which are near to a surface.

A new surface is reconstructed from that points. Which is expected to be near to the original one.

Acquisition systems like laser scanners, depth estimation from images, range scan data, LIDAR and

other methodologies results in an unorganized point set. Geometry analysis [78] and visualization process

[79] could be done with this input, however the presence of noise, out-layers or non scanned regions could

generate problems in the reconstruction and analysis process.

FIGURE 6.1. Reconstructed bunny model using marching cubes in an unsigned
distance field with a grid of 503 cells with more than 140.000 points representing
the surface.

Reconstruction of the surface could be made in several forms, like NURBS, polygonal meshes, implicit

or explicit functions. Triangular meshes are the most common form of representation of surfaces. This

representation allows an easy extraction of the properties of the surface like curvatures, boundaries, and other

characteristics. Also the possibility of extension from this output to visualization process are straightforward

with the current graphic hardware.
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The contribution of this paper is the extension of Marching Cubes algorithm by analyzing more infor-

mation inside each cell, for each edge inside the cell the value of the middle point in the edge is calculated

as a other vertice. With the new information the intersection points of the surface with the edges of the cell

are calculated, and the triangulation case for each cell is selected generating the triangular surface of the

0-level iso-surface.

The remainder of the paper is structure as follows: In section 2 we review previous work in surface

reconstruction from point sets and their different approximations. In section 3 we present the methodology

of surface reconstruction of our algorithm. And in section 4 we present the results of the algorithm testing

different quality measurements in the outputs of the algorithm, conclusions and future work is presented in

section 5.

2. Related Work

Surface reconstruction from unorganized point set has been solved with two different and predominant

methodologies. The first one is by Voronoi-Delone and by implicit functions, the difference between the

methods are the base division of the process. Voronoi-Delone the methods are point centric data calculation

process and the triangulation is created following the point set. Implicit functions methodology divide the

space and the local characteristics of the surface inside are identified for further rendering with methods like

Marching Cubes.

Reconstruction of surfaces with Voronoi-Delone methodologies are explored in [80] where a 3D voronoi

diagram is created of the point set and a crust is generated. [81] a medial axis transform is calculated form

the point set and the surface is generated following the distance to the medial axis.

Approximation made by [82] which for each point the normal direction is calculated using the neigh-

bourhood of the point and then calculating the tangent plane in that point with a least squares algorithm. A

consistent plane orientation for all the points should be made assuring that all the point faces to the same

direction which is an NP problem. Finally a signed distance function is generated and a triangular mesh is

generated with the marching cubes algorithm. This methodology is improved in the work of [83].

Marching cubes [64] is an algorithm to generate triangular meshes from volumetric data. This algorithm

defines a type of triangulation for each cell in the volume or space given the values of the vertices, given a

desired iso-value the vertices are compare against this value and then a triangulation case is selected (Fig.

6.2) and then a triangulation is generated for each cell. The algorithm has been widely studied [65] and sev-

eral extensions had been made to solve topological problems with techniques [84], [85] also methodologies

to obtain more accurate representations were studied [86]. One of the biggest advantages of the algorithm

is their complexity O(n) where n is the number of cells in the volume, so the time taken by the algorithm

to the process could be easily controlled in real time process because it is constant and can be modified

changing the number of cells.

The distance field generated from the set of points represents a challenge for the marching cubes algo-

rithm because the distance is always a positive value, and the surface which represents the points are defined

in the isovalue 0 which can not be represented without the presence of negative values in the field. To solve

this problem a signed distance field must be generated where, for each point in the set, the normal of the

surface is calculated, and must be congruent in all the surface. This process is very complex and we avoid

this step in our work.

Previous approximations of modified marching cubes algorithm from point sets has been made. [87]

which uses the vertices as the places where the surface pass, to obtain better geometry approximation the

vertices are translated to the nearest point, and a new marching cubes cases are formulated where the surface

is in the vertices. [88] creates an offset surface around the points and then a cut between the offsets represent

the surface of the points.
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FIGURE 6.2. Marching Cubes cases.

3. Metodology

The problem as defined by [82] takes as input an unorganized point set {x1, . . . , xn} ⊂ R3 on or near an

unknown manifold M, and reconstruct a manifold M′ which approximates M. No information about the

manifold M as the presence of boundaries or geometry of M are assumed to be knew in advance.

Given a set of unorganized points P = {p1, p2, . . . , pn} which are on or near to a manifold δM , our

goal is to construct a manifold δM ′ which are close to δM . Each point of P is represented by a 3-tuple of

real values. The manifold δM ′ is represented as a set of planar triangles of R3

The algorithm is subdivided in the following steps:

(1) Bounding box B calculation of P
(2) Generation of a cubical grid G inside B
(3) Calculate the minimum distance for each vertex vi,j,k ∈ G to P
(4) Calculate the intersection points I in the edges of the cells of G
(5) Identify for each cell of G the marching cube case which match the intersection points I
(6) Generate the simplexes of each cell of G given the calculated case.

3.1. Bounding box calculation. The calculation of the bounding box B could be made following the

word axis identifying the minimum and maximum values of (x, y, z) in P . There is no a exact rule for the

creation of the bounding box, which can be parallel to the global axis, rotated or static. The bounding box

define the region in the space where the triangular mesh is going to be generated.

3.2. Cubical Grid generation. Inside the region defined by B a cubical grid G is defined, the number

of cells that are inside G define the resolution of the surface, but a high number of cells without a proper

density of points defining the case inside each cell could generate ambiguities in the reconstruction process.

also the number of cells defines the level of detail of the object. For each cell the vertices of the grid are

define as v, also a number of auxiliary vertices in the middle of each edge of the cell must be created vaux.

3.3. Distance calculation for each vertex. For all the vertices v and vauxdefined in G the minimum

distance from the vertex to the point cloud should be calculated (Fig 6.3). Given the regular form of the grid
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FIGURE 6.3. Vertices v and auxiliary vertices vaux for each cell.

G for each point in P the nearest vertex could be calculated in O(1) time, then the near vertex is assigned

with the value calculated, if various points are near to the same vertex v then only then minimum distance

is stored.

FIGURE 6.4. Parabola showing the intersection point q for the unsigned distance
field as a comparison between the original distance function L1 and a parabola p
which values vi, vj , vaux represent the distance to the surface.

3.4. Intersection point calculation. For each edge e of the cells C, we have 3 vertices, v1, v2, v3 where

v1 and v3 are the vertices of the lattices of the grid and v2 is the middle auxiliary vertex calculated vaux.

Our methodology suppose a plane D where the vertices of the edge are aligned in the x axis of the D plane

with the values of x1 = 0, x2 = 0.5 and x3 = 1, and the values of y1 = v1, y2 = v2, y3 = v3, which are a

distance from vertices to the point set, are values in y axis of D plane. Then we can assume that a normal

signed surface which cut the edge forms a line in the plane D, as show in the figure 6.4 but as the distance

is a positive value the intersection is presented as a line in the positive region of D. We approximate the

intersection assuming the as the intersection point can be expressed as a parabola, which is aligned with the

y axis in D. Given the 3 points measured in the plane a parabola p could be calculated solving the equations

of 20 given the parameters of p, a, b, c in the equation 21. vx, vy are the coordinates of the vertice of the
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parabola p as defined in the equation 22, the value vx gives the position in the edge where the surface cuts

the edge and vy could be assigned as a tolerance value, which define how close is the surface to the edge.

y1 = ax21 + bx1 + c(20)

y2 = ax22 + bx2 + c

y3 = ax23 + bx3 + c

a = −−x2y1+x3y1+x1y2−x3y2−x1y3+x2y3
(x2−x3)(x2

1−x2x1−x3x1+x2x3)
(21)

b = −y2x2
1−y3x2

1−x2
2y1+x2

3y1−x2
3y2+x2

2y3
(x1−x2)(x1−x3)(x3−x2)

c = −x3y2x2
1−x2y3x2

1−x2
3y2x1+x2

2y3x1+x2x2
3y1−x2

2x3y1
(x2−x3)(x2

1−x2x1−x3x1+x2x3)

vx =
−b
2a

(22)

vy = c− b2

4a

3.5. Cell case identification. Given the intersection points for each cell, the marching cubes lookup

table is used, to define which case of marching cubes had the same edges intersected, if the case is found

then the cell is labelled with that case, if there is not case which is defined by the marching cubes look up

table, then this cells had an ambiguity case. These cases are produced because the points around the cell

had a lot of noise or there is no enough density of points to identify the triangulation in that region. At the

time we don’t make any processing to solve this ambiguity and that cells are simply are assigned as empty,

but global process could be done to eliminate this ambiguities.

3.6. Triangulation generation. Each cell of the Grid G had been labelled with the marching cubes

case which represents. Then following the rules of generation of triangles or simplexes of marching cubes.

The number of cases which marching cubes gives is 14 in their original definition, because the number of

possible combination of edges is 28 = 256 but eliminating redundant cases with rotations or mirrors is only

14 cases. With out approach the number of cases is equal to the number of possible intersections of the

edges 212 = 4096, where we map to the 14 cases of marching cubes, as explained before there is some

configurations which gives ambiguity forms this cases are not generated in our algorithm.

4. Results

Our algorithm generates triangular mesh which is a good representation of the surface defined by the set

of points. The mesh is not created to be correct in a topological level because the original marching cubes

algorithm used to generate the triangulation have topological errors, and the process of calculation is very

sensitive to noise or poorly density regions of points. The mesh is generated in a fast way. Even though the

results represent a qualitative good representation of the surfaces. This algorithm focus in the problem of

generation of the surfaces without the calculation of the normal direction of the surface extending the uses

of the Marching Cubes algorithm for unsigned implicit functions in the representation of the isolevel 0.
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FIGURE 6.5. Reconstructed elephant model with a grid of 2003 cells.

5. Conclusions and Future Work

We present an extension of the marching cubes algorithm for the extraction of the 0-level iso-surface in an

unsigned distance field. The generated meshes present a lot of topological mistakes because the algorithm

can not identify correctly the marching cubes cases where the edges in the cell are intersected with a different

pattern as the marching cubes cases present. New set of marching cubes cases have to be generated to correct

implement the triangulation step.

The algorithm could represent a big part of the surface without calculating the normal, eliminating an

costly step commonly used in other algorithms opening a new method for reconstruction for non-orientable

surfaces, and because the local nature of the algorithm it can process without problems surfaces with holes

or boundaries.

The quality of the meshes without considering the errors produce by the ambiguities are the same as

the marching cubes original algorithm. For further improvements in the quality of the meshes could be

applied using the different techniques developed for marching cubes algorithm because the modification of

our extension to the original algorithm is minimal.

68



Part 3

Direct Volume Rendering





CHAPTER 7

Interactive visualization of volumetric data with WebGL in real-time

• John Congote1,2

• Luis Kabongo2

• Aitor Moreno2

• Alvaro Segura2

• Jorge Posada2

• Oscar Ruiz1

1 CAD CAM CAE laboratory, Universidad EAFIT

Carrera 49 No 7 Sur - 50, Medellı́n, Colombia
2 Vicomtech Research Center

Donostia - San Sebastián, Spain

Context

Interactive visualization of volumetric data with WebGL in real-time. CONGOTE, John; KABONGO,
Luis; MORENO, Aitor; SEGURA, Alvaro; POSADA, Jorge; RUIZ, Oscar. Sixteenth Annual Inter-
national Conference on 3D Web Technology (2011) , Paris, France. June 20-22, 2011, pages 137-146,
ISBN 9781450307741. CONFERENCE

Volume rendering is a methodology for the rendering of scalar fields, very common in the fields of

medical image and geo-sciences. Vicomtech Research Center and CAD/CAM/CAE Laboratoy supports the

study of this methodology. Interesting results were obtained from this research and the application of the

algorithms in low power computational devices were demonstrated.

This work was partially supported by the Basque Government’s ETORTEK Project (ISD4) research

programme and CAD/CAM/CAE Laboratory at EAFIT University and the Colombian Council for Science

and Technology –COLCIENCIAS–.

71



As co-authors of such publication, we give our permission for this material to appear in this document.

We are ready to provide any additional information on the subject, as needed.

——————————————————– ——————————————————–

Prof. Dr. Eng. Oscar E. Ruiz Dr. Jorge Posada

oruiz@eafit.edu.co jposada@vicomtech.org

Coordinator CAD CAM CAE Laboratory Vicomtech Research Center

EAFIT University, Medellin, COLOMBIA Donostia - San Sebastian, SPAIN

——————————————————– ——————————————————–

Dr. Luis Kabongo Dr. Aitor Moreno

lkabongo@vicomtech.org amoreno@vicomtech.org

Vicomtech Research Center Vicomtech Research Center

Donostia - San Sebastian, SPAIN Donostia - San Sebastian, SPAIN

——————————————————–

Eng. Alvaro Segura

asegura@vicomtech.org

Vicomtech Research Center

Donostia - San Sebastian, SPAIN

72



Abstract

This article presents and discusses the implementation of a direct volume rendering system for the Web,

which articulates a large portion of the rendering task in the client machine. By placing the rendering empha-

sis in the local client, our system takes advantage of its power, while at the same time eliminates processing

from unreliable bottlenecks (e.g. network). The system developed articulates in efficient manner the ca-

pabilities of the recently released WebGL standard, which makes available the accelerated graphic pipeline

(formerly unusable). The dependency on specially customized hardware is eliminated, and yet efficient ren-

dering rates are achieved. The Web increasingly competes against desktop applications in many scenarios,

but the graphical demands of some of the applications (e.g. interactive scientific visualization by volume

rendering), have impeded their successful settlement in Web scenarios. Performance, scalability, accuracy,

security are some of the many challenges that must be solved before visual Web applications popularize. In

this publication we discuss both performance and scalability of the volume rendering by WebGL ray-casting

in two different but challenging application domains: medical imaging and radar meteorology.

Keywords: Direct Volume Rendering, Ray Casting, Real-Time visualization, WebGL, Weather Radar Vol-

ume, Medical Imaging

1. Introduction

Real-time 3D computer graphics systems usually handle surface description models (i.e. B-Rep rep-

resentations) and use surface rendering techniques for visualization. Common 3D model formats such as

VRML, X3D, COLLADA, U3D (some intended for the Web) are based entirely on polygonal meshes or

higher order surfaces. Real-time rendering of polygon models is straightforward and raster render algo-

rithms are implemented in most graphics accelerating hardware. For many years, several rendering engines,

often via installable browser plug-ins, have been available to support 3D mesh visualization in Web appli-

cations.

However, some scientific fields (e.g. medicine, geo-sciences, meteorology, engineering) work with 3D

volumetric datasets. Volumetric datasets are irregular or irregular samples of either scalar (f : R3 → R) or

vector (f : R3 → R
3) fields. For the purpose of this article, we will use the term volumetric data sets to refer

to scalar fields and will ignore for the time being vector fields. Surface-based raster rendering techniques

are obviously not suitable for visualizing such datasets and specific Direct Volume Rendering algorithms

are needed, which are not available for the Web. Therefore, our work uses Volume ray-casting, which is a

common technique in Computer Graphics for volume visualization originally presented in [89] and further

studied in [90]. The rendering is not photo-realistic but shows the important characteristics of the set.

In medical imaging, diagnostic techniques such as computer tomography (CT), magnetic resonance

imaging (MRI) and positron emission tomography (PET) produce sets of parallel slices that form a vol-

umetric dataset. Volume rendering is a common technique for visualizing volumetric datasets along with

multi-planar reconstructions (MPR). Storage and distribution of these 3D images usually requires a Pic-

ture Archiving and Communication Systems (PACS), which normally uses specialized workstation software

([91], [92]) for interactive visualization ([93]). Few solutions exist for regular desktop computers ([94])

among others. Weather radar data is also a volumetric dataset. A weather radar scans a volume around it by

collecting values in families of circular, elliptical or conical scan surfaces.

Doppler radars sample several physical variables (reflectivity, differential reflectivity, radial velocity and

spectral width) for each location of the sky. Radar data is usually visualized for a single slice of the volume,

either conical, as in plan position indicator (PPI), or planar, as in constant altitude plan position indicators
(CAPPI). Initial approaches for Web-based Volume Rendering of radar data rely on pre-computed in-server

rendering ([95]), which normally hinders interaction in the visualization.

