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Introduction
The Geometric Constraint Satisfaction or Scene Feasibility
(GCS / SF) problem consists of a basic scenario containing
geometric entities, whose context is used to propose con-
straining relations among still undefined entities. If the con-
straint specification is consistent, the answer to the problem
is one of finitely or infinitely many solution scenarios satis-
fying the prescribed constraints. Otherwise. a diagnostic of
inconsistency is expected. The mathematical approach, pre-
viously presented in other publications, describes the prob-
lem using a set of polynomial equations. with the common
roots to this set of polynomials characterizing the solution
space for such a problem. That work presents the use of
Grobner basis techniques for assessing eonsistency and re-
dundancy of the constraints. It also integrates subgroups of
the SpeciaJ Euclidean Group of Displacements SE( 3) in the
problem formulation to exploit the structure implied by ge-
ometric relations. In this article, the application of the dis-
cussed techniques to kinematic analysis of mechanisms is il-
lustrated by an example. It is implemented using MAPLE's
routines to manipulate polynomial ideals. and ealculate their
Grobner Bases.

GCS / SF underlies a number of problems in CAM /
CAM / CAPP areas, for exampIe, jixturing, assenzblyplan-
ning, consfraint-based design, tolerancing and dinzension-
ing, kinenzatic analysis, ete. Therefore, it is evident that a
strong theoretica: and practical background satisfying geo-
metric constraints is crucial in CAD / CAM / CAPP.

Topology and Geonzetry are two interdependent aspects
of GCS / SF although they have often been treated inde-
pendently. Topology deals exclusively with the connectiv-
ity and nature of the spatial relations between entities. Ge-
ometry refers to the distances and direetions that parame-
terize these relationships. TopologicalIy, this work wilI ad-
dress constraints which can be expressed as algebraic equal-
ities [10]. GeometricalIy, it is restricted to zero curvature
(points, straight lines and planes) proper subsets of E3.

LITERATURE SURVEY

Solving GCS / SF implies the ability to: (i) instance enti-
ties (or produce configurations) which satisfy the given con-
straints, (ii) identify a redundant constraint, (iii) identify an
inconsistent set of constraints, and (iv) determine the degrees
of freedom between several entities. These requirements
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immediately preclude the application of purely numerieal
techniques. In current literature, GCS / SF has been ap-
proached from the areas of group theory (Herve [5: I and
kinematics and meehanisms (Angeles [2]). Therefore. the
terms (tr¡¡'ial) consfraint, joint and group are used imer-
changeabIy in the discussion.

Popplestone et al [1, 9] formalized GCS / SF in the torm
of equations of unknown positioning matrices. The~ also
explored the application of finite groups in situations ID\olv-
ing symmetries sueh as arrays, hexagonal pieces, mirT"I'ar-
rangements, etc.

Based on Herve' s formalization, Thomas, Torras and
Celaya in [12] attempted the topological reduction 01 con-
straint networks. Limitations of this work are the topology-
only treatment, and the type of eonstraints (trivial) that it con-
siders. Its contribution is the methodology proposed 10qate
the (geometry and topology of) GCS / SF in terms of the
SE(3) group.

In [10], Ruiz & Ferreira formulated the GCS / SF prob-
¡em as one of determining the solution space ofa set of poly-
nomials, using Grobner Bases to charaeterize the so]ution
space using [7]. The method alIowed for the integratiün of
geometric and topologica] reasoning, and the efficient group
theoretie formulation of Herve.

This article ilIustrates how Algebraic Geometry ([3. 6. 7])
and Group Theory ([5, ]2, 2]) can be app]ied to the spe-
cific area of Kinematic Ana]ysis. For that purpose, section
2 presents a summary of the necessary background. Sec-
tion 3 directly relates GCS / SF to Kinematic Analysis. Sec-
tion 4 discusses the specific example of the Oldham mecha-
nism. Seetion 5 briefly presents relevant conclusions. \\hile
Appendix A presents the MAPLE script used to anal: ze the
Oldham coupling.