WebGL is a new standard for accelerated 3D graphics rendering in the Web that complements other

technologies in the future HTML5 standard ([96]). Some of the major Web browsers, including Google
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FIGURE 7.1. Medical data rendered with volume ray-casting

Chrome, Mozilla Firefox, WebKit, Safari and Opera have already implemented it in their latest releases or

release candidates. WebGL is basically a Javascript binding of the OpenGL ES API and enables low level

imperative graphics rendering based on programmable shaders.

1.1. Contribution of this Article. Our contribution is a practical implementation of a volume render-

ing system for the Web, based on the Volume Ray-casting algorithm and implemented on WebGL. Our

system is capable of obtaining interactive visualization with diverse volume datasets (Figure 7.1). The orig-

inal Volume Ray-casting algorithm was slightly modified to work with the input structures needed for the

Web environment. Special care was taken to avoid the use of dynamic server content. This avoidance allows

for the algorithm to be used without increasing the demands on the server and shifts, as much as possible,

the processing to the client.

Our work is tested in two scenarios with volumetric datasets: medical imaging and radar meteorology.

Their main practical difference is the pattern in which the volume is sampled: for medical data a uniform

cartesian grid is used. For weather data a non-uniform spherical coordinate grid is used. A side-effect of

our work is the proof-of-concept that interactive platform-independent visualization of 3D data on the Web

is feasible by means of the WebGL standard.

The paper is organized as follows. Section 2 presents a brief status of the different technologies present

in this publication: Volume Rendering, Web rendering, medical and radar visualization. Section 3 presents

our methodology for volume rendering with special attention to the modifications of the algorithm for the

Web environment. Section 4 presents the output obtained by the implemented algorithm and the performance

values in different conditions. Section 6 presents the conclusions of our work and future directions.

2. Related Work

2.1. Direct volume rendering techniques. In 3D scalar field interactive visualization, two solutions

prevail: Surface Rendering and Direct Volume Rendering. Surface Rendering has the advantage of being

easy to compute due to its low geometric complexity. Its main disadvantages are: (1) A surface must be

synthesized first, which is not a trivial task as it depends on the quality of the sample. (2) Since it must be

precomputed, the result is static and cannot be easily adjusted in real time.

Recent advances in Direct Volume Rendering and graphic card capabilities allow the representation of

volumes with good quality by projecting volumetric data into a 2D image, depending on the position of a

virtual camera. The main advantage of this technique is the visualization of all inner characteristics at once.
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Preprocessing does not intervene since most of the computations are performed when the camera is

displaced. In order to project the volumetric data, several methods exist ([97]). Reference [98] discusses

Volume Splatting and represents each scalar value by a simple geometrical shape that will face the camera,

allowing fast rendering. Its main disadvantage is the loss of quality. A technique called Shear Warping
([99]), consists of applying shear warp transformations to the volume slices to imitate the real orientation

of the camera. Since the technique is based on simple transformations this method is quite fast but its main

drawback is a low sampling power. With the constant improvement in graphic card capabilities, the Texture
Mapping method has been popularized in video-games. It consists in re-slicing the volume depending on

the orientation ot the camera viewpoint and representing all the slices at once taking advantage of eventual

occlusion optimizations ([100]).

Volume Ray-casting was initially presented in [89] and has become one of the most common methods

for volume rendering. The set of rays from the camera reach the 3D scene and hit the objects, generat-

ing parametric (scalar) landmark values. By defining a blending function it is possible to give priorities

to the different values encountered along the ray, allowing the visualization of different internal structures.

Additional modifications to the algorithm, such as transfer functions, and Phong illumination ([101]) were

developed in order to improve the perception and make the volume look realistic. Compared to the other

techniques, this one is older and more accurate in sampling. However, the computational power required

made initially difficult its usage in real-time interactive representations, allowing other approximations to

settle. Nowadays, the increasing computational power of graphic cards allows fast calculations ([102])

which give new interest to Volume Ray-casting. Reference [90] presents a tutorial with all the basic expla-

nation on volume ray-casting. We used this tutorial as starting point for the theoretical foundations in our

implementation and for technical details. Open Source implementations such as [91] and [92] were also

used.

2.2. Web 3D rendering. The fact that the Web and 3D graphics are currently ubiquitous in desktop

and palm devices makes their integration urgent and important. Several standards and proprietary solutions

for embedding 3D in the Web have been devised, such as VRML, X3D or vendor-specific Web browser

plug-ins, implementations on general purpose plug-ins, etc. A review of these techniques could be found in

[103].

In the case of Medical Imaging and other computing-intensive visualization scenarios, a partial solution

has been the use of in-server rendering ([104]). In this approach, the rendering process is remotely performed

in the server and its resulting image is sent to the client. This solution increases the load on the server when

many clients are present. In addition, the high latency times make the system non-responsive and unsuitable

for smooth interactive visualization.

Outstanding issues among solutions for Web 3D graphics are: dedicated languages, plug-in require-

ments for interpretation, portability across browsers, devices and operating systems and advanced rendering

support. While writing this article, the Khronos Group released the WebGL 1.0 specification, which has

been under development and testing. In practice, the WebGL 1.0 is a Javascript binding of the OpenGL

ES 2.0 API. Calls to the API are relatively simple and serve to set up vertex and index buffers, to change

rendering engine state such as active texture units or transform matrices, and to invoke drawing primitives.

Most of the computation is performed in vertex and fragment shaders written in GLSL language, which

are run natively on the GPU hardware. Unlike previous Web 3D standards which define declarative scene

description languages, WebGL is a low-level imperative graphic programming API. Its imperative character

enables a great flexibility and exploits the advanced features of modern graphics hardware.

The WebGL 1.0 standard takes advantage of already existing OpenGL-based graphics applications,

such as accurate iso-surface computation ([105]) or optimized shader programming ([106]). The usage of

an interpreted language to manage the behavior of scene elements and animations might be considered as a

drawback. However, the performance of Javascript interpreters is constantly improving. Current optimized
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just-in-time compilation in the latest engines provides performance not far from that of natively compiled

languages.

2.3. Medical visualization. From the different scientific fields, Medical Visualization is one of the

most challenging since the user interpretation directly translates into clinical intervention. Quality is one of

the most important factors, but fast interactive response is also central in this domain. Medical Visualization

has already produced some implementations of volumetric visualization in Web, mainly for educational

purposes ([107][108]). These approximations require third party systems for the correct visualization, or the

presence of a rendering server ([109], [110]), which limits the scalability of the application. Using standards

such as VRML and Texture Mapping ([111]) visualization of volumes in the Web has been achieved.

2.4. Radar visualization. Radar data visualization also poses new challenges as the data are acquired

in a spherical coordinate system ([112]). This particularity makes difficult the optimization of ray-casting,

which usually traverses cubic-shaped volumes. Nevertheless, this problem has already been addressed in

[113].

3. Methodology

Direct Volume Rendering is a set of Computer Graphics algorithms to generate representations of a 3D

volumetric dataset. The produced image is a 2-dimensional matrix I : [1, h] × [1, w] → R
4 (w: width and

h: height in pixels). A pixel has a color representation expressed by four-tuple (R,G,B,A) of red, green,

blue and alpha real-valued components, (R,G,B,A ∈ [0, 1]).
The volume is a 3-dimensional array of real values V : [1, H]× [1,W ]× [1, D]→ [0, 1] (H: Height, W:

Width, D: Depth of the represented volume, in positive integer coordinates). Therefore, V (x, y, z) ∈ [0, 1].
The volume-rendering algorithm is a projection of a 3D model into a 2D image. The projection model used

in this work is known as a pin-hole camera ( [114] ). The pin-hole camera model uses an intrinsic K ∈M3×4

and an extrinsic R ∈M4×4 real-valued matrices. These matrices project a 3D point p ∈ P
3 onto a 2D point

p′ ∈ P
2.

(a) Front Faces (b) Back Faces

FIGURE 7.2. Color cube map coordinates

A volume is normally represented as a set of images. Each image represents a slice of the volume.

Usually slices are parallel and evenly-spaced but this is not always the case. For example, volumes can

also be sampled in spherical coordinates with the angular interval being variable. Both cases (cartesian and

spherical samples) are handled by our algorithm.

Volume ray-casting is an algorithm which defines the color for each pixel (i, j) in the image or projection

screen I , calculated in function of the values of a scale field V (x, y, z) associated with the points (x, y, z)
visited by a ray originated in such a pixel. The ray is casted into the cuboid that contains the data to display

(i.e the scalar field V ). The ray is equi - parametrically sampled. For each sampled point ps on the ray
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one computes an approximation of the scalar field V (ps), by usually calculating a tri-linear interpolation.

In addition, a shade might be associated to ps, according to the illumination conditions prevailing in the

cuboid. The color associated to ps might be determined by axis distances as shown in figure 7.2. As last

step, the pixel in the image which originated the ray is given the color determined by the sampled point ps
nearest to the screen, in such a ray.

Alternatively, the samples on the ray may also cast a vote regarding the color that their originating pixel

will assume by using a composition function (Eq:23-26), where the accumulated color Argb is the color of

the pixel (i, j), and Aa is the alpha component of the pixel which is set to 1 at the end of the render process.

Given an (x, y, z) coordinate in the volume and a step k of the ray, Va is the scalar value of the volume V ,

Vrgb is the color defined by the transfer function given Va, S are the sampled values of the ray and Of , Lf

are the general Opacity and Light factors.

Sa = Va ∗Of ∗
(
1

s

)
(23)

Srgb = Vrgb ∗ Sa ∗ Lf(24)

Ak
rgb = Ak−1

rgb +
(
1−Ak−1

a

)
∗ Srgb(25)

Ak
a = Ak−1

a + Sa(26)

FIGURE 7.3. Aorta dataset in mosaic form to be read by the shader

3.1. Data Processing and volume interpolation.

3.2. Contribution. The images for one volume are composed into a single image containing all slices

that will be stored in a texture as shown in Figure 7.3. This texture is generated by tilling each slice one

besides other in a matrix configuration, this step was implemented as a preprocessing step in our algorithm.

The size of the texture in GPU memory could change from 4096×4096 in PC to 1024×1024 for handheld

devices. The reduction in quality in the image is explained in Figure 7.7. The number of images per row

and the number of rows as well as the total number of slices must be given to the shader.

In medical images the sample bit depth is commonly bigger than 8 bits. This is hard to handle in Web

applications where commonly supported formats are limited to 8 bits per sample. In this work, medical data

sets were reduced to 8 bits.
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Higher depths could be supported using more than one color component to store the lower and higher

bits of each pixel but this representation is not currently implemented in our shader.

s1 = floor(z ∗ S)(27)

s2 = s1 + 1(28)

dx1 = fract(
s1
Mx

)(29)

dy1 =
fract

(
s1
My

)
My

(30)

dx2 = floor(
s2
Mx

)(31)

dy2 =
fract

(
s2
My

)
My

(32)

tx1 = dx1 +
x

Mx
(33)

ty1 = dy1 +
y

My
(34)

tx2 = dx2 +
x

Mx
(35)

ty2 = dy2 +
y

My
(36)

v1 = tex2D (tx1, ty1)(37)

v2 = tex2D (tx2, ty2)(38)

Va(x, y, z) = mix (v1, v2, (x× S)− s1)(39)

For the correct extraction of the value of the volume two equations were implemented. The equations

27-39 show how to get the value of a pixel in coordinates x, y, z from images presented in an cartesian grid.

s is the total number of images in the mosaic and Mx, My are the number of images in the mosaic in each

row and column as the medical dataset show in Figure 7.3.

The functions presented in the equations are defined by the GLSL specification. This allow us to ma-

nipulate the images as continuous values because the functions of data extraction from the texture utilize

interpolation.

3.2.1. Identification of Ray coordinates. The geometry of a cube is generated with coordinates from

(0, 0, 0) to (1, 1, 1). This cube represents the boundary of the volumetric dataset and is painted with colors

representing the coordinates at each point x, y, z coordinates (Figure 7.2)are stored in the r, g, b color com-

ponent of each pixel. The cube is then rendered in the scene from the desired view point. The rendering

process has several steps. The first two steps are the rendering of the color cube with the depth function

change. Then one of the passes presents the closest region of the cube to the camera (Figure 2(a)), and the

second pass presents the far region (Figure 2(b)).

With these two renders a ray is calculated from each point in the cube for the render with the faces

closest to the eye and the end of the ray with the point of the back region. The colors in the cube represent

the exact coordinates of the ray for each pixel in the image. We store the color information of the cube as

24 bit RGB values. This range of values seems to be small and not precise enough for big images, but color

interpolation gives enough precision for the ray coordinates.

Cartesian coordinates Most voxel-based volume datasets are arranged in a cartesian uniform grid. A

medical CT or MRI scanner, computes parallel slices of the specimen at different positions with a normally

78



constant spacing. Each image contains a matrix of samples of relative to the specific signal measured by the

equipment. By stacking all slices aligned together, a discretely sampled volume is defined. Each sample can

be addressed by cartesian x, y, z coordinates, one being a slice selector and the other two coordinates of a

point in that slice image.

Spherical coordinates A weather radar scans the surrounding sky in successive sweeps. Beginning at

a low angular elevation, the radar performs a 360◦ azimuth scan (Figure 7.4, fig:radar). At each one-degree

space direction a ray is emitted and a number of samples along the ray are measured back from its echoes

(400 samples or buckets in our case). The radar then proceeds step by step increasing elevation at each

successive swept scan. Elevation angles are not normally uniformly incremented because most interesting

data is at the lower levels. Our datasets use 14 such elevations.

FIGURE 7.4. Simplified geometry of a radar scan. Each scan can be approximated
as a cone. Therefore, a radar volume dataset is approximated as a set of co-axial
cones with the radar in the common apex.

Such a process results in a discrete sampling of the sky volume in which each sample has elevation,

azimuth and range coordinates. Thus, samples can then be addressed by spherical coordinates. In the

conversion of raw radar data into input images suitable for the WebGL implementation the sample values

become pixel values. Each swept scan for a fixed elevation angle forms one image in which pixel columns

correspond to each azimuth direction (there are 360 columns), and rows correspond to distances along each

ray (400 rows). Each image maps to a conical surface in space as shown in figure 7.4. The images from

consecutive elevations are joined to form a single image for the whole volume, presented in figure 7.5 (the

figure is rotated 90◦).

r =
√

x2 + y2 + z2(40)

ϕ = arctan(y, x) + π(41)

θ = arccos(z/ϕ)(42)

For the spherical coordinates volume dataset from a radar the following Equations 40-42. Where used.

The interpolation process used for the identification of the volume value in an arbitrary point is presented in

Equations 27-39. We use a simple interpolation method because the data is expected to be normalized from

the capture source. The problems presented in this topic were explained by [115].

3.2.2. Ray generation. The ray is generated for each pixel in the image I , geometrically the start and

end positions of the ray are extracted from the previous render passes with the information of the color cube.

The ray is divided by S steps, which indicates the number of samples of the volume. For each sample the

x, y, z inside the volume is calculated and the value of that position is interpolated from the texture.
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FIGURE 7.5. Original Doppler radar image. Each vertical band represents data
along the cones described in Figure 7.4

3.2.3. Transfer function. This value of the texture tx,y,z , is then used to identify the color to be used in

the composition function (Eq:23). When the composition function reaches the end of the ray in the cube or

the accumulated alpha Aa reaches its maximum, the ray is interrupted and the resulting color Argb for the

ray in the corresponding pixel is the cumulated value.

4. Results

The proposed GPU implementation of the Volume Rendering technique presented in the previous sec-

tions has been tested with different settings and with different datasets. As the interactive and real-time

results depend on both hardware and software, it is very important to begin with the platform specifica-

tion used for the testing. In the following sections, medical volumetric datasets and weather radar volume

samples are used to validate that WebGL is a valid and promising technology for real time and interactive

applications.