Background

ALGEBRAIC GEOMETRY AND THE GCS / SF
PROBLEM

The GCS / SF problem takes place in a world W, with a
set of relations R. If a set of entities S = {el, oo,e,,} sat-
isfies the constraints, it is said that S is feasible for ir Qnd
R , and this fact is written as S = fea.sible(W, R. If

the polynomial form of the problem is F = {tI, h. ... f r¡}
with !i polynomials in variables .TI,X2. ..., :];n, it is said that
F = poly-form (W, R). Since S is a solution for F. it is
denoted as 5= solution(F).
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For the purposes of this paper, the calculation of the
Grobner Basis of a set of polynomials F can be regarded as a
black box procedure whose result, GB(F), an alternative set
of polynomials, has several important properties. The prop-
erties alIow us to draw the folIowing propositions ([6, 7]):

1. 5= 8olntion(F) iff 5= 8ollltion(GB(F)).
In the context of GCS / SF, this implies that GB (F)
and F describe the same scene, a1though GB(F)
presents properties useful in the solution process.

2. 1 E GB(F) :::} S = 8olntion(F) = tI>
This property implies that finding "1" or a constant
polynomial in GB (F) implies the equation "0= 1"
leading to the fact that F has no solution.

3. F is Zero-dil1lensional iff F (and GB(F) has a finite
number of solutions. The zero-dimensionality of 1 can
be assessed: A variable .r is non-instanced if it does

not appear as head(p) for any polynomial p E GB( F)
(p = .rd + tail(p), d E N).

4. Let a new constraint be represented by polynomial f.
! is redundant to F .;:} (1 E GB(F U {y.! - 1}»
for a new variable y. It establishes that the satisfaction
of the new constraint ! is unavoidable when the initial
set of constraints is satisfied.

5. GB(F) (based on a lexicographic order Xl >- X2 >-

X3... >- Xn) is a triangular set in the sense that G B (F)

contains polynomials only in Xl, some others only in
Xl, .r2, and so on, making the numerical solution a pro-
cess similar to triangular elimination.

The theoretical framework for the solution of GCS / SF can

Je summarized in the folIowing procedure [lO]: In the event
of the addition of new constraints to the scene, they are con-
verted into polynomial(s), tested for redundancy (Proposition
4), consistency (Proposition 2) and finiteness of number of
solutions (Proposition 3). If the new constraint is redun-
dant, it is ignored (Proposition 4). If the ideal has become
zero-dimensional a triangular Grobner Basis under a stated
lexicographic order i5 extracted and solved (Proposition 5).
Proposition l is the underlying basis of the procedure, since
it establishes that the GB (F) faithfulIy represents F.

The use of a group-theoretical approach to express GCS
/ SF is explored next. It will provide (i) a direct relation be-
tween degrees of freedom and variables, and (ii) a smalIer
formulation of the problem.

GROUP- THEORETIC FORMULATION FOR THE
GCS I SF PROBLEM

This section examines the modeling of GCS / SF by us-
ing the canonical form of conjugation classes developed by
Herve [5] and the application of his work by several authors

(refs [2, 10, 12]). The set of Euclidean displacements in 3D,
SE(3), is a (non commutatiye) group [8] with the composi-
tion operation (o). S E( 3) presents subsets which are groups
themselves, and which express certain common cIasses of
displacements. They are called subgroups. For example, the
subgroup of the rotations about a given axis 11in the space.
Ru, is a subset of SE(3), and a group itself. A list of the
subgroups of SE(3) and their canonical representation [5],
as welI as their degrees of freedom is shown in Table I l. For
example, "rotations" are alI transformations of the form

Ru(fI) = B.R".B-: = B.twi.T(fI).B-1.

The displacement B E S E (3) represents the geome!ric part
of a particular constraint, whi le the canonical part (R" ) con-
tains the topological information. .

Using this methodology. the contact constraints appear in
Table 2. For example, a r - O S - r LV relation confines
a point to be on aplane, therefore configuring a S-dof con-
straint 2. These (matrix) equations produce the polynomial
form of GCS / SF.

GC 5/ S F is stated as a series of constraints R¡ relating
F¡¡ with F¡2 as shown in Figure l (corresponding to a two

body system), where F¡j is the ith feature ofbody Bj. The
R¡O constraints are as dictated by Tables I and 2. Body
BI (in this case) contains two features, Fll and F21. B2

contains Fl2 and F22. The goal is to find a final position of
BI (assuming B2 stationary). such that Fll relates to Fl2 and
F21 relates to F22 satisfying the invariance dictated by R¡()

and R20 respectively.
The equations expressing the facts above are:

BI.Fll.RIO = B2.F12 : BI.F21.R2() = B2.F22 (1)

The above procedure can be generalized to larger sys-
tems. The solution and interpretation of Equation I folIow
the constraint management procedure discussed in the last
section [10, 5, 10].

The GCS / SF Problem in Design and
Analysis of Mechanisms
GCS / SF and Kinematic Analysis of Mechanisms are related
since kinematic joints are constraints on the relative position
of entities. A solution for GCS / SF is a physicalIy realiz-
able configuration of kinematic links. Continuous regions of
the solution space for GCS / SF directly map to the possible
motion (degrees of freedom) of ¡he mechanism.

1In this table, t!cix(O) means a rotation about the X axis by O. XTOY
means a rotation by 90° about the Z axis. trans( x, y, z) indicates a general

spatial translation.
2Points are in the origin of their anached frame. Lines coincide with the

X axis of their frame. Planes coincide with the Y-Z plane of their attached
frame.

r:;Q
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Table 1: Conjugation Classes and their Canonical Forms

02SlJ Symbol [ Conjugation Class CanonicalSubgroup

Table 2: Entity Relations in the Form of Kinematic Joints

1 Ru Rotations about axis u {t¡ár( e)}

1 Tu Translations along axis u {tran8(:r,0,0)}

1 Hu,p Screw movement {tran8(,T, °,O).tll:i:r(p:r)}
along axis u, with pitch P

2 Cu Cylindrical movement {tran8(;r, °, O).tll.Ú( e)}
along axis u

2 Tp Planar translation {tran8(0,y,Z)}
parallel to plane P

3 Gp planar sliding {tran8(0, y, z ).twix( B)}
along plane P

3 So Spherical rotation {twi.T( u).XTOYtwi.T( Ó).XTOY.twi.T(e)}
about center "o"

3 T 3D translation {tran8(x,y,Z)}

3 Yv,p Translating Screw {tran 8(x, y, z ).twi.T(px)}
axis v,pitch p

4 Xv 3D translation {trans( x, y, z ).tWi.T(e)}
followed by rotation about v

macro joint chain kinematic joints in chain do!

P-ON-P S spherical 3
P-ON-LN Tv o So linear translation, spherical 4

P-ON-PLN Tp o So planar translation, spherical 5
LN-ON-LN e cylindrical 2

LN-ON-PLN Tp o Rv o Rw planar translation, revolute 4
PLN-ON-PLN Tp o Rv planar translation, revolute 3
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Figure 1: Two Body Example of Canonical Variable Modeling of the GCS/SF Problem
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Figure 2: Piece Disassembly and Spatial Constraint Graph of Oldham Mechanism

.; Spatial Constraint (SC) graph (see Figure 2). con-
veys the topological and geometrical information of GCS /
SE It is suitable for the computer generation of the equations
soverning the scene and allows the identification of subprob-
ems which help in GCS / SF by allowing the application of
Jreproeessing teehniques [11].

Conventions: Sinee entities are represented by frames,
.he terms entity andframe are equivalen!. In the SC graph the

lOdes are entity frames (E j and F¡j). The are between two
lOdes represents the displacement that relate the correspond-

ng entity frames. There are three types of nodes: nodes Ej
.vhichrepresent the origin frame of a body in the World Coor-
linate System, feature nodes F¡j whieh represent the feature
; in body Ej and bodynodes inc1udethe originframeof the
Jody and its features. Coneeptually, there are two types of
arcs: positioning and constraint ares. Positioning ares repre-
,ent known relative positions of features within bodies. They
always join an entity E¡ and one of its features Fj¡. Con-
:;traint ares always conneets two feature nodes, which may
be joined by more than one arc to admit more than one con-

straint between them. The constraint arcs are represented by

C¡(.1'j. (lm. ..). with the degrees of freedom :1'j.(lrn... some-
times being omitted. To simplify the notation, positioning
arcs are named Fj¡, as the features themselves, and the body
nodes are named as their origin frame, Ej.