4.1. Hardware and Software configuration. The tests for this article have been conducted using an

Intel Quad Core Q8300 processor, 4GB of RAM and a GeForce GTX 460, Windows 7 PRO 64 bits (Service

Pack 1) with the latest stable graphics drivers. Among all the Web browsers with full implementation of

WebGL standard, we have selected the following ones: FireFox Minefield 4.0b12Pre (2011/02/16)1, Chrome

9.0.597.982 and Opera 11.50 labs (build 246613.

It is worth to point out that both Chrome and Firefox in its default configuration use Google’s Angle

library 4 to translate WebGL’s native GLSL shaders to Microsoft’s HLSL language and compile and run

them through the DirectX subsystem. This procedure improves compatibility with lower-end hardware or

older graphics drivers. Firefox Minefield has been configured with two different settings by modifying some

keys in the configuration page about:config: (1) the default value of webgl.prefer-native-gl was set to TRUE.

(2) The default value of webgl.shader validator was set to FALSE. These changes basically disable Angle as

the rendering back-end end validator of shaders, thus directly using the underlying native OpenGL support.

See Table 7.1 for terminology precisions.

A LightTPD Web server5 was installed and configured in the same computer, to serve the dataset images,

the sample webpages (HTML and Javascript files) and the vertex and fragment shaders.

4.2. Medical Dataset. Figure 7.6 shows some graphical output for the medical dataset introduced in

the previous section. The 6 different axial views have been generated using 80 steps in the shaders im-

plementation (800×800 canvas rendered in the FirefoxDX configuration). Table 7.2 displays the recorded

statistics: Column 1: Browser configuration. Column 2: Number of steps selected in the shaders. Column

1http://ftp.mozilla.org/pub/mozilla.org/firefox/nightly/2011-02-16-03-mozilla-central
2http://www.google.com/chrome
3http://snapshot.opera.com/labs/webgl/Opera 1150 24661 WebGL en.exe
4http://code.google.com/p/angleproject
5http://www.lighttpd.net
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(a) Front View (b) Back View

(c) Top View (d) Bottom View

(e) Left Side View (f) Right Side View

(g) Used Transfer Func-

tion

(h) Applying Other TF

FIGURE 7.6. Subfigures (a), (b), (c), (d), (e) and (f) illustrate renderings of the axial
views of the sample volume dataset. The output was generated in 800×800 with 80
steps using FirefoxDX. Subfigure (g) depicts the applied transfer function, where
the left side represents the color and the right side the transparency (black=opaque,
white=transparent). With different transfer functions other outputs are obtained, as
subfigure (h) shows.
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Terminology Meaning

Chrome Chrome 9.0.597.98

Opera Opera 11.50 Labs b24661

FirefoxDX Firefox Minefield 4.0b13pre
with Angle and shader validation

FirefoxGL Firefox Minefield version
without Angle nor shader validation

TABLE 7.1. Terminology specification.

Browser N. Steps Load Time frame rate Memory
(msec) (frame/sec) (MB)

FirefoxDX 80 16677 69 204
FirefoxGL 80 308 94 102
Chrome 80 18062 77 153
Opera 80 82 108 74

FF-nA 140 302 60 95
Opera 140 118 66 73

FirefoxGL 170 281 51 95
Opera 170 102 54 77

FirefoxGL 200 312 44 96
Opera 200 111 48 81

TABLE 7.2. Results table for the medical dataset.

3: Loading times (milisec). Column 4: Qualitative frame rate (fps). Column 5: Memory usage (MB). The

dataset parameters and volume rendering shaders proved to be very influential in the experiment with We-

bGL rendered volume datasets. In order to realize the tests under comparable conditions, the web-browsers

were stopped and their caches emptied after each test execution. For numbers of steps larger than 80 Chrome
and FirefoxDX failed to compile the shader. Therefore, only Opera and FirefoxGL statistics are shown. For

numbers of steps smaller than 80, the measured FPS was truncated to 128 in all configurations due to the

selected measurement method.

4.2.1. Memory Usage. Regarding memory usage, Opera showed to be the least demanding browser,

being FirefoxDX the most consuming one. FirefoxGL dropped the memory usage resembling the one of

Opera. This fact leads us to infer that the current Angle implementation is the key factor in the memory

management since Chrome has consumption similar to FirefoxDX. For Opera, FirefoxDX and FirefoxGL,

a simple subtraction between the final and initial memory allocation suffices to estimate the memory con-

sumption. On the other hand, since Chrome implements the Out of Process technology, we have included

all running processes of Chrome (2 processes at the starting time and 3 processes after WebGL was loaded).

4.2.2. Loading Times. The loading time includes the (1) downloading of all the required files (assum-

ing a locally installed Web server), (2) compilation of the shaders and (3) first rendering of the webpage,

including the volume rendering. The results follow a similar schema in which Opera and FirefoxGL are

significantly faster than Chrome and FirefoxDX, due to the longer compiling time and shader validation of

Angle.

4.2.3. Frame Rate. Since the frame rate cannot be precisely determined, we have devised an empirical

measuring method. We forced the GL canvas to be redrawn continuously and then we have counted how
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many times the scene was rendered in a 5-seconds interval. We have repeated this procedure 5 times,

choosing the median value (i.e. after removing the two highest and the two smallest values) as the effective

frame rate. The results show that the frame rate is truncated to 128 fps at maximum (not shown in Table

7.2). This is considered to be a side effect of the chosen measurement method, based on the Javascript

setTimeout() function. Even with a parameter of 0 ms the browsers take a minimum time to call the

corresponding function, being it 10 ms in average for desktop Web browsers. Therefore, it is preferable to

increase the number of steps in order to get smaller frame rates and reduce this side effect. With higher

values of steps (only usable with Opera or FirefoxGL) Opera is slightly faster, consuming less memory and

requiring smaller loading times.

4.2.4. Dataset Resolution. This qualitative test was intented to show how the input dataset resolution

affects the final rendering quality. Using the same dataset, a modified version was created by reducing the

input resolution per slice from 5120×5120 to 1280×1280 (a reduction to 25% per dimension or to 6.25%

globally). The number of steps in the shaders were also varied, using 20, 50 and 80 steps with FirefoxDX
setup and a selection of the results can be shown in Figure 7.7. If the number of steps is small the banding

artifacts of the algorithm are noticiable, some aproximations could be implemented to solve this problem as

show by [106].

(a) 100% - 80 steps (b) 25% - 80 steps

(c) 100% - 20 steps (d) 25% - 20 steps

FIGURE 7.7. Resolution qualitative test. Cases (a) and (b) use 80 steps in the
rendering. Cases (c) and (d) use 20 steps. Cases (a) and (c) correspond to the full
resolution dataset. Cases (b) and (d) correspond to the reduced dataset. Even with
the dramatic reduction of the resolution, the volume render allows to identify the
main structures.

4.3. Medical Dataset in Portable Devices. The Mozilla Firefox Development Group has released a

mobile version of the browser for ARM devices called Fennec6. We have tested it on 2 Android-based

6http://www.mozilla.com/en-US/mobile
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devices: Samsung Galaxy Tab7 and Samsung Galaxy S smartphone8. Taking into account the hardware

limitations of such devices, we have scaled down the Aorta dataset to half resolution, reduced the HTML

canvas size and chosen a suitable number of steps to get quality results with the highest possible interactivity.

The test under this browser was quite straight-forward. No further modification in the implementation of the

shaders, Glue Javascript code or HTML Web page were required. Although we achieved a low frame rate

(about 2 or 3 frames per second), it was proved as possible the rendering of volume datasets in such mobile

devices. Further optimizations in the data or the implementation of the shaders, specifically oriented to such

devices, might result in better overall performance. We left such issues for future efforts.

FIGURE 7.8. A Samsung Galaxy Tab (left) and a Galaxy S Smartphone (right)
volume - rendering medical datasets.

4.4. Weather Radar Volumetric Dataset. Weather radars are devices used to scan the surrounding

atmosphere and determine its structure and composition, typically using the Doppler effect ([115]). Radar

scans are represented as 2D images in the form of either PPI (plan position indicator) or CAPPI (constant

altitude PPI) formats. The volumetric radar-scanned data may be approximated by a set of concentric cones

(figure 7.4), with each cone containing a sample set of the volume (figure 7.5). The volume-rendering

algorithms, therefore, must work with spherical coordinates for this purpose. This implementation of the

volume rendering can only be tested under Opera and FirefoxGL. Otherwise the shader compilation fails.

7http://galaxytab.samsungmobile.com/2010/index.html
8http://galaxys.samsungmobile.com

FIGURE 7.9. Application to define the transfer function for radar reflectivity visualization.
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In the case studies we have created a simple HTML user interface using jQuery (Figure 7.9) to interact

with the shader. It allows the tunning of parameters such as the window (zoom and offset), quality (number

of steps) and the transfer function (adapted specifically for this weather radar information). The zoom and

pan allow the users to conveniently interact with the radar data, which is not as regular as the medical images.

For instance, the useful information is found in the bottom of the volume (i.e. near the terrain). In addition,

the resolution in outer zones is lower than near the radar source. Due to their geometrical configuration, the

large area over radars is rarely scanned. Therefore, additional navigation controls for zoom and pan have

been implemented in the sample Web page, allowing in- and out- zooming in the volume and panning the

view. The radar captures periodic scans every 10 minutes. Therefore, some navigational functionality has

been added to help users to access the next or previous data in the sequence. As the loading time is rather

short, the possibility to create fully interactive 4D animations is totally open.

A very simple HTML-based editor for transfer functions was implemented, which allows the proper

analytic inspection of the radar data by changing the values and colors with the provided sliders. Figure

7.10 shows different visualization of the same radar sample, obtained by changing the transfer function

(affecting colors and opacity). The figure also shows the effect of variations in camera parameters (zoom,

pan and view orientation). The chosen number of steps was high enough to display a 800×800 canvas with

high quality images and yet to keep the visualization frame rate above 26 frames/second.

(a) (b) (c)

(d) (e) (f)

(g) (h)

FIGURE 7.10. Different weather radar volume renderings. Images (a) and (b) use
the traditional color mapping for reflectivity scans (measured in decibels, dBZ).
Images (c), (d), (e), (f), (g) and (h) have been generated by varying the transfer
function (color and transparency) and the window zoom and pan.

5. Contribution and Complexity Analysis

Our contribution is an implementation of a volume rendering system for the Web. The system is based

on the Volume Ray-Casting algorithm with a complexity of O(M ∗ S), where M is the number of pixels
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to be drawn and S is the number of steps of the ray that traverses the volume. Since the algorithm is

implemented in WebGL, its visualization speed is similar to native applications because it uses the same

accelerated graphic pipeline. The original algorithm has been slightly modified to work with the input

structures because of the lack of Volume Textures in WebGL. Therefore, our algorithm simulates the 3D

data by using a 2D tiling map of the slices of the volume maintaining the tri-linear interpolation, so there

is not a real loss in quality because the interpolation is the same as the used in the GPU. Even thought a

slight impact in performance could be generated for this interpolation, this is minimal and very difficult to

perceive because the browsers are not capable of handle such fast events. This is so because the browsers

are heavily dependent on several layers such as the shader compilers, hardware architecture, graphic drivers,

etc. Our algorithm was designed to run entirely in the client (which is the novelty of our proposal). Some

delays are obviously expected because of the network performance, and the interpreted nature of Javascript.

Our implementation9 does not evidence a real overhead for the server to present the data in 3D as occurs

in [93], therefore allowing more clients to be connected simultaneously. At the same time, more powerful

clients are required to handle this approximation.

The limitations in our method, even been WebGL compilant, stem from the fact that some browsers

do not adequately provide powerful enough shader language implementations to even allow compilation of

larger shader programs.

6. Conclusions and future work

Two different case studies (medical- and weather radar-imaging) presented here illustrate the capabilities

of complex volume rendering visualization in Web browsers. Although many performance improvements

and optimizations are still needed, the material discussed indicates that rendering volumetric data with Web

standard technology is applicable to many other technical fields. Such an initiative also re-ignites interest

for visualization functions implemented in the past for high-end desktop visualization applications. The

integration of our implemented software in the Web follows the upcoming HTML5 standard, namely a

Javascript API and the new WebGL context for the HTML5 canvas element (which gives the application a

professional look). The implementation of the algorithm in declarative languages as X3DOM is planned.

The scope of the present article did not include the integration of different rendering styles. However,

interactive and complex lighting integration are promising ways to improve render quality. The use of

multi-dimensional interactive transfer functions is also an promising direction to explore. The minor opti-

mizations that we already applied in this work allow us to expect that mathematically-planned negotiation

between speed performance and quality is a promising research field. An additional goal for minimization

is the optimized handling of time-varying datasets using videos instead of images as render input. since

video formats already minimize transmitted data by reducing temporal redundancy, it would be possible

to diminish the bandwidth currently required, for example, for animated render of radar-scanned weather

phenomena.

Another important evolution will be the integration of surface rendering within volume-rendered scenes

in order to visualize, for example, segmented areas in medical images or terrain surfaces. Some tests have

already been performed on desktop prototypes. This article lays the technical ground that would make the

integration of surface render in volume-render (via WebGL) possible and reasonable.

9http://demos.vicomtech.org/volren
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Volume visualization of medical images present a difficult field of study because the best model of

visualization is subjective and depends from the user and the objective. This work present a methodology

which interacts with the user and generates a personalize model of visualization for this kind of data.

This research has received the supported of the CAD/CAM/CAE Laboratory at EAFIT University and

the Colombian Council for Science and Technology COLCIENCIAS.
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Abstract

This paper presents an extension visual attention maps for volume data visualization, where eye fixation

points become rays in the 3D space, and the visual attention map becomes a volume. This Volume Visual

Attention Map (VVAM) is used to interactively enhance a ray-casting based direct volume rendering DVR
visualization. The practical application of this idea into the biomedical image visualization field is explored

for interactive visualization.

1. Introduction

Dense volume data visualization on conventional 2D monitors is a complex task due to the superposition

of many data layers in the view plane. Many different techniques have been proposed in order to enhance

or select different regions or data value intervals in the image, such as direct volume rendering (DVR) tech-

niques and the related transfer functions, but it is still an open problem. In the medical field, professionals

have more patients and image data, but less time for analysis, so techniques which help them increase the

image review quality and efficiency are becoming increasingly relevant.

Visual Attention Maps[116], VAM from now on, usually visualized as heat maps, depict the focus of

the users attention graphically using different values and colors for each location depending on the time the

user spent looking at it. This structure is generally constrained to a plane, since the eye tracking process is

usually related to the attention on a screen, and limited by the eye tracking system [117].

This paper presents an extension of VAM for volume data visualization, the Volume Visual Attention

Map (VVAM), where VAM become 3D volumes (see Figure 8.1), as a process to support and enhance the

online volume data visualization/analysis procedure in a ray-casting based DVR. A software prototype has

been developed in order to test the feasibility of the approach, which is able to compute the VVAM, and use

it to enhance a ray-casting based DVR method for medical volume image visualization, in real-time ( 60

fps), without any noticeable delay.

FIGURE 8.1. VVAM on medical image volume

2. Materials

Our prototype comprises several components:
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• A commercial, point-of-regard based, non-intrusive eye tracker. For a technical understanding of

the eye tracking techniques, the reader is referred to [117].

• A GPU based ray-casting DVR implementation previously presented in [106].

• The VVAM module implementation in GPU, integrated into the GPU ray-casting implementation,

so that it performs in real time.

Our system allows using the eye tracking interface to interact with the volume visualization in two different

ways: on one hand manipulating the virtual camera (zoom and rotate), and on the other hand by computing

the volume visual attention map, which in turn guides the real-time DVR process to enhance the most salient

regions.

3. Methods

When viewing a scene, the eyes perform two kinds of operations called saccades and fixations [117].