The Oldham Coupling
The Oldham eoupling is shown in Figure 2. This meehanism
is designed to eonnect two parallel, non-collinear axes, al-
lowing the transmission of rotational movement [4]. Using
canonical variables, the types of joints present in this mecha-
nism are modeled in Table 3. The ground frame is ealled Eo.

and supports the Oldham coupling through the features F20
and F10 which are the parallel, non-collinear axes. The two
centraljoints R¡ and R2 are prismatic, with their grooves F¡2
and F22 being non-parallel. R3 and R4 represent the rotatory
movements (input / output) that are to be transmitted by the
coupling.
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Table 3: Joint List of the Oldham Coupling

I Joillt I Joíllt Type I Canollícal Representatíon I

Modeling of Oldham Coupling with Canonical Variables

Using the methodology developed in [10] and the SC graph
(Figure 2), the kinematic relations may be expressed by the
following matrix equations:

Bl.Fll.Rl.F;;l = B2

B3.F23.R3.F2C/ = Bo

B2.F22.R'2.F;;1 = B3

Bo.Flo.R¡.F21l = Bl

In this case the graph of constraints contains only one loop
and it can be expressed by the equation:

FlO.R4.F21l.Fll.Rl.F;;1

= F20.R3.F2:/ .F13.R2.F2-:/

where 14 is the 4 x 4 identity matrix. This equation conveys
the topological configuration of the coupling.

In the Oldham coupling, the non-collinearity between
axes F20and FlO is expressed by L3. The totallength of the
mechanism is determined by parameter L12. According to
Equation 3 and Table 3, the polynomials which express the
kinematics of the mechanism are:

-L12 + L8 - L11 + L7 + Ll + L3 = O

s84 se3 - ce4 ce3 - 1 = O

-se4 ce3 - ce1 s83 = O

L3 se1 c83 + L3 ce4 se3 - se4 .1'2+ ce4 Xl =O

ce4 8e3 + se4 ce3 = O

s84 s83 - c84c83 - 1 = O

-L3 se4 s83 + L3 c84 ce3 - ce4 .1'2- s84 .1'1= O

se32+ ce/ - 1 = O

s842 + ce,!2 - 1 = O

Under the specification presented, the analysis of the
Oldham coupling should predict the transmission of non-
collinear, rotatory movement. In a first approximation, how-
ever, the Grbbner Basis of this set of polynomials happens
to be GB = {1}. This implies a topological or geometrical
inconsistency. A careful exami natio n of Equations 4 reveals
that in the first equation, L12 is not an índependent parameter
(see Figure 2). This equation indicates that

L12 = Ls - L11 + L7 + Ll + L3

is a necessary condition for the mechanism to be realizable.
This detection of geometrical inconsistencies in relation to
the prescribed topology is an unexpected bonus of using al-
gebraic geometry techniques for GCS I SF. Under the condi-
tion imposed by Equation 5, the first equation in (4) would
becomeO= O. The lexicographic Grbbner Basis, calculated
under the order:1'l ?- ./'2 ?- S(J3 ?- C(J3?- s(J¡ ?- c(J,¡,is:

(2) S(J3 - se¡ = O

(6)

:!:.l+ L3 S(J4= O .1:2 + L3 c(J,! = O

ce3 + c84 = O s8/ + c(J/ - 1 = O.

(3)

This triangularized Grbbner Basis presents a free variable,
C(J4,responsible for the one-dimensionality of the polyno-
mial ideal [3, 7]. As expected, the prismatic joints Rl and
R2 (variables .1'1and .1'2)are controlled by the separation be-
tween the two axes, L 1'2.

Variation 1. Cylindrical Joints in Central Connector

A question arising from the previous section is whether other
configurations different from the Oldham coupling would
also transfer rotational movement between non-collinear
axes (see Figure 3). One of such variations is achieved by
replacing joints Rl and R2, which originally are prismatic
(TlL), by cylindrical ones (ClL = trans(.1'.O,O).twi:r((J)).
The translational dof .7'is essential te the functioning of the
coupling. It would be expected that the rotational degree of
freedom 8 be instanced.

Using the cycle formulation from Equation 3, and the
joint specification of Table 4, the kinematic equations can
be formulated. Under the ordering Xl ?- S81 ?- C81 ?- ./''2 ?-
se2 ?- ce2 ?- s83 ?- c83 ?- s84 ?- c8! this equation set has
the following lexicographic Grbbner Basis:

(4) .1'1+ L3 s84 = O S8l = O dll - 1 = O (7)

:1:2+ L3 c84 = O se2 + 1 = O c82 = O

S(J3- s84 = O ce3 + c84 = O s(J!2 + C8,¡2- 1 = O

The variable c84, the angular inputloutput of the mechanism
is effectively the degree of freedom left. All other variables
appear as head() of some polynomial. As expected, the an-
gular freedoms given to the central joints Rl and R2 do not
affect the degrees of freedom of the whole coupling, since
they are immediately instanced. Therefore, the joints act as
prismatic rather than cylindrical ones.(5)