Fixations are relatively stable eye focus points and correspond to human cognitive processes where we

extract visual information that we process. Saccades on the other hand are unconscious rapid eye motions

with no relationship to any cognitive process, and usually correspond to the eye motion between consecutive

fixations. Therefore, only fixations are considered for the VVAM computation. In a conventional VAM a

fixation is defined by a 2D coordinate, p(x, y) and the time amount spent t, Fix2D(p, t).
In VVAM we define a fixation as a Gaussian cylinder that crosses the volume data using a projection

of the 2D fixation coordinates onto the volume data perspective view. The value of each point inside the

cylinder corresponds to a 1D Gaussian function on the distance to the cylinder centerline multiplied by the

normalized fixation time. Therefore, it is defined by the 3D coordinates of its centerline ends, pIn(x, y, z)
and pOut(x, y, z) the radius, r, the fixation time, t, and the 1D Gaussian function parameters, G, that is,

Fix3D(pIn, pIut, r,G, t).
3D attentional maps were previously introduced by [118]. Although, the authors use them for offline

attention analysis, and their visualization method was not well suited for ray-casting DVR. As opposed to

theirs, our definition naturally deals with the specific characteristics of ray-casting based volume data visu-

alization. Ray-casting represents a blending of many layers, instead of depicting the closest layer only. We

simulate this fact by using a volume crossing cylinder. The addition of a Gaussian function, not considered

by [118], corrects minor accuracy errors in the eye tracking procedure. It also takes into account that eyes

do not necessarily focus on only one point, but on a region, and that points closer to the center point have

more relevance for the user.

The VVAM computation follows the next steps: identifying fixations in 2D, then obtaining the fixation

cylinder input and output coordinates, and finally adding the fixation cylinder contribution to the VVAM.

There are many different kinds of VVAM. For our system we chose the time normalized version, without

a forgetting factor. This method allows time varying region selection, and it is more convenient to avoid

implementation value overflows and to reduce the computation cost of the fixation cylinder values. After

adding each fixation, time measures are normalized, and the whole VVAM values are updated. Both, the

fixation cylinder computation and VVAM update procedures are time consuming, so taking advantage of

our GPU based ray-casting implementation, we have implemented the VVAM computation into an OpenGL

fragment shader.

The VVAM is provided to the ray-casting fragment shader so that the volume visualization is adapted to

the users attention focus, modifying the values provided by the original opacity and color transfer functions.

Volume regions with higher VVAM values look more opaque and more color saturated, while lower valued

regions have a reduced opacity, and are less saturated are represented with higher detail level, using a denser

sampling of the volume set along the ray-casting ray (see Figure 8.2). Alternative enhancements are also

possible.
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FIGURE 8.2. Left: No VVAM based enhancement. Right: VVAM enhanced visualization.

Figure 8.2 on the left depicts a low detail level DVR, where the VVAM is still empty, while the picture

on the right shows the same perspective of the volume, where the user has focused on a region, forming an

ellipsoidal shape. The low quality of the non-focused region has been exaggerated, so that the difference

is clearly noticeable in the pictures. Nevertheless, the difference is clearly perceptible on any conventional

computer monitor. And Figure 8.1 shows a heat map based VVAM representation which corresponds to the

VVAM in Figure 8.2, right.

Eye tracking is also used to modify the model viewing perspective. The virtual camera can orbit around

the volume data and zoom in/out. Currently, the keyboard is used to set the specific camera action to perform,

while eye-gaze is used to set the action location (context) and to trigger it.

The interaction sequence consists of using the rotation and zoom controls to look at the regions of

interest for the medical professional from different perspectives, so that as time goes by, those volume

regions of interest are highlighted and the surrounding data fades away progressively.

In [119] an alternative way to use eye-gaze for enhanced ray-casting based DVR is proposed. In that

paper the volume data is constantly rotating around its center and the user is asked to keep the focus of

attention on the region of interest while this rotation takes place. Afterwards, the visualization parameters

are automatically tuned to highlight the regions which were the focus of attention. We consider that our

system has several advantages over that one. First of all, our process is completely interactive and online

as opposed to theirs, because the user perceives a real-time feedback with the enhancement of the current

selection. In addition, we consider that focusing on a 3D region while the volume is rotating is much

more difficult than making the user select several view planes, using eye interaction too, and focusing on

each of these static views, and even more difficult if the user wants to select several non-connected regions

simultaneously.

4. Conclusions & Discussion

We have presented an adaptation of the Visual Attention Maps to the interactive ray-casting DVR visu-

alization, which includes the definition of the VAM for 3D volumes, denoted as Volume Visual Attention

Maps (VVAM), and its online usage to enhance or highlight the volume data regions of interest. We have

also implemented a prototype to test the feasibility of the approach and its suitability in the medical image

visualization field.

We consider that this new technique can increase the effectiveness and efficiency of ray-casting DVR
visualization, especially in the medical image visualization field. Effectiveness can be improved in two

ways: firstly because VVAM can be used to track which image regions have been reviewed by the medical

professional, and which remain unexplored, to avoid skipping any detail; and secondly because it has a
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didactic potential, to teach future medical professionals the right way to review images. Efficiency comes

in terms of time, as eye based virtual camera manipulation can be quicker and more natural than using a

mouse, and because this natural way to enhance complex regions automatically permits focusing in what is

really important for the professional. There is a final benefit in the usability and naturalness of the approach.

Our approach is intuitive, since it is grounded in the common behaviour of humans when looking at a scene,

which is to focus on what it is really important to the user. In addition, our approach provides the user with

real-time feedback of the focus region, which helps in the selection refinement. These two characteristics

make the interface natural, in the sense that it has a flat learning curve and a low cognitive load.

Currently the eye based camera interaction requires the use of the keyboard, but we are working on

using voice commands for this control. In the same sense, even although this system has been designed for

eye based interaction, it could also be used with conventional keyboard and mouse interaction, if the eye

tracking device is not available. In this particular case, the concept of VVAM would be more related to a

complex shape 3D selection technique guided by the mouse cursor position.

Finally, we are considering the migration of this system to a web based application, following the current

trend in cloud computing and thin client based solutions for medical image visualization as it is part of our

roadmap [120].
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The Web3D consortium develops standard for the visualization of medical images and a great collabo-

ration between the consortium and the research group for volume visualization integrated by Vicomtech and

CAD/CAM/CAE Laboratory was stablish. This work present an integration of the methodologies developed

for volume visualization in the standard of MEDX3D of the Web3D.

This work was partially supported by the Basque Government’s EMAITEK research programme and

CAD/CAM/CAE Laboratory at EAFIT University and the Colombian Council for Science and Technology

–COLCIENCIAS–. Also we want to thanks Yvonne Jung for their support and help with the integration of

the code into X3DOM project, and Luis Kabongo for his help in the volume styles algorithms.
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FIGURE 9.1. X-ray style volume rendering with MEDX3DOM

Abstract

We present an implementation of MEDX3DOM a MEDX3D standard implemented into the X3DOM
framework. The article present the report of a work in progress of the implementation identifying the

critical sections to be migrated into the new architecture, and possible extensions of the standard on the Web

environment. Results for the early implementation are shown, where the visualization of medical datasets

with advance direct volume rendering algorithms is obtain under the X3DOM architecture with interactive

framerates and good image quality. An example of the HTML5/X3DOM document is presented and its

result is shown. Preliminary results are discussed and future work is presented.

1. Introduction

MEDX3DOM is a work in progress implementation to support advanced medical visualization func-

tionality on the Web without plugins. It is based on the ISO standard MEDX3D (Ref. [121, 122]) and

implemented into X3DOM (Refs. [103, 123, 124]). MEDX3DOM is based on the previous work for volume

visualization in WebGL (Refs. [120, 125]). MEDX3DOM reads medical data in diverse formats such as

DICOM, NRRD and Raw formats. The output is defined by a collection of volume visualization styles for

Direct Volume Rendering (DVR) algorithms.

DVR algorithms were initially presented by Blinn and Kajiya (Ref. [126, 127]) allowing the visualization

of all inner characteristics of volumes at once. A comparison between different DVR algorithms, such as

Texture Mapping, Raycasting, Splatting or Shear Warp, was presented [128]. Raycasting is one of the best

algorithms for DVR which was proposed by Levoy (Ref. [89]). Its main idea is to calculate the volume

rendering integral along rays launched from the view window into the volume. Thus, in this method, the

color and opacity of each pixel in the final image are evaluated by accumulating the contribution of discrete

samples of the ray that intersects the volume. Futher developments in raycasting for accelerated hardware

using OpenGL were collected by Hadwiger (Ref. [90]).

The Khronos Group released the WebGL 1.0 Specification in March 2011. It is a JavaScript binding

of OpenGLES 2.0 API and allows a direct access GPU graphical parallel computation from a web-page.

Calls to the API are relatively simple and its implementation does not require the installation of external

plug-ins, allowing an easy deployment of multi-platform and multi-device applications. Browser based
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3D middleware frameworks have been presented using WebGL as a rendering backend such as GLGE1,

SpiderGL (Ref. [129, 130]), SceneJS2, WebView3D3, XTK4. XML3D (Ref. [131]) and X3DOM (Ref.

[103]) present a declarative model for 3D visualization on Web using WebGL as one of the backends.

Declarative programming is a model of data and logic representation focused on the description of the

model more than the control flow. Markup languages are one of the declarative models which are extensively

used in the web, e.g. HTML, XML, SVG, MATHML, etc. X3D5 is a declarative XML-based markup lenguage

for the representation of 3D data. MEDX3D is an extension of X3D supporting the advanced medical

visualization functionality.

Medical visualization is a challenging scientific field since the interpretation of images leads to clinical

intervention. Therefore, quality and fast interactive response are important features in this domain. Remark-

able advances have occurred in medical imaging technology and recent applications supports the possibility

of sharing imaging data online across clinical and research centers and among clinicians and patients. Image

formats such as DICOM or NRRD allow to store medical volume data acquired by diverse techniques such

as computer tomography (CT), magnetic resonance imaging (MRI), diffusion magnetic resonance imag-

ing (dMRI), positron emission tomography (PET), ultrasound and others. A formalized and standardized

model of visualization for medical imaging allows a correct interpretation of the images in heterogeneous

architectures like Internet.

The contribution of this article is the implementation of the MEDX3D standard using the X3DOM
architecture, allowing the advanced medical visualization functions to be used in heterogeneous architec-

tures. Also the generation a common framework for medical visualization which can be used, formalized,

extended and tested in several devices and platforms.

The article is organized as follows. Section 2 presents the work related to this article, including a

description of volume rendering techniques, visualization of medical images. The methodology of the

developed work is explained in Section 3. Then, the results accomplished are presented in Section 4, and

finally, Section 5 states future developments.

2. Related Work

2.1. Visualization of Medical Images. Advanced visualization of medical images require the use of

algorithms with high computer processing demand. Client/Server architectures allow the distribution of

computer processing in several models. They can be classified as Fat Client, Thin Client and Hybrid. Each

one of them has specific characteristics.

2.1.1. Fat Client. In the Fat Client model, all the processes are made in the client, freeing the server

for data storage and communication only. This approximation depends heavily of the processing power

of the client and the visualization quality or interactivity of the application is not guaranteed. Masseroli

(Ref. [132]) presents an architecture based on Java Applets in which the server is used for storage and

communication only, the visualization of medical images is based on 2D slices of the datasets and basic

tools for editing are implemented. Hamza (Ref. [133]) presents an architecture for the visualization of

medical images in 3D as a set of surfaces with transparency using X3D. Cantor Rivera (Ref. [134]) presents

a visualization framework based on the libraries of VTK6 for reading images and extracting the geometry,

and uses WebGL for the client rendering.

1www.glge.org
2www.scenejs.org
3www.arivis.com/en/arivis-WebView/arivis-WebView-3D
4www.github.com/xtk/X/wiki
5www.web3d.org/x3d/
6www.vtk.org
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2.1.2. Thin Client. Thin client allows the use of lightweight clients for visualization, but all the compu-

tational process is performed in the server. Scalability of the system is very difficult to achieve because for

each new client using the service the server load increase. Nevertheless, the use of this model allows the use

of low power devices and the visualization is the same for all the clients. Poliakov (Refs.[135, 136]) presents

a model of Web Service visualization for medical imaging where the render is made on the server and send

to a JAVA client application through the network. Blazona (Refs. [137, 138]) presents an architecture where

the client uses X3D web plugins for the final visualization but the server side is responsible to generate the

models that will be visualized. Smelyanskiy (Ref. [139]) presents a set of medical visualization algorithms

optimized for parallel architectures and distributed computing.

2.1.3. Hybrid. Hybrid methods share the processing capabilities of the server and the client, but, since

communication is required, network latency can generate several problems for the generation of the inte-

grated images. Yoo (Ref. [140]) presents a hybrid method which uses video streaming for the visualization

of volume models integrated with geometry data in the client. Seamless visualization of volume data and

geometry can be found in the work of Mahmoudi and Settapat (Refs. [141, 142, 143]), these works uses the

client’s 3D capabilities but uses server processing for the heavy computational process and the extraction

of specific visualizations. These models also allow the implementation of advanced tools of image process-

ing and collaborative visualization. A very interesting approximation for hybrid models was presented by

Jomier (Ref. [144]), in which the visualization of large datasets can be performed and different backends

for rendering, depending on the client capabilities, are used.

2.2. MEDX3D. MEDX3D (Ref. [121]) is an extension of the X3D ISO standard to support advanced

medical visualization functionality. The standard presents a set of tags which allow to read different vol-

ume formats such as DICOM, NRRD or Raw data. Also, the standard defines volume styles visualizations

which allow to render with different non-photorealistic models, enhancing specific regions of the volume

which normally represent interesting regions to be visualized, such as edges, blobs and occlusions. Several

applications on Web are used in medical fields (Ref. [108]). One of the applications is medical training

simulations (Ref. [145]). In this work a simultaneous visualization and haptic interaction was presented.

Extensions for the MEDX3D standard are proposed by Fried and Ullrich (Refs. [146, 147]).

3. Methodology

MEDX3DOM implements the standard MEDX3D in X3DOM. The implementation is based on the gen-

eration of the nodes for two components: Texturing3D and VolumeRendering. The actual status of the

implementation declares all nodes for X3DOM architecture but only the some basic functionality are imple-

mented.

Texturing3D nodeset define the tags to work with the information of 3D data, specific readers for file

formats such as DICOM, NRRD and raw data are part of the standard. Other kind of data sources could be

implemented like WADO, which is an specification for a WebService to obtain DICOM data. 3D texture

data is normally stored in a Texture3D structured which is part of common 3D APIs like OpenGL. This

structure is not available in WebGL and a mapping between a Texture3D and a Texture2D was define in

order to overcome this limitation. This mapping is defined as a shader function (Fig. 9.2).

Volume data is storage in atlas format. An example of medical volume dataset represented in this format

is shown in figure 9.3. This model of representation also allows the storage of preprocessed data such as

image gradients shown in figure 9.4, where each color magnitude represent the direction of the gradient

vector for each axis.

Given the flexibility of the X3DOM architecture the transfer functions can be store as images, an ex-

ample of a two dimensional transfer function is presented in figure 9.5. Its also possible to use a video
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vec4 cTexture3D(sampler2D uData,vec3 volpos)
{
float s1,s2;
float dx1,dy1;
float dx2,dy2;

vec2 texpos1,texpos2;

s1 = floor(volpos.z*numberOfSlices);
s2 = s1+1.0;

dx1 = fract(s1/slicesOverX);
dy1 = floor(s1/slicesOverY)/slicesOverY;

dx2 = fract(s2/slicesOverX);
dy2 = floor(s2/slicesOverY)/slicesOverY;

texpos1.x = dx1+(volpos.x/slicesOverX);
texpos1.y = dy1+(volpos.y/slicesOverY);

texpos2.x = dx2+(volpos.x/slicesOverX);
texpos2.y = dy2+(volpos.y/slicesOverY);

return mix( texture2D(uData,texpos1),
texture2D(uData,texpos2),
(volpos.z*numberOfSlices)-s1);

}

FIGURE 9.2. GLSL Fragment shader function to map a volume coordinate to a
texture 2D atlas, the variables numberOfSlices, slicesOverX , slicesOverY are
uniforms and represent the number of slices of the volume, the rows and columns.

texture for transfer functions or volume data, allowing the animation of the models without a maintaining

the interactivity of the visualization and showing the image in a dynamic way (Fig. 9.6).

The implementation of the MEDX3D standard into X3DOM allows the declaration of volume visual-

ization in X3D and visualized the render in browser without the use of plugins. The files follow the standard

MEDX3D but the image texture is defined as a Texture2D structure. The file format is presented in the

figure 9.7, were an extraction of and HTML5 file is presented were a volume is rendered in a webpage.