Al

Rl Tu t/'ans(.rd
R'2 Tu t/'ans(.r2)
R3 Ru twi.1'( e3)
R¡ Ru t w i.1' ( e 4 )
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Figure 3: Variations ofthe Oldham Mechanism

Table 4: Joint List of the Oldham Coupling. Variation l

I Joint I Joint Type I Canonical Representation I

Variation 2. Cylindrical Joints in Input / Output Links,

If R3 and R1 are strictly rotational joints Ru, L12 was found
dependent on other dimensions. Therefore, by allowing axial
movement in joints R3 and R1 (see Figure 3), the expected
result should be that the L12 can be considered an indepen-
dent parameter. The coupling should act as a transmitter of
cylindrical movement along two non-collinear parallel axes.

The constraint polynomials are built under the joint con-
figuration of Table 5 and the matrix Equation 3. Their
Grobner Basis under the ordering Xl >-- X2 >-- X3 >-- 883 >--

c83 >-- .T'I >-- 881 >-- c81 is

Xl + L3 8()1 = O

X2 + L3 C()1= O

.T3 + X1 + L12 - L8 + Ln - L7 - Ll - L3 = O

883 - 881 = O

C()3 + r.81 = O

8() / + r.B12- 1 = O

This Grobner Basis represents a two-diinensional ideal
with two free variables; X1 and C1.C1is the rotational move-
ment transmitted. X4 represents the translational degree of
freedom. Variables X1 and ;r3 act as slack variables; they
allow L12 ::j:.L8 - Ln + L7 + Ll + L3, in contrast with
the original Oldham coupling in which such condition would
render the mechanism unrealizable.

Variation 3. Parallel Prismatic Joints in Central Link

In this variation the topology of the Variant 2 (expressed in
Table 5) is maintained while the geometry is modified in such
a way that the solution space changes radically. The features
F12 and F22, the grooves of the prismatic joints Rl and R2,
are made parallel. This modification (see Figure 3) would

preclude the whole joint for transmitting rotational move-
ment through the non-aligned axis FlO and F2o. Under the
order .rl >-- .T2 >-- 883 >-- c83 >-- 88.1 >-- e8.1 the lexicographic

Grbbner Basis of this arrangement would be

Xl + .T2 + L3 881 = O 883 = O dJ3 + s81 = O

8812 - 1 = O c81 = O (9)

This triangular Grobner Basis indicates that all the angu-
lar variables are locked (instanced). The mechanism cannot
transmit rotatory movement, and X2, the translational vari-
able, is the only degree of freedom left.

ConcIusions

(8)

It has been shown that the kinematics of mechanicallink ar-

rangements can be expressed in terms of GCS / SE There-
fore, the methods of solution for such a problem can be
applied in order to analyze the characteristics of kinematic
chains.

By using the set of canonical variables, a direct map be-
tween the kinematic characteristics ofthe mechanism and the

algebraic expression of the corresponding GCS / SF problem
can be established. This direct map can be taken advantage
of in inferring possible variations of the mechanism by elab-
orating about variations on the basis of the polynomial ideal.

Grobner Bases for Oldham Coupling
Example
This section shows the basic ca\culation for the original Old-
ham Coupling. The three variations are obvious modifica-
tions.

# File: oldham_basic.mapl
# Bodies:O. Ground

111 1I1 11f-----T
kI;/

7777 7777

Original Variatian 1 Variarian 2 Variarían"

Rl Cl1 tran8( xI).t wi.r( 81 )
R2 Cu traTu;(.T2).twi.T(81 )
R3 Ru twix(83)
R1 Rl1 twi.T(81)
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Table 5: Joint List of the Oldham Coupling. Variation :2

I Jaínt I Jaínt Type I Cananícal Representatían I

> twix ;=
> RETUR.!\J(
>
>
>
>
>
>
>
>

proe(s,e)
array ( [ [1, °, °, O] , [°, e, -s, O] ,

[O,s,e,O],[0,0,0,1]]))

> #-----------------------------------
> # BO, B1, B2, B3 are irnmaterial
> # C1:Tu=F11-F12 C2:Tu=F22-F13
> C1 := evalm( t~ans( x_1 ,° ,° ));
> C2 := evalm( trans( x_2 ,° ,° ));
> # C3:Ru=F23-F20
> # C4:Ru=F10-F21
> C3 := evalm( t~ix( s3, e3 ) );
> C4 := evalm( tv:ix(s4, e4 ) );

Next, the cycle equation. MirrorX ancl roU:_90 are
finite symmetries. Their handling is out of our scope.