4. Results

We present an early implementation of the MEDX3DOM proposal, which allows visualization of med-

ical volume datasets following the guidelines of the MEDX3D standard. The implementation is partially

integrated with X3DOM using the WebGL backend and showing some basic styles of volume rendering.

97



FIGURE 9.3. Texture atlas with the volume data for the aorta dataset

FIGURE 9.4. Texture atlas with the volume gradient data for the aorta dataset, en-
hanced color for better visualization.

Data reading is implemented using the previous model of image atlas, but different test show the easy

integration of NRRD and raw data readers into Javascript and X3DOM. DICOM is a very extensive and

complicated file format and the implementation of a reader in Javascript its not recommended. But compiler

translation technologies like emscripten7 allows the generation of Javascript code from C or C++ languages,

some test show the correct implementation for image formats as TGA or JPEG2000, the translation of

DICOM format could be possible and some libraries had been initially tested such as DCMTK.

Volume storage in the client is made with a Texture2D structure, the limit of the structure in the WebGL
implementations restricts the size of the volume to be rendered. Some alternatives can be implemented such

7www.github.com/kripken/emscripten
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FIGURE 9.5. 2D transfer function image, background squares represent are pre-
sented to visualize the transparency value.

FIGURE 9.6. Volume rendering with a color-full transfer function.

as Level of Detail for volumes or Compressed Textures. Nevertheless this restriction is hard to solve and the

impact in the visualization is critical in low graphics memory devices.

Volume Styles are not fully implemented, and only some simple styles are presented. The render

pipeline of the Styles follow the implementation of H3D. It’s expected that the other styles could be easily

integrated into the architecture.

5. Future Work

Optimization models for the raycasting algorithm such as empty space skipping, pre-multiplied transfer

functions, ray jitter can be integrated into the rendering pipeline to enhance the quality of the render. Other

visualization models such as Multi-Planar Reconstruction (MPR) are going to be integrated in MEDX3DOM.

Vector fields are another representation for medical visualization used specially for dMRI datasets. This

representation need preprocessing models to be visualized know as Flow Visualization (Ref. [148]). Linear

Integral Convolution (LIC) is a methodology to visualize this kind of data and will be integrated in the

implementation.
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<html>
<head> ... </head>
<body>
<h1>Volume Rendering</h1>
<X3D xmlns=’http://www.web3d.org/specifications/x3d-namespace’
showStat=’true’ showLog=’true’ width=’500px’ height=’500px’>
<Scene>
<Background skyColor=’0 0 0’/>
<Viewpoint description=’Default’ zNear=’0.0001’ zFar=’100’/>
<Transform>
<VolumeData id=’volume’ dimensions=’4.0 4.0 4.0’>
<ImageTexture containerField=’voxels’
url=’aorta4096.png’/>
<OpacityMapVolumeStyle> </OpacityMapVolumeStyle>

</VolumeData>
</Transform>

</Scene>
</X3D>
</body>
</html>

FIGURE 9.7. HTML/X3DOM file fragment to visualize a volume using
MEDX3DOM, Texture image defined in atlas format

Hybrid visualization of volumes and geometry is important for the visualization of medical dataset

where the volume is registered with other geometry, e.g. Brain Volumes and Tractography (Ref. [149]),

Head Volumes and Dental Surfaces, etc. This hybrid visualization is going to be integrated in MEDX3DOM.

Transfer functions are a fundamental tool for the correct visualization of volumes. Prototypes of au-

tomatic generation of transfer functions by visual clues, know as Visual Volume Attention Maps (VVAM)

(Ref. [150]), has been developed and the methodologies are going to be tested in MEDX3DOM.

Use of the volume rendering technology can be used for other datasets besides medical images, such

as geovisualization of weather data (Ref. [151]), ocean data, underground structures or mechanical compo-

nents. Some of this datasets are going to tested in the implementation.
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The visualization of medical images is an active field of research and the implementation of the volume

rendering methodologies developed in during the Ph.D., results in several collaboration aggredments with

other institutions. This work present the results for the visualization of Medical Images from the Children

Hospital and the Institute of Neuroinformatics using the Volume Rendering methodology researched in

Vicomtech and CAD/CAM/CAE Laboratory.

This work was partially supported by CAD/CAM/CAE Laboratory at EAFIT University and the Colom-

bian Council for Science and Technology -COLCIENCIAS-
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Abstract

In the field of computer graphics, Volume Rendering techniques allow the visualization of 3D datasets,

and specifically, Volume Ray-Casting renders images from volumetric datasets, typically used in some sci-

entific areas, such as medical imaging. This article aims to describe the development of a combined visual-

ization of tractography and volume rendering of brain T1 MRI images in an integrated way. An innovative

web viewer for interactive visualization of neuro-imaging data has been developed based on WebGL. This

recently developed standard enables the clients to use the web viewer on a wide range of devices, with the

only requirement of a compliant web-browser. As the majority of the rendering tasks take place in the client

machine, the effect of bottlenecks and server overloading are minimized. The web application presented

is able to compete with desktop tools, even supporting high graphical demands and facing challenges re-

garding performance and scalability. The developed software modules are available as open source code

and include MRI volume data and tractography generated by the Diffusion Toolkit, and connectivity data

from the Connectome Mapping Toolkit. Our contribution for the Volume Web Viewer implements early ray

termination step according to the tractography depthmap, combining volume images and estimated white

matter fibers. Furthermore, the depthmap system extension can be used for visualization of other types of

data, where geometric and volume elements are displayed simultaneously.

1. Introduction

Three-dimensional data can be found in several scientific fields, coming from simulation, sampling or mod-

eling processes. Regarding the biomedical scope, several scanning techniques, such as magnetic resonance

(MRI) or computerized tomography (CT), are used for storing body imaging samples as volumetric datasets

formed by groups of parallel slices, where the term volumetric dataset refers to a scalar field. These datasets

are usually visualized in three dimensions in order to facilitate specialists to interpret information.

FIGURE 10.1. Combined visualization of volume rendering and tractography in-
formation on the web

Visualization of medical volumetric datasets can suitably be performed by the use of Direct Volume Ren-
dering algorithms. These methods show important characteristics of datasets, even though rendering is not

usually photo-realistic.The problem addressed in this paper is the visualization of tractography information

obtained from dMRI (diffusion MRI) together with volume data corresponding to MRI or CT images.
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In order to represent the volumetric datasets, volume rendering techniques allow the visualization of all

inner characteristics of volumes at once, by projecting data into 2D images, according to the corresponding

position of a virtual camera. The main idea of the ray-casting algorithm is to launch rays from the camera

into the volume, calculating the volume rendering integral along the rays. Thus, in this method, the colour

and opacity of each pixel in the final image is evaluated by launching a ray in the scene from the view

position, sampling the volume at discrete points along the ray and accumulating the contribution of each

sample.

Our contribution is an implementation of a web rendering system for medical images, which integrates

volume rendering and geometric objects within a compliant WebGL browser, based on the volume ray

casting algorithm and built on previous developments [152]. Due to the technology limitations of Webgl,

the improvements developed allow us to create a web application for combined visualization of volume

rendering and tractography, as shown in Figure 10.1, being able to compete with desktop tools, supporting

high graphical demands and facing challenges regarding performance and scalability.

The article is organized as follows. Section 2 presents the work related to this article, including a description

of volume rendering techniques, visualization of medical images and geometry intersection. The method-

ology of the developed work is explained in Section 3. Then, the results accomplished are presented, and

finally, Section 5 states the conclusions and future developments.

2. Related Work

2.1. Volume Rendering. In computer graphics, Ray Casting is a well known direct volume rendering

technique that was designed by Kajiya and Herzen [153] as one of the initial developments in this area. Tra-

ditionally, three dimensional objects have been created by using surface representations, drawing geometric

primitives that create polygonal meshes [154], hence provoking the loss of information from one dimension.

Further developments [155] accomplished the mathematical modeling of the ray casting process, based on

the light’s behaviour equations. Thus, the volume rendering integral was defined. A comparative between

different direct volume rendering algorithms, such as Texture Mapping, Ray Casting, Splatting or Shear

Warp, was presented [97]. Ray casting is a flexible algorithm that allows the implementation of acceleration

methods, such as Empty Space Skipping [156] or Early Ray Termination. Early ray termination is an

optimization process that establishes certain limitations in the volume, so that the samples encountered after

them do not contribute to the value of the pixel.

Ray casting suitably fits GPUs’ operating mode [157], because of the independence of each ray that is

launched to the scene, making this algorithm highly parallelizable and allowing the exploitation of GPUs’

parallel architecture. For GPU ray casting, the volume element is stored in the GPU memory as a 3D texture

and a fragment shader program is used in order to implement the ray casting algorithm.

A quality evaluation model was developed for comparing the different Direct Volume Rendering techniques

[158]. These methods handle a higher amount of data than surface rendering techniques, therefore, the

complexity of the algorithms is increased, as well as the necessary rendering time [159]. Optimized volume

rendering methods avoid empty spaces by introducing a volume proxy geometry [160].

Web 3D Rendering. The use of the recently released WebGL standard [96] leads to new methods for

web 3D visualization, where most part of the computational processes are performed in vertex and fragment

shaders that run on the GPU hardware. WebGL is a software library that enables HTML5-based browsers to

identify clients’ graphics hardware. HTML5, the latest Internet standard propose, provides native elements

for audio and video. WebGL consists of a low-level imperative graphic programming API based on Open-

GLES 2.0 for Javascript that enables flexibility and exploits the characteristics of advanced graphics cards.

Due to the constant improvement of the performance of Javascript interpreters, the management of scene

elements behaves similarly to the ones obtained by using natively compiled languages. Moreover, some

WebGL extensions have been implemented in order to achieve a friendly interaction, such as SpiderGL

[161].
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Several standards and proprietary solutions are currently being developed in order to fulfil the necessity

of moving 3D visualization into the web [111], such as X3D, a standard derived from VRML that stores

3D information in a scenegraph format using XML (Extensible Markup Language). This model has been

implemented in a declarative form, as an extension of HTML; X3DOM presents a framework for integrating

X3D nodes into HTML5 DOM content [103] and other alternatives have also been developed, e.g. XML3D

[162]. Finally, there is a standardization for X3D in the MedX3D volume rendering model [163, 164].

2.2. Visualization of Medical Images. Medical visualization is a challenging scientific field because

interpretation of images may lead to clinical intervention. Therefore, quality and fast interactive response are

important features in this domain. Remarkable advances have occurred in medical imaging technology and

applications in the past few years, supporting the possibility of sharing imaging data online across clinical

and research centres and among clinicians and patients. The development of these kind of applications is

influenced by connectivity, security and resources’ heterogeneity concerns.

On-server rendering can be considered a partial solution for Medical Imaging [165]. Moreover, several web

implementations for volumetric visualization have already been presented [163], although many of these

solutions require third party systems to allow visualization or their scalability is limited by the rendering

server.

As medical volumetric imaging requires high fidelity and high performance, several rendering algorithms

have been analyzed, leading to thread- and data-parallel implementations of ray casting [166]. Thus, archi-

tectural trends of three modern commodity parallel architectures are exploited: multi-core, GPU, and Intel

Larrabee. Other approaches describe the development of web-based 3D reconstruction and visualization

frameworks for medical data [167]. Such applications based on X3D technology allow extending cross-

platform, inter-application data transfer ability. Several applications have been implemented using web 3D

rendering techniques, for example, evaluation systems at the educational level [108] or medical training

simulations [145].

dMRI. Diffusion Magnetic Resonance Imaging (dMRI) relies on the visualization of water diffusion

using data from MRI. Diverse methodologies have been presented over the last years and can be classified

into two categories: Image based and Object based techniques. The first methodology divides the space in

voxels and the assigned colour represents the principal diffusion direction [168]. However, tracks can not be

easily identified since no segmentation of the visualization is performed, and therefore direction informa-

tion is difficult to observe since voxel colour mapping is not one-to-one, i.e., different directions might be

represented by the same colour. Otherwise, in object based methodologies, objects, such as ellipsoids and

lines, are used together with colour mapping in order to enhance visualization and give a direction sense to

the representation.

Visualization of brain white matter cortical tracks is one of the most important applications of dMRI, since

it allows to non-invasively visualize white matter anatomy, and detecting of anomalies [169, 170]. Tractog-

raphy, which refers specifically to the representation of the white matter tracks based on the water diffusion

information, employs lines to represent the diffusion direction and to visualize the white matter paths. In

general, lines are generated using randomly distributed seed points; together with the principal diffusion

information and a prescribed interval of time, the different paths are generated. However, this representation

becomes dependent on the amount and location of seed points to correctly visualize tracks [171] because

erroneous connections might be produced between tracks due to the existing error in data. Incorrect visual-

ization of branching of tracks is another drawback, since only one path is generated per each seed point.

Probabilistic methodologies have been proposed [171] to represent branching of white matter tracks, in

which secondary seed points are included in regions in which branching is assumed. Therefore, a denser

visualization is performed in those regions. An algorithm was proposed for path visualization [172], in

which the different global paths are simplified by one simple curve, clustering the different paths and then

using average curves to obtain one simple curve that summarizes each cluster.
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2.3. Geometry Intersection. The application described in this article requires representing volume

rendering and tractography together, i.e., both volumetric and polygonal data have to be displayed in the

same scene. There are several models for combining polygonal geometry and volume rendering. Some

methods identify the intersection between rays launched in the volume rendering process and geometry

[173]. This technique can be optimized by creating octrees for dividing the geometric space and prove

intersections correctly.

Other models try to achieve a correct visibility order for the intersections between volume and geometry

[90]. Geometry has to be rendered in the first place to correctly look at the intersections of the geometry

and the volume. Besides, parts that are occluded by the geometry should not contribute to the final image,

not performing any ray casting at all. In order to achieve this feature, rays should terminate when they hit

a polygonal object, accordingly modifying the ray length image if a polygonal object is closer to the view

point than the initial ray length.

3. Methodology

In our project, the results of the Connectome Mapper are directly loaded in the browser using WebGL

and JavaScript. The FreeSurfer cortical surface reconstruction binary files are loaded and processed in

JavaScript and converted to WebGL vertex buffer objects for rendering. The surfaces are overlaid with

per-vertex curvature values computed during the FreeSurfer processing stream. The tractography data is

likewise parsed in the JavaScript code and rendered as line primitives coloured based on direction. Finally,

the structural network itself is converted to JSON (JavaScript Object Notation) as an offline preprocess and

loaded into the browser using JavaScript. The networks are visualized in 3D along with the fiber tracts and

volumes enabling exploration of connectivity information in real-time.

The work described in this paper has been developed using volume ray casting, a widely used algorithm

for generation of 2D representations from three dimensional volumetric datasets. The obtained images are

2-dimensional matrices I : [1, h] × [1, w] → R
4 (w: width and h: height, both in pixels). Each pixel is

represented by a colour expressed by a four-tuple of red, green, blue and alpha real-valued components,

(R,G,B,A ∈ [0, 1]).
An entire volume is represented by a 3-dimensional array of real values V : [1, H]× [1,W ]× [1, D]→ [0, 1]
(H: Height, W: Width, D: Depth of the represented volume, all of them in positive integer coordinates).

Therefore, V (x, y, z) ∈ [0, 1]. The projection model used in this work is called pin-hole camera [114]. The

pin-hole camera technique uses intrinsic K ∈ M3×4 and extrinsic R ∈ M4×4 real-valued matrices in order

to project every 3D point p ∈ P
3 onto a 2D point p′ ∈ P

2.

The volume ray casting algorithm defines the colour for each pixel (i, j) in the image, which is also known

as projection screen, I , according to the values of a scalar field V (x, y, z). This scalar field is associated

to the points (x, y, z) reached by rays that are originated at a certain pixel or camera, represented as C in

Figure 10.2. A cuboid geometry is generated with coordinates (0, 0, 0) to (1, 1, 1). This cube represents

the boundary established for the volumetric dataset. Each ray intersects with the cuboid volume V at points

p(i,j)(x, y, z) and q(i,j)(x, y, z), which represent the input and output coordinates of the ray into and out

from the volume, respectively.

Then, each obtained ray pq is equi-parametrically sampled. For every sampled point s(x, y, z) over the

ray, an approximation of the scalar field V (s) is calculated, commonly by using trilinear interpolation. The

sampled points also influence the colour of the originating pixel, due to the use of a composition function

(Equations 43-46), where the accumulated colour Argb is the colour of the point s in the volume V , and Aa

is the transparency component of the pixel, which has a value of 1 at the end of the rendering process. Given

a certain set of coordinates (x, y, z) in the volume and a ray step k, Va is the scalar value of the volume V ,

Vrgb is the colour defined by the given transfer function Va, S represents the sampled values over the ray

and Of , Lf are the general Opacity and Light factors.

108



Sa = Va ×Of ×
(
1

s

)
(43)

Srgb = Vrgb × Sa × Lf(44)

Ak
rgb = Ak−1

rgb +
(
1−Ak−1

a

)
× Srgb(45)

Ak
a = Ak−1

a + Sa(46)

In the ray casting process performed in this work, geometry G is formed by a set of segment lines L (although

G could also be represented as a set of points P or triangles T ). Each segment L is defined by two points

in the space. Lines are projected through projection matrices onto a different image, where the values of

colour (r, g, b, a) and depth (depth) are defined for each pixel (x, y).

p 

q 

C 

V 

V1 

V2 

V3 

G1 

G2 

FIGURE 10.2. 2D representation of the ray casting algorithm performance (types
of ray termination)

Each pq ray traverses the cuboid volume V , where both volume elements Vi and geometries Gi are rendered

in the same process by modifying the early ray termination method, as depicted in Figure 10.2. This tech-

nique checks the alpha value for each sample of the transparency colour of the ray. If the value Va is equal

to 1, which means that the ray has reached the final colour, the remaining steps of the ray are not evaluated.

Rays might terminate due to several reasons: when encountering a very dense volume (such as V1 in fig.

10.2), when intersecting with a geometric element (e.g. with G1) or when exiting the boundary cube, at

point q.

The early ray termination model is also used to check the length of the ray and compare it to the depthmap

of the figure. In conclusion, a projection of the geometry is obtained, as well as the colour and depth for

each pixel in the image. This information can be compared to the length of the ray, terminating the ray when

the alpha value is 1 or when the depth is equal to the geometry depth.

4. Results

This section describes the accomplished implementation of a real-time web viewer for both direct volume

rendering and tractography visualization. This work is based on the WebGL standard and performs the ray

casting algorithm with an early ray termination optimization.
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4.1. Tractography. The Connectome Mapper [174] is a publicly available software that provides a

pipeline to automatically generate structural networks from raw dMRI data of the brain. Gray and white

matter segmentations are obtained by processing T1 MPRAGE MRI using the Freesurfer set of tools. The

Diffusion Toolkit is used later for reconstruction. A deterministic streamline algorithm is used to obtain

tractography, by generating fiber tracts of the same subject. For cortical and subcortical regions of interest,

a parcellation is performed. Finally, these datasets are coregistered and a network is generated by weighting

the connectivity between regions based on the fiber tracts [175].

4.2. Data Processing and Volume Interpolation. For the developed work, all the slices that corre-

spond to a certain volume are composed into a single image, as shown in Figure 10.3. This image is

generated by placing slices in a matrix configuration as a preprocessing step of the rendering algorithm. The

size of the image stored in GPU memory could range from 4096 × 4096 on a PC (which can contain up

to 2563 volume) to 1024x1024 on other devices (which can contain up to 128 × 128 × 64). The screen

resolutions being reduced on mobile devices it seems reasonable to scale down or even crop the volumes

original dimensions in order to match the maximum GPU available memory.

FIGURE 10.3. Brain dataset in mosaic form, read by the shader

In medical imaging, the sample bit depth is usually higher than 8 bits per pixel. This is a drawback that has

to be handled for the development of web applications, where commonly supported formats are limited to 8

bits per sample. In the described experiment, information from medical datasets was reduced to 8 bits per

sample.

Identification of Ray Coordinates. According to the ray casting algorithm, the displayed colours of the

boundary cuboid geometry represent the coordinates at each point (x, y, z). Coordinates are stored as r, g, b
colour components for each pixel. Then, the cube can be rendered in the scene from the desired view point.

In order to achieve volume visualization, several steps are followed in the rendering process. First of all, the

rendering of the colour cube is performed according to the depth function change.

Taking this into account, rays are defined for each point of the cube, starting at the front faces, where the

virtual camera is located, and ending at the back region. The colour of every point of the cube represents

the exact coordinates of the ray for each pixel in the image. The colour information is stored as 24 bit
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RGB values. The range of values that can be represented may seem small or imprecise for large images,

but colour interpolation provides precision enough for ray coordinates. The depth information is stored in

different buffers in order to obtain the corresponding depth value for each ray. Finally, the geometry is

rendered and the colour and depth buffers are stored to be processed in the volume shader.

4.3. Visualization. The previously presented GPU implementation of volume rendering based on We-

bGL was used to develop a real-time online tractography and volume rendering viewer, accordingly to Table

10.1, proving this standard to be a valid technology for real-time interactive applications on the web. The

results shown in the table below were accomplished when interacting with the web viewer from several

computers, using the same web browser (Chrome) and the same number of steps, 50. For every graphic card

tested, the application can be completely considered to have a real-time behaviour.

Graphic card model Frame rate

NVidia GeForce GTX480 60 fps
NVidia GeForce GTX285 60 fps
NVidia 9600GT 28 fps
NVidia Quadro FX 3800M 20 fps
NVidia Quadro FX 880M 15 fps

TABLE 10.1. Performance of the developed viewer for different graphic cards, us-
ing Chrome as web browser, the number of steps equal to 50

(a) Tractography (i) (b) Volume Rendering (i) (c) Combined visualization (i)

FIGURE 10.4. Tractography, volume rendered image of brain T1 MPRAGE MRI
and combined visualization on the web

In the developed work, the web viewer shows tractography information obtained from dMRI in the first

place, represented in Figure 4(a). These organized fiber tracks in the white matter connect various cortical

regions to each other. The tractography is represented using WebGL line primitives, where each fiber track

is rendered by a set of points. The colour is assigned based on the absolute value of the unit vector pointing

in the direction from the start point to the end point of the tract. The length value of each tract is stored

in a per-vertex attribute together with the position and colour. The minimum tract length value is placed in

a uniform variable in the vertex shader. The vertex shader determines whether the tract is longer than the

minimum length to render. The entire tractrography set for the brain is efficiently rendered using a single

draw call with one vertex buffer object. Thus, no dynamic geometry generation is performed in JavaScript.
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Direct volume rendering of MRI data (Figures 4(b)) is developed simultaneously with the tractography. The

volume renderer loads the MRI dataset from the server into a tiled 2D texture. Then, ray-tracing is performed

in the shader in order to obtain the volume rendering. This implementation of a volume rendering system

for the Web is based on the Volume Ray-Casting algorithm. Since the algorithm is implemented in WebGL,

the reached visualization speed is similar to native applications, due to the use of the same accelerated

graphic pipeline. The algorithm simulates 3D data by using a 2D tiling map of the slices from the volume

maintaining trilinear interpolation and runs entirely in the client.

In the developed Web viewer, shown in Figure 10.5, the tractography and the volume rendering from brain

MRI data can be represented separate or simultaneously, as depicted in Figures 4(c). Several features can be

modified at runtime, by adjusting the provided sliders. Tractography’s position can be changed according to

the three main axes and fiber tracks can be seen more clearly by reducing the volume opacity. Finally, the

minimum tract length can also be modified.

FIGURE 10.5. Volume rendering and tractography web viewer (sliders available
for configuration)

5. Conclusions and Future Work

This paper describes the successful implementation of remote visualization of medical images based on

WebGL1. Interaction with remote medical images was limited by many technical requirements, but the

emergence of recent standards such as WebGL and HTML5 allow the development of applications that en-

able clients to access images without downloading them, maintaining data in a secure server and being able

to perform functions, e.g. registration, segmentation, etc., in a web context. These technologies empower

web browsers to handle 3D graphics naturally. Thus, modern browsers support a wide range of applications,

from simple rendering of two dimensional images to complex manipulation of 3D models.

The achieved visualization of volume rendering and tractography on the web, used for the implementation

the presented viewer (shown in Figure 10.5), has demonstrated the capabilities of complex volume rendering

visualization in web browsers, as well as the potential of WebGL for interactive visualization of neuroimag-

ing data. Combined representation of volume rendering of brain T1 MRI images and tractography in real

time has been accomplished. The main strength of the WebGL standard used here is the ability to provide

efficient access to GPU rendering hardware with no special client-side software requirements, except for a

compatible browser. Thus, this platform has great potential for imaging tools, particularly those providing

web-based interfaces for automatic pipelining of image data processing.

1http://www.volumerc.org/demos/brainviewer/webgl/brain_viewer/brain_viewer.
html
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In the work explained herein, the early ray termination algorithm was modified in order to combine vol-

ume and geometric elements in a seamless way. Thus, the developed software modules, which are avail-

able as open source code, successfully implement early ray termination step according to the tractography

depthmap, performing a combination between volume images and estimated white matter fibers.
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Abstract

Visualization of vector fields plays an important role in research activities nowadays. Web applica-

tions allow a fast, multi-platform and multi-device access to data, which results in the need of optimized

applications to be implemented in both high-performance and low-performance devices. Point trajectory

calculation procedures usually perform repeated calculations due to the fact that several points might lie

over the same trajectory. This paper presents a new methodology to calculate point trajectories over highly-

dense and uniformly-distributed grid of points in which the trajectories are forced to lie over the points in

the grid. Its advantages rely on a highly parallel computing architecture implementation and in the reduction

of the computational effort to calculate the stream paths since unnecessary calculations are avoided, reusing

data through iterations. As case study, the visualization of oceanic currents through in the web platform is

presented and analyzed, using WebGL as the parallel computing architecture and the rendering Application

Programming Interface.

1. Introduction

Vector field visualization has an important role in the automotive and aero-spatial industries, maritime trans-

port, engineering activities and others. It allows the detection of particularities of the field such as vortexes

or eddies in flow fields, but also permits exploring the entire field behavior, determining e.g., stream paths.

FIGURE 11.1. flow visualization of Atlantic ocean currents in WebGL. Hierarchi-
cal integration was used to reduce the total number of iterations required to calculate
the paths.

Particularly, ocean flow visualization is important in maritime transport and climate prediction, since the

movement of huge water masses can produce temperature variations of the wind currents, and, as a result,

its visualization becomes determinant to represent the ocean’s behaviour.

With the growth of a multiverse of devices, development of multi-platform applications has become a com-

mon goal for developers. The web is being established as a universal platform in order to unify the devel-

opment and execution of applications. However, challenges arise since applications must be optimized in

order to be implemented as well as on high-performance as on low-performance devices.

The contribution of this paper is a new methodology to calculate point trajectories of a highly dense grid

of points over n-dimensional vector fields, in which the trajectories are forced to pass over the grid points
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(Figure 11.1). This allows to implement a hierarchical integration procedure [176], which takes in advance

previous calculated data in order to avoid repetitive and unnecessary calculations, and reduces the complex-

ity of the algorithm from linear to logarithmic. The procedure is suitable to be implemented over highly

parallel computing architectures due to independent calculations and the number of computations to be per-

formed. As a result, we employ WebGL as the parallel computing engine to calculate the iterations, using

images in order to store the data through the iterations.

Different from other procedures, in which the calculation of the trajectories is performed for each point in

particular, our methodology allows to merge its calculation for all the points in which the field is discretized.

Therefore, the number of unnecessary computations is critically reduced.

This paper is organized as follows: Section 2 presents the related work. Section 3 exposes the methodology

in which the contribution of this work is explained. Section 4 presents a case of study in oceanic currents

and finally the conclusions of our work are presented in section 5.

Glossary

API Application Programming Interface

CUDA Compute Unified Device Architecture

PL Piecewise Linear

SIMD Single Instruction Multiple Data

GLSL Graphic Library Shading Language

WebGL Web Graphic Library

LIC Line Integral Convolution

GPU Graphics Processing Unit

FBO FrameBufer Object

Shader Instructions to be performed in the GPU

2. Literature Review

2.1. Flow Visualization. A great amount of methodologies to visualize vector fields (flow fields) has

been developed among the last decades. Geometric-based approaches draw icons on the screen whose

characteristics represent the behavior of the flow (as velocity magnitude, vorticity, etc). Examples of these

methodologies are arrow grids [177], streamlines [178] and streaklines [179]. However, as these are discrete

approaches, the placement of each object is critical to detect the flow’s anomalies (such as vortexes or

eddies), and therefore, data preprocessing is needed to perform an illustrative flow visualization. An up-to-

date survey on geometric-based approaches is presented by [180].

However, in terms of calculating those trajectories for determined points in the field, the procedures usually

compute for each point the integrals, and, as a result, the procedures are computationally expensive for

highly dense data sets.

On the other hand, texture-based approaches represent both a more dense and a more accurate visualization,

which can easily deal with the flow’s feature representation as a dense and semi-continuous (instead of sparse

and discrete) flow visualization is produced. A deep survey in the topic on texture-based flow visualization

techniques is presented by [181].

An animated flow visualization technique in which a noise image is bended out by the vector field, and then

blended with a number of background images is presented by [182]. Then, in [183] the images are mapped

to a curved surface, in which the transformed image visualizes the superficial flow.

Line Integral Convolution (LIC), presented by [184], is a widely implemented texture-based flow visual-

ization procedure. It convolves the associated texture-pixels (texels) with some noise field (usually a white

noise image) over the trajectory of each texel in some vector field. This methodology has been extended to

represent animated [185], 3D [186] and time varying [187, 186] flow fields.

118



An acceleration scheme for integration-based flow visualization techniques is presented by [176]. The

optimization relies on the fact that the integral curves (such as LIC) are hierarchically constructed using

previously calculated data, and, therefore, avoid unnecessary calculations. As a result, the computational

effort is reduced, compared to serial integration techniques, from O(N) to O(logN), where N refers to the

number of steps to calculate the integrals. Its implementation is performed on the CUDA architecture, which

allows a GPU-based parallel computing scheme, and therefore the computation time is critically reduced.

However, it requires, additionally to the graphic APIs, the CUDA API in order to reuse data, and hence,

execute the procedure.

2.2. WebGL literature review. The Khronos Group released the WebGL 1.0 Specification in 2011.

It is a JavaScript binding of OpenGL ES 2.0 API and allows a direct access to GPU graphical parallel

computation from a web-page. Calls to the API are relatively simple and its implementation does not

require the installation of external plug-ins, allowing an easy deployment of multi-platform and multi-device

applications. However, only images can be transfered between rendering procedures using FBOs.

Several WebGL implementations of different applications have been done such as volume rendering, pre-

sented by [188] or visualization of biological data, presented by [189]. However, for the best of our knowl-

edge, no other implementation that regards to LIC flow visualization on WebGL has been found in the

literature or in the Web.

2.3. Conclusion of the Literature Review. WebGL implementations allow to perform applications for

heterogeneous architectures in a wide range of devices from low-capacity smart phones to high-performance

workstations, without any external requirement of plug-ins or applets. As a result, optimized applications

must be developed. In response to that, this work optimizes the calculation of point trajectories in n-

dimensional vector fields over highly dense set of points, forcing the trajectories to lie over the points in

the set. As a consequence, previously calculated data can be reused using hierarchical integration, avoiding

unnecessary calculations and reducing the complexity of the algorithm.

3. Methodology

The problem that we address in this work is: given a set of points and a vector field that exists for all of these

points, the goal is to find the finite trajectory that each point will reproduce for a certain period of time.

Normal calculation of point trajectories in n-dimensional vector fields, requires to perform numerical inte-

gration for each particular point in order to reproduce the paths. In the case of a dense set of points, the

procedures suffers from unnecessary step calculations of the integrals, since several points in the field might

lie over the same trajectory of others. Hence, some portions of the paths might be shared. Figure 11.2

illustrates this situation.
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FIGURE 11.2. Trajectory overlapping in several point paths.