> eye1e:=evalm(
> F10&*MirrorX&*C4&*inverse(F21)&*Fll&*
> C1&*inverse(F12)&*F22&*rotX_90&*C2&*
> inverse(F13) &*
> F23&*MirrorX&*C3&*inverse(F20)-I_~
> ) ;

Now, separate the equations.

#
#
#
#
# Constraints as per Tables 1 and 2:
# (R1:Tu Fll-F14) (R2:Tu F21-Fl4)
# (R3:Ru F12-F1S) (R4:Ru F22-F1S)
#===================================

1. Rotatory Groove Left
2. Central Pieee
3. Rotatory Groove Right

First define twix ( ) , trans ( ) . xTOy,

rotX_9O. and 1_4 in order to express Herve' s
constraints.

end:
trans := proe(x,y,z)
RETURN(array( [[l,O,O,x],[O,l,O,y],

[O,O,l,z],[0,0,0,1]]))
end:
xTOy: =array ( [ [°, -1, °, O] , [1, °, °, O] ,

[0,0,1,0], [0,0,0,1]]);

> eqs:= [
> eyele[l,l] ,eyele[1,2],eyele[1,3],
> eyele[1,4] ,eyele[2,1],eyele[2,2],
> eye 1 e [ 2 , 3] , eye 1 e [2 , 4] ,eye 1 e [3 , 1 ] ,

> eyele[3,2] ,eyele[3,3],eyele[3,4],
> s3~2+e3~2-1,s4~2+e4~2-1
> ];
> N := nops( eqs );
> vars := [x_1, x_2, s3, e3, s4, e4 ];

Do thecalculations and measure performance:

> t1 := time();
> GB := gbasis( eqs,
> t2 := time();
> time: = t2-tl;

Display the results:

vars , plex );

> 1_4: =array ( [ [1, °, °, O] , [0,1, °, O] ,

> [0,0,1,0],[0,0,0,1]]);

> rotX_90 := twix(-l,O);

> MirrorX: =array ( [ [-1, °, °, O] , [°, 1, ° , O] ,

> [0,0,-1,0],[0,0,0,1]]);

Next, simulate the Oldham mechanism.

> oldham := proe()
> with( grobner );
> with( linalg );

Here, the GEOMETRY is defined. > #-----------------------------------
> print('Equations: ' );
> for eq in eqs do print( eq ); od;
> print(' ');
> print('Oldham example: ');
> print('num vars: ,nops( vars ) );
> print('num eqs : ,nops( eqs ) );
> print('num eqs GB : nops( GB ) );
> print('time GB: ' ,time);
> print('
> print('GBasis:');
> for g-pol in GB do print(g-pol); od;
> end:

');

> # Dimensional Parameters:
> L12:= L8 - L11 + L7 + L1 + L3;

> Fll:=array([[0,1,0,L1], [-1,0,0,L4],
> [°,°,1,L2] ,[°,°,°,1] ]);
> F21:=array([[-1,0,0,-L3], [0,-1,0,L4],
> [°,°,1,L2] ,[°,°,°,1] ]);
> F12:=array([[0,1,0,-L7], [-l,O,O,LS],
> [O,°,1,L6] ,[°,°,°,1] ]);
> F22:=array([[0,0,1,0], [O,-l,O,LS],
> [1,°,°,L6] ,[°,°,°,1] ]);
> F13: =array ( [ [°, -1, °, Lll] , [°, °, -1, L9] ,

> [1,0,0,L10], [0,0,0,1]]);
> F23:=array([[1,0,0,L8], [0,0,-1,L9],
> [0,1,0,L10],[0,0,0,1]]);
> F20 :=array( [[-1, °, 0,L12], [°, °, 1, OJ,
> [° , 1 , ° ,L3 ] , [°, ° , ° , 1] ] ) ;

> FlO:=array( [[1,0,0,0], [0,1,0,0],
> [0,0,1,0],[0,0,0,1]]);
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