In order to avoid repeated computations, we propose a methodology to calculate trajectories of highly dense

grid of points, in which the paths are forced to lie over the points in the grid, i.e., the paths are generated as
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a PL topological connection between a set of points that approximates the trajectory. With this, hierarchical

integration [176] is employed to iteratively compute the paths and reuse data through the iterations.

3.1. Hierarchical Integration. Since line integration over n-dimensional vector fields suffers from

repeated calculations, hierarchical integration [176] only calculates the necessary steps and then iteratively

grows the integrals reusing the data. This reduces the computational complexity of the algorithm from

O(N), using serial integration, to O(logN). The procedure is summarized as follows.

For an arbitrary point in the field y ∈ Y with Y ⊆ R
n, let us define f : Y → R

m, as an arbitrary line

integral bounded by its trajectory cy. Consider its discrete approximation as described in equation 47.

(47) f(y) =

∫
cy

w(x(s))ds ≈
t∑

i=1

w(x(i ∗Δs))Δs

where t is the maximum number of steps required to reproduce cy with Δs the step size. x(0) = y is

the starting point of the trajectory to be evaluated and w is the function to be integrated. The integration

procedure is performed for all points y ∈ Y in parallel.

We assume that Δs = 1 , ∀y ∈ Y and therefore f(y) ≈
t∑

i=1
w(x(i)). The algorithm starts with the

calculation of the first integration step for all the points in the field. Namely,

(48) f0(y) = w(x(1))

It is required to store the last evaluated point x(1) over the growing trajectory and the partial value of the

integral for all the points y in order to reuse them in the following steps to build the integral. With this, the

next action is to update the value of the integral, using the sum of the previously calculated step at y and the

step evaluated at its end point (x(1)). Namely,

(49) f1(y) = f0(x(0)) + f0(x(1))

In this case, the end point of f1(x(0)) is x(2) as the calculation evaluates f0(x(1)). Therefore, the next

iteration must evaluate f1 at x(0) and x(2) in order to grow the integral. In general, the k’th iteration of the

procedure is calculated as follows:

(50) fk(y) = fk−1(x(0)) + fk−1(x(end))

It is important to remark that each iteration of this procedure evaluates two times the integration steps

evaluated in the previous iteration. As a result, the total number of integration steps t is a power of two,

and the hierarchical iterations required to achieve this evaluations is reduced by a logarithmic scale, i.e.,

k = log2 t. Also notice that the evaluation of the vector field is preformed only once, in the calculation

of the first step, which avoids the an unnecessary evaluation of the vector field, which are computationally

demanding for complex vector fields. Figure 11.3 illustrates the procedure up to four hierarchical steps.

3.2. Stream Path Calculation. In order to perform the visualization of a vector field using trajectory

paths, lets assume a homogeneously distributed set of points

(51) Y = {y, z ∈ R
n|y − z = Δy,

Δy is constant ∀z adjacent to y}
and a n-dimensional vector field F : R

n → R
n. The goal is to calculate for each point y ∈ Y , the

PL approximation of the trajectory that the point will describe according to F , defined by the topological

connection of a particular set of points Ay ⊂ Y . Figure 11.4 illustrates the approximation.
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FIGURE 11.3. Exponential growth of hierarchical integration methodology. At
step 3, the procedure evaluates 8 serial integration steps, meanwhile at step 4 it
evaluates 16 serial integration steps.
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FIGURE 11.4. PL approximation of the trajectory by the procedure.

The trajectory cy of an arbitrary point y in the field is defined as

(52) cy = xy(s) =

∫
l
F (xy(s))ds

where l represents a determined length of integration.

Using hierarchical integration, for each point in the field the first step of the PL trajectory is calculated, this

is, the corresponding end point of the first step of the integral is computed using a local approximation of

the point in the set of points.

(53) xy(0) = y

(54) y′ = xy(0) + γF (xy(0))

(55) xy(1) = arg
xy

min(Y − y′)

where y′ is the first iteration result of the Euler integration procedure, γ is a transformation parameter to

adjust the step given by the vector field to the local separation of the set of points and xy(1) is defined as

the closest point in Y that approximates y′. The value of xy(1) is then associated (and stored) to y. The set

Ay contains the reference to the points of the trajectory that describes y, and therefore for equation 54, Ay

is defined as:

(56) A0
y = {xy(1)}

Similarly to the hierarchical integration procedure, the next steps are performed to join the calculated steps

in order to grow the trajectories. Therefore, for each point y, its computed trajectory is joint with its last
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point’s trajectory, this is, for the step in equation 54.

(57) A1
y = A0

y ∪A0
xy(1)

= {xy(1), xy(2)}
Note that each iteration of the procedure will increase the number of points in the trajectory by a power of

two. Therefore, the growth of the paths is exponential. In general, the k’th iteration is calculated as

(58) Ak
y = Ak−1

y ∪Ak−1
xy(k2)

= {xy(1), xy(2), . . . , xy((k + 1)2)}

The accuracy of the procedure is strongly determined by the discretization (density) of Y , since it is directly

related to the step size in the integration procedure, i.e., the approximation of the first step end-point is

determinant. In order to increase the accuracy of the procedure, the computation of the first step can be

calculated with e.g., a 4th order Runge Kutta numerical integration, however, it might significantly increase

the computation time of the procedure if the computation time of the vector field function is relevantly high.

3.3. Time-Varying Data. In terms of unsteady flow fields, i.e., time-varying vector fields, the gener-

ation of the trajectories might seem difficult. In that case, as proposed in [176], time is considered another

dimension of the vector field. Therefore, the set of points is formed with the position coordinates of the

points and discretized time steps, producing an n+ 1-dimensional grid of points.

It is also determinant for the accuracy of the procedure that the density of the discretization set is high, in

order to increase the precision of the approximated trajectories.

3.4. Animation. Dynamic scenes are demanding in most of the visualization procedures. We consider

in this section two kinds of dynamic scenes. A first kind of procedures refers to when the vector field is

steady, i.e., it remains constant through the time. In this case, the goal is to visualize the motion of the

particle all across the field.

Since the paths for all the points in the field are calculated, the representation of the particle’s trajectory

through the frames is simple. Consider a point y and its approximated trajectory given by the set of points

Ay. Notice, as described in section 3.2, that the first point of the set Ay [1], i.e., xy(1), represents the next

point in which y will lie in a determined period of time. As a result, at a posterior frame, the displayed

trajectory should be Axy(1).

The second type of procedure refers when vector field is varying with the time. Complementary to the

animation stated before, a second kind of dynamic scene is comprised since it is also important to visualize

the changes that a trajectory suffers in the time. In the case of time varying data, as in the steady case, all

the points have an associated trajectory. In order to animate the change of one trajectory, from one frame to

another, the trajectory that will be represented refers to the one of the point with the same point coordinate,

but the next time coordinate. i.e., Ay,t+Δt.

4. Case Study

In this section the visualization of 2D oceanic currents using the proposed methodology is performed. The

implementation has been done in WebGL, so the methodology’s parallel computing capabilities are fully

used. WebGL offers the possibility to use the rendering procedure to calculate images (textures) through

Framebuffer Objects, and then use those rendered textures as input images for other rendering procedures.

As a consequence, for this implementation we associate the pixels of an image to the points in the field, and

therefore, the rendering procedure is used to compute the different hierarchical iterations, which are stored

in the color values of the pixels. Finally, the trajectories are hierarchically constructed. The implementation

was performed on an Intel Core2Quad 2.33 GHz with 4 GB of RAM and with a nVidia GeForce 480.
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(a)

(b)

FIGURE 11.5. Global information. Gray-scale of the oceanic currents magnitude
in the (a) longitudinal and (b) latitudinal directions, of the 1st January of 2010.
Images from the NASA’s ECCO2 project.

4.1. Implementation. For a w × h grid of points (w and h being its width and height respectively in

number of elements), images of size w× h in pixels are used, in which a particular pixel (i, j) is associated

with the point (i, j) in the grid. Since for each particular pixel, a four component vector is associated, i.e., a

vector of red, green, blue and alpha values, each value can be associated as a particular position of another

pixel. This is, if the value of a pixel is r, then its associated pixel coordinates are given by

i = r mod w(59)

j =
r − i

w
(60)

where mod represents the remainder of the division of r by w. As a result, if for each hierarchical integration,

only the last point of the trajectory is to be stored, then one image can store four hierarchical iterations.
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For the zero’th hierarchical iteration, and the image I to store its calculation, the value of a pixel (i, j) is

given by

i0 = i+ kFi(i, j)(61)

j0 = j + kFj(i, j)(62)

(63)

where the parameter ’0’ refers to the hierarchical step 0, k represents the scaling factor of the vector field,

and Fi(i, j) represents the component of the vector field over the direction of i, evaluated at the point (i, j).
The vector field used in this case study is shown in figures 5(a) for the direction of i and 5(b) for the direction

of j.

In general, the k’th step is calculated as follows,

inext = I(i, j, k − 1) mod w(64)

jnext =
I(i, j, k − 1)− inext

w
(65)

I(i, j, k) = I(inext, jnext, k − 1)(66)

In the case that k is greater than four, then more images are used to store the values of the hierarchical

iterations.

With that, all the desired steps are stored in the necessary images. In order to build the trajectories from

those images, a generic line, formed by k2 points, is required. Each point in the trajectory needs to have an

associated value, that refers to its order in the trajectory, i.e., the first point in the trajectory has an index 0,

the second point the value 1 and so on. With this index associated to each point of the trajectory of the point

y, the position of each point is calculated as follows.

while(1) do(67)

HL = floor(log2(index))(68)

index = index− 2HL(69)

y = evalHL(HL, y)(70)

if(index < 0.5)(71)

yend = y(72)

Finish(73)

(74)

Where HL is the hierarchical level that needs to be evaluated and the function evalHL() returns the new

position of y a point, for a particular hierarchical level.

4.2. Results. A general grid of 2048 × 2048 points is used as the world’s discretization. The vector

field information was acquired from the NASA’s ECCO2 project (see figure 11.5), in which high-resolution

data is available. Only six hierarchical levels, i.e., 26 = 64 points in the trajectory are used for each point in

the field, as a result only 2 images are required to calculate the trajectories.

The time needed to compute all the hierarchical levels (from 0 to 6) was 3 ms. The visualization was

performed to 10000 equally-distributed points all over the field, which means that 64000 points need to be

transformed by the trajectory computation. The computation time of those trajectories was 670 ms (Final

results are shown in Figure 11.6).

In order to compare the visualization with the methodology, the LIC visualization of the vector field using

the methodology that we proposed in [148] was used as a background image. It shows that for this level of
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(a) (b) (c) (d)

FIGURE 11.6. Comparison between different visualizations of the oceanic currents
using 6 hierarchical steps.

discretization (2048× 2048), the visualization is correct and accurate. However, sparse data might produce

inaccurate results.

5. Conclusions and Future Work

In this paper, we have presented a novel methodology to calculate trajectories of points in highly dense

point sets, in which the trajectories are formed as piecewise-linear connections of the points in the set. This

allows to merge the calculation of the different trajectories, and use iteratively the data to avoid repeated

and unnecessary calculations. The procedure is suitable to be implemented in parallel architectures such as

OpenCL or CUDA, since the calculations of the integrals at any moment is independent from the calculation

of the other points.

As a result, thanks to the use of hierarchical integration, the procedure reduces the computational complexity

of the calculation of the trajectories from linear to logarithmic. The methodology deals with n-dimensional

and time-varying data and animated visualization can be easily achieved due to the fact that the trajectories

are calculated for all the points in the set.

Since the procedure performs an approximation of the trajectories using a piecewise-linear connection of the

points in the set, the accuracy of the algorithm is strongly influenced by the discretization distance between

the points, because this distance determines the minimum integration step to be used.

An active procedure in order to adjust the position of the points in the grid through the iterations, and then

increase the accuracy of the calculated trajectories is proposed as future work of this article.
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Abstract

City models visualisation, buildings, structures and volumetric information, is an important task in

Computer Graphics and Urban Planning. The different formats and data sources involved in the visualisa-

tion make the development of applications a big challenge. We present a homogeneous web visualisation

framework using X3DOM and M3DX3DOM for the visualisation of these urban objects. We present an in-

tegration of different declarative data sources, enabling the utilization of advanced visualisation algorithms

to render the models. Its tested with a city model composed by buildings from the Madrid University Cam-

pus. Volumetric datasets coming from Air Quality Models and 2D layers wind. Results of visualisation

of all the urban models in real time on the Web, achieving interactive rates. An HTML5 web interface is

presented to the user, enabling real time modifications of visualisation parameters. This work also addresses

usability issues of the Framework when time based dataset are presented to the user.

FIGURE 12.1. Different results of the proposed hybrid visualization web applica-
tion, showing a temperature scalar field combined with georeferenced buildings.

1. Introduction

Scientific visualisation of city scale models, such as geometry, terrain, volumetric data and others are

a big challenge in computer graphics. These models are represented in several markup languages such as

CityGML, X3D, COLLADA, DEM for geometry. NetCDF, Raw data for volumetric datasets or special

compressed as JPEG, GeoTIFF formats for images. Some of this formats are rarely used and only some

specialized software can work with these formats. The Web with the new standards as XML or HTML5

allows the inclusion of different models into a common framework, but the restrictions presented in the

Web architecture difficult the implementation of the algorithms necessary for the correct visualisation of

this models.

Volume rendering is a model of scientific visualisation. The methodology is used in several areas like

medical imaging, geo-visualisation, engineering, and almost any other field, which deals with n-Dimensional

datasets. The method renders an image of a volume using the metaphor of passing light through semi-

transparent objects. This grants the identification of internal structures, which are occluded by the external

levels of the volume. The colour of the object is normally arbitrary and generated by a false colour model

that is user assigned for each dataset and the region of interest of the volume.

Our contribution is the visualisation of air quality models, wind fields, buildings in a common framework

using Declarative 3D technologies such as X3DOM and MEDX3DOM. Modification over the frameworks

are proposed to work with these datasets. Also brief description of the volume rendering techniques. Then,

the followed methodology to load AQM datasets into a volume rendering Web application and integrated

with georeferenced geometry.

2. Related Work
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2.1. Air Quality Information visualisation. Air quality visualization has special requirements respect

to other kind of information. Large masses of spatial data have to be managed by the visualization system.

2D maps and temporal series are usually used for the visualization of the air quality data produced by the

AQMs. These models generate spatial and temporal information, so most of the vector and scalar fields we

wish to visualize vary with time. Animation of atmospheric data has been used to examine changes in the

data over time. In case of wind data, they are visualized through vectors with a magnitude and a direction.

Air pollution and meteorology modelling are disciplines where 3D visualization is beginning to become

very important subjects. The scientifics need tools to visualize and animate the data produced by their

simulations. New visualization techniques allow to improve the level of understanding of the chemical and

physical atmospheric process. Also, the employ of 3D displays and fast visualization tools help to navigate

through the data.

2.2. Volume visualisation. In computer graphics, Ray-casting is a well known direct volume render-

ing technique that was designed by Kajiya and Herzen [127] as one of the initial developments in this

area. Traditionally, three dimensional objects have been created by using surface representations, drawing

geometric primitives that create polygonal meshes [89], hence provoking the loss of information from one

dimension. Ray casting suitably fits GPUs’ operating mode [190], because of the independence of each ray

that is launched to the scene, making this algorithm highly parallelisable and allowing the exploitation of

GPUs’ parallel architecture. For GPU ray casting, the volume element is stored in the GPU memory as a 3D

texture and a fragment shader program is used in order to implement the ray casting algorithm. visualisation

of volumes on the web had been implemented and by Congote et al. [120].

2.3. Flow visualisation. A great amount of methodologies to visualize vector fields (flow fields) has

been developed among the last decades. Geometric-based approaches draw icons on the screen whose

characteristics represent the behaviour of the flow (as velocity magnitude, vorticity, etc). Examples of these

methodologies are arrow grids [177], streamlines [178] and streaklines [179]. However, as these are discrete

approaches, the placement of each object is critical to detect the flow’s anomalies (such as vortexes or

eddies), and therefore, data preprocessing is needed to perform an illustrative flow visualisation. An up-to-

date survey on geometric-based approaches is presented by [180]. However, in terms of calculating those

trajectories for determined points in the field, the procedures usually compute for each point the integrals,

and, as a result, the procedures are computationally expensive for highly dense data sets. Visualisation of

flows in the web had been implemented by Aristizabal et al. [148]

2.4. Hybrid visualisation. There are several models for combining polygonal geometry and volume

rendering, normally this methods use a blending between the image results, making these approaches unfea-

sible for city models, where large sections of the model could be occluded, this problem can not be solved

with these techniques. Some methods identify the intersection between rays launched in the volume ren-

dering process and geometry [173]. Ray casting is a flexible algorithm that allows the implementation of

acceleration methods, such as Empty Space Skipping [102] or Early Ray Termination. Early ray termination

is an optimization process that establishes certain limitations in the volume, samples encountered after them

do not contribute to the value of the pixel [90]. Geometry is rendered in the first place to correctly look at

the intersections of the geometry and the volume. Besides, parts that are occluded by the geometry should

not contribute to the final image, not performing any ray casting at all. In order to achieve this feature,

rays should terminate when they hit a polygonal object, accordingly modifying the ray length image if a

polygonal object is closer to the view point than the initial ray length. Hybrid visualisation on web had been

proposed by Ginsburg et al. [149]

2.5. Web 3D Rendering and MEDX3D. The use of the recently released WebGL standard [96] leads

to new methods for web 3D visualisation, where most part of the computational processes are performed

in vertex and fragment shaders that run on the GPU hardware. WebGL is a software library that enables
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HTML5-based browsers to identify clients’ graphics hardware. HTML5, the latest Internet standard pro-

pose, provides native elements for audio and video. WebGL consists of a ow-level imperative graphic

programming API based on OpenGLES 2.0 for Javascript that enables flexibility and exploits the charac-

teristics of advanced graphics cards. Due to the constant improvement of the performance of Javascript

interpreters, the management of scene elements behaves similarly to the ones obtained by using natively

compiled languages. Moreover, some WebGL extensions have been implemented in order to achieve a

friendly interaction, such as SpiderGL [130].Several standards and proprietary solutions are currently being

developed in order to fulfill the necessity of moving 3D visualisation into the web [111], such as X3D, a

standard derived from VRML that stores 3D information in a scenegraph format using XML (Extensible

Markup Language). This model has been implemented in a declarative form, as an extension of HTML;

X3DOM presents a framework for integrating X3D nodes into HTML5 DOM content [103] and other al-

ternatives have also been developed, e.g. XML3D [131]. Finally, there is a standardization for X3D in the

MedX3D volume rendering model [121, 122]. The MEDX3DOM proposal is presented by Congote [125]

to visualize volumetric datasets in a declarative model.

3. Methodology

MEDX3DOM implements the standard MEDX3D in X3DOM. The implementation is based on the gen-

eration of the nodes for two components: Texturing3D and VolumeRendering. The actual status of the

implementation declares all nodes for X3DOM architecture. Texturing3D nodeset define the tags to work

with the information of 3D data, specific readers for file formats such as DICOM, NRRD and raw data are

part of the standard. Other kind of data sources could be implemented like WADO, which is an specifica-

tion for a WebService to obtain DICOM data or NetCDF to read scalar data. 3D texture data is normally

stored in a Texture3D structured which is part of common 3D APIs like OpenGL. This structure is not

available in WebGL and a mapping between a Texture3D and a Texture2D was define in order to overcome

this limitation.

Volume data is storage in atlas format. An example for the volume dataset represented in this format

is shown in figure 12.3. This model of representation also allows the storage of preprocessed data such as

vector fields, where each color magnitude represent the direction of the gradient vector for each axis. Given

the flexibility of the X3DOM architecture the transfer functions can be store as images or generated by the

application.

The implementation of the MEDX3D standard into X3DOM allows the declaration of volume visuali-

sation in X3D and visualized the render in browser without the use of plugins. The files follow the standard

MEDX3D but the image texture is defined as a Texture2D structure. The file format is presented in the

Figure 12.2, were an extraction of and HTML5 file is presented were a volume is rendered in a web page.

3.1. Flow Visualisation Style. A new style is proposed for the visualisation of vector field, the Stream-
LineFlowStyle allow the visualization of vector fields such as winds by transforming the vectors to a geome-

try representation know as stream lines. This lines are modeled as geometry internally for the MEDX3DOM

extension. The visualisation of geometry and volumetric datasets in a common render pass is know as Hybrid

visualisation. Other flow visualisation styles could be implemented where no geometry proxy is generated.

Composition methods for visualisation of several volumes simultaneously should be implemented.

3.2. Hybrid Visualisation. The ray casting process has been improved to allow the integration of ge-

ometry. Each ray traverses the volume, where the volume dataset are represented. But the ray traversal

will take into account any geometry inside the volume, so the ray casting termination condition has been

modified. The termination condition is based on the alpha value for each sample of the transparency colour

of the ray.
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<html>
<head> ... </head>
<body>
<h1>Volume Rendering</h1>
<X3D xmlns=’http://www.web3d.org/specifications/x3d-namespace’
showStat=’true’ showLog=’true’ width=’500px’ height=’500px’>
<Scene>
<Background skyColor=’0 0 0’/>
<Viewpoint description=’Default’ zNear=’0.0001’ zFar=’100’/>
<Transform>
<Shape>

<Inline url="buildings.x3d"> </Inline>
</Shape>
<VolumeData id=’volume’ dimensions=’4.0 4.0 4.0’>

<ImageTexture containerField=’voxels’
url=’aqm/aqm_frame0.png’/>

<OpacityMapVolumeStyle>
<ImageTexture url=’aqm/transferFunction.png’/>
</OpacityMapVolumeStyle>

</VolumeData>
<VolumeData id=’volume’ dimensions=’4.0 4.0 4.0’>

<ImageTexture containerField=’voxels’
url=’aqm/aqm_wind_frame0.png’/>

<StreamLineFlowStyle >
</StreamLineFlowStyle>

</VolumeData>
</Transform>

</Scene>
</X3D>
</body>
</html>

FIGURE 12.2. HTML/X3DOM proposed file fragment to visualize a the first frame
of a AQM volumetric dataset using MEDX3DOM. The texture image is defined in
atlas format (Figure 12.3).

If the value to 1, it means that the ray has reached the final colour, and therefore, the remaining steps of

the ray are not evaluated. Our approach to take into account the geometry of the buildings is to provoke an

early termination of the ray casting, detecting when the ray collides with a geometric element. In that case,

the alpha value is set to 1, and the finalisation of the ray casting is triggered.

4. Results

In this work, our goal is to experiment with the AQM dataset and check if they can be loaded and

rendered using volume rendering techniques. For such goals, we have selected some dataset provided by the

Madrid Technical Univesity (UPM). In the following sections, we will describe the process to convert the

AQM dataset into the required images for the volume rendering engine, enhancing the significant differences
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FIGURE 12.3. Texture atlas with the volume data for the AQM dataset

of such datasets to the classical volumetric datasets. In the last sections, the HTML interface for the Web

application will be described, including the hardware and software platform used for the tests.

4.1. Dataset description and loading stage. Turbulent urban flow simulations require Computational

Fluid Dynamics models. In this research the datasets have been obtained from large scale numerical experi-

ments to simulate turbulent fluxes for urban areas with the EULAG (UCAR, US) [191] CFD model, which

was modified to include an energy balance equation to obtain the urban fluxes. In the Figure 12.3 we can

see a sequence of 2D map of the Potential Temperature (K) simulated by the EULAG model.

The dataset represents the temperature and winds fields over a region of Madrid, which includes some

buildings. The coverage of the data is around 1 km × 1 km., with a spatial resolution of 4m, giving a 250 ×
250 regular grid. Also, the dataset covers 100 m. in altitude with the same spatial resolution, resulting in a

volumetric dataset of 250 × 250 × 25 values for each variable. Temperature is a scalar value and wind is a

vector field with two components horizontal (u) and vertical (v). The simulation time period is 5.5 minutes

with outputs every 30 seconds. The computational time of this experiment is about 72 hours of CPU time

with 64 processors.

Each line of the data file contains the X, Y and Z coordinates and the value, using a specific value (-

1.E+34) for the “non existing values” (black pixels in Figure 12.3, normally associated to the places where

the buildings are located. Once the data has been loaded, individual images per Z level can be created and

saved for further use. In this case, we have mapped the range 298K to 313 K to the 256 possible values of a

byte.

4.2. Volumetric ray casting for AQM. Once the dataset has been converted to a set of Z-ordered

images (representing the scalar 3D field), some extra steps have to be done to be successfully loaded by the

volumetric ray casting techniques. Essentially, the AQM dataset are very similar to the common medical

datasets (see Figure 12.3), but there are some differences. First, the typical AQM dataset are not exactly

a cubic grid, finding that the length in the Z axis (altitude) is less than in XY space. Furthermore, the

typology of geodata in the urban areas are biased, i.e., the most interesting data structures are near the

ground level, leading to a quite limited number of Z-slices with interesting information. This effect can

be seen in the Figure 8, where the first four Z-slices contains almost all the information of the dataset

(composed of 25 levels), a 16% of the whole volume. It is worth to mention that the transfer functions are

used to assign optical properties (colour and opacity) to the original volume data values in order to improve

the visualisation of the internal parts of the volume data. In volume ray casting, the transfer functions are

used to obtain the optical properties of the volume data at each ray step. These values are blended using

the composition function. In general, two transfer functions are defined, the colour transfer function, which

obtains an RGB value and the opacity transfer function, which obtains a transparency value.

4.3. HTML Interface description. We implemented a HTML5 user interface using jQuery (see Fig-

ure 12.4) to interact with the AQM datasets, providing standard functionality to navigate the datasets at

133



FIGURE 12.4. Different configuration of the HTML5 user interface and the
achieved visual output.

FIGURE 12.5. Two temporal series of the same datasets with different transfer
function and window level configuration.

different level. First, we provide mouse interaction in the HTML5 canvas through X3Dom custom naviga-

tion techniques. Also, some buttons in the upper part of the web page can be used to navigate inside the

volume (zooming and panning). The time navigation is provided through a slider, used to select the frame of

the volume datasets (see Figures 12.5 and 12.6). The animation can be set to manual or automatic, iterating

continously between the frames of the datasets.

134



FIGURE 12.6. A set of frames of the hybrid visualisation of the volume and the
buildings geometry (shown independently in the last subimage).

The Transfer Function configuration has been implemented combining a set of sliders, colours and

the window level range configuration. There are 2 special sliders, fixed to the 0 and 255 values. The

remaining 16 sliders maps the value range [1, 254] but it can be modified with the Window Level range

editor, implemented as a range slider in jQuery. In the default settings, each sliders modifies the color and

transparency of 16 values (256/16). Reducing the window level to the range [64, 128], the 16 regular sliders

will adjust the transfer function to that specific range, so each slider will map just 4 values ( (128− 64)/16
). In the AQM dataset sample ( Figure 12.5 ), the scalar values are defined in the 298 K to 313 K range (15

K), so each channel range is nearly 1 K with a full range window level. Choosing the [64, 128] window

level will provide a visualisation of the range [302 K, 306 K], with a resolution of 0.25 K for each channel

or slider.

The interface also displays two extra sliders, supporting global modifications of the light factor and the

transparency. The global transparency is a handy way to control the overall transparency in all the channels.

The light factor enhances the contrast of the colours, making more visible and noticeable the inner structures

of the volume datasets.

4.4. Buildings Visualisation. The buildings model has been reconstructed from tagged SHP files,

where each building corresponds with a 2D polygon, having their height specified as a feature in the DBF

file. The reconstructed 3D model is equivalent to the LoD 2 proposed in the CityGML specification, al-

though a X3D file was created to be later inlined in the X3D scene (see Figure 12.2).

Using the hybrid integration method for volume rendering allows us to visualise the buildings in the

volume, as it can be seen in the Figures 12.6 and 12.7.

4.5. Wind Flow Visualisation. The wind information, provided as u and v components for each voxel

in the dataset, were processed with the methods presented by Aristizabal et al. [148]. The result is a set of

geometric streamlines, converted to X3D file format. The final step involved the integration of such X3D

model as an inline node into the X3D scene (see Figure 12.2).

The integration of the streamlines with the volume dataset has been performed in the same way as the

buildings, as they are not conceptually different, but some precautions had to be taken into account. A
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FIGURE 12.7. Top view of the volume dataset combined with the buildings geom-
etry. The set of frames shows the temperature evolution of a small part of the urban
area (shown independently in the last subimage).

FIGURE 12.8. Hybrid visualisation of temperatures dataset (on the left, just the
volume rendering and the buildings are shown) and wind information, reconstructed
as colored geometric lines. For clarity purposes, only a small subset of wind flow
lines have been added to the image (right).

full reconstruction of the complete vector field is so dense that the visualisation turns to be not usable and

therefore, not practical. A simplification was performed to produce a smaller set of streamlines. Even with

such reduction, we have reduced it even more to achieve better graphical results for the Figure 12.8.

4.6. Testing platform. The tests have been performed in an Intel Quad Core Q9400 processor, 4GB of

RAM and a GeForce GTX 275, Windows 7 PRO 64 bits with the latest stable graphics drivers. Amongst all

of the Web browsers with full implementation of WebGL standard, we selected Firefox 12.0 for the tests,

although other browsers are known to work with the implementation like Chrome 19 and Opera 12.00 alpha.

Both Chrome and Firefox, in default configuration, use Google’s Angle library to translate WebGL’s native
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GLSL shaders to Microsoft’s HLSL language and compile and run them through the DirectX subsystem.

This procedure improves compatibility with lower-end hardware or older graphics drivers. Firefox also

works if Angle is disabled; setting the native OpenGL subsystem as the rendering back-end. The Web

application is served through a LightTPD Web server, installed and configured in the same computer for this

experiment.

5. Conclusions and Future Work

This work has presented a Volume Rendering Web application to visualize 3D scalar and vector fields

coming from AQM. An HTML5 interface has been provided to enable the users to configure the parameters

of the visualisation and to navigate through the datasets (spatial and temporal navigation).

The integration of geometrical models (like buildings or wind streamlines) and the volume dataset helps

to contextualize the data, helping to analyze visually the results of the AQM simulations.

In this paper a hybrid visualization has been presented, combining temperature (scalar field), wind

flow (vector field) and the LoD 2 buildings existing in the zone. The results show that such integration of

georeferenced datasets, provided through an interactive and high-performance Web visualization module,

enhances the global understanding of the datasets.

This work has also presented how visual analysis of temporal datasets can be performed interactively.

Using the same settings for the transfer function and window level, the fast loading times and the visu-

alization performance of the models allows the creation of smooth animations, presented in this work as

sequential frames.

This work has been focused on the rendering of temperature datasets, but the AQM can produce sim-

ulation for a wide variety of pollutants. For this multivariate scenario, it will be important to address the

mechanisms to allow the selection and the merging criteria of the different pollutants, as it would depend on

the users to give more priority to one pollutant than others.

For such operations, the key point is how users can deal with the heterogeneity of the multivariate

scenarios. Transfer functions are a fundamental tool for the correct visualisation of such volumes. Some

of the future work can be oriented to the generation of transfer functions by visual clues, know as Visual

Volume Attention Maps (VVAM) [150]. Some preliminary results has been already researched and these

methodologies are going to be tested in MEDX3DOM.
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Conclusions

The main result of this thesis is the test of all their modifications, improvements, and extensions of algo-

rithms and methodologies into real world problems, providing a reliable set of new tools for the resolution of

established problems in different fields. Also, the collaboration with standardization consortium and other

research groups, proves the usability of the developments.

The models generated by the combined method of full-body and face reconstruction, shows human

recognizable avatars.

A formal methodology for the selection of parameters for surface reconstruction algorithms significantly

improves the quality of the results of the algorithm.

The modification of the Marching Cubes algorithm allows the use of this algorithm for dataset which

were untreatable.

Volume rendering algorithms in heterogeneous architectures and low level devices can be effectively

used in telemedicine and remote diagnostics.

Hybrid visualization enrich the content of images allowing the presentation of more data in the same

image.
